
embed2.tex, January 11, 2007 1

Sobolev embeddings and interpolations
Pavel Krejč́ı

This is a second iteration of a text, which is intended to be an introduction into Sobolev
embeddings and interpolations. The goal is to show the main ideas of the proofs, so that the
reader can derive himself/herself particular formulas in cases that are not explicitly treated in
textbooks. Hence, emphasis is put on methods rather than on a collection of results. Some
additional information can also be found in [1, 2, 3, 4]. Note that in fact, the only tool behind
all the estimates is the elementary Hölder inequality.
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1 Preliminaries

The word embedding is used in the situation of two Banach spaces U and V , endowed with
respective norms ‖ · ‖U and ‖ · ‖V , and such that

V ⊂ U ,
∃C > 0 ∀v ∈ V : ‖v‖U ≤ C‖v‖V .

}
(1.1)

If (1.1) holds, then we say that V is embedded in U .

The embedding is said to be compact , if every bounded set A ⊂ V is precompact in U , that is,

∀ε > 0 ∃a1, . . . , an ∈ A ∀a ∈ A ∃k ∈ {1, . . . , n} : ‖a− ak‖U < ε . (1.2)

The following theorem represents a basic tool in the theory of compact embeddings in function
spaces.
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Theorem 1.1 (Arzelà-Ascoli) Let X, Y be Banach spaces and let A ⊂ X, B ⊂ Y be com-
pact sets. Let C(A; B) be the Banach space of all continuous mappings from A into B . Let
K ⊂ C(A; B) be an equicontinuous set, that is,

∀ε > 0 ∃δ > 0 ∀f ∈ K ∀x, y ∈ A : ‖x− y‖X < δ ⇒ ‖f(x)− f(y)‖Y < ε .

Then K is compact in C(A; B) . Conversely, every relatively compact set in C(A; B) is
equicontinuous.

Proof. Let K ⊂ C(A; B) be equicontinuous, and let ε > 0 be given. We find δ > 0 such that
for all f ∈ K we have ‖f(x) − f(y)‖Y < ε/4 whenever ‖x − y‖X < δ . Since A is compact,
there exist x1, . . . , xp ∈ A such that for every x ∈ A there exists i ∈ I := {1, . . . , p} such that
‖x − xi‖X < δ . Furthermore, B is compact, hence there exist y1, . . . , yq ∈ B such that for
every y ∈ B there exists j ∈ J := {1, . . . , q} such that ‖y − yj‖Y < ε/4 .

For z ∈ J p , z = {z1, . . . , zp} , we now denote

Kz =
{

f ∈ K ; ∀i ∈ I : ‖f(xi)− yzi
‖Y <

ε

4

}
.

Set M := {z ∈ J p : Kz 6= ∅} . The set M is indeed finite and we have K =
⋃

z∈J Kz , hence
we may fix one representative fz ∈ Kz for each z ∈ J . For any f ∈ Kz and x ∈ A we find xi

such that ‖x− xi‖X < δ , and estimate

‖f(x)− fz(x)‖Y ≤ ‖f(x)− f(xi)‖Y + ‖f(xi)− yzi
‖Y + ‖fz(xi)− yzi

‖Y + ‖fz(x)− fz(xi)‖Y

< ε ,

which we wanted to prove. Since every finite set of mappings in C(A; B) is equicontinuous,
the fact that that relatively compact sets are equicontinuous follows easily. �

2 Admissible domains

We fix an open connected bounded set Ω ⊂ RN , where N ∈ N is an integer, and denote by Ω̄
its closure and by∂Ω its boundary. We assume that the following condition holds (see Fig. 1)

(L) There exist δ > 0 and m ∈ N , and for each k = 1, . . . ,m there exists an open convex
sets ∆k ⊂ RN−1 , a Lipschitz continuous function ak : ∆k → R , and a rotation Ak in
RN (represented by an N × N matrix, still denoted by Ak , such that A−1

k = AT
k and

detAk = 1), such that

(i) ∂Ω ⊂
⋃m

j=1 Ak(Gk) ,

(ii) Gk = {y ∈ RN ; y = (y′, yN), y′ ∈ ∆k, yN ∈ (ak(y
′)− δ, ak(y

′) + δ)} ,

(iii) G−
k = {y ∈ Gk ; yN ∈ (ak(y

′)− δ, ak(y
′))} ,

(iv) G0
k = {y ∈ Gk ; yN = ak(y

′)} .

(v) Ω ∩ Ak(Gk) = Ak(G
−
k ) ,

(vi) ∂Ω ∩ Ak(Gk) = Ak(G
0
k) ,
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Figure 1. A domain with Lipschitzian boundary.

If (L) (i)–(vi) hold, then we say that Ω has Lipschitzian boundary.

As an example, consider the spaces C(Ω̄) of continuous real functions defined on Ω̄ , endowed
with the norm

‖f‖C,0 = sup{|f(x)| ; x ∈ Ω̄} ,

and C1(Ω̄) of continuously differentiable real functions on Ω̄ , endowed with the norm

‖f‖C,1 = sup

{
|f(x)|+

N∑
k=1

∣∣∣∣ ∂f

∂xi

(x)

∣∣∣∣ ; x ∈ Ω̄

}
.

Proposition 2.1 If Ω has Lipschitzian boundary, then the space C1(Ω̄) is compactly embedded
in C(Ω̄) .

Proof. Condition (1.1) is automatically satisfied. Furthermore, let K ⊂ C1(Ω̄) be bounded.
Hence, there exists M > 0 such that

∀f ∈ K ∀x ∈ Ω̄ : |f(x)|+
N∑

k=1

∣∣∣∣ ∂f

∂xi

(x)

∣∣∣∣ ≤ M .

We are thus in the situation of Theorem 1.1 with X = RN , Y = R , A = Ω̄, B = [−M, M ] ,
provided we check that K is equicontinuous. Let x, y ∈ Ω̄ be arbitrarily chosen. We find
a Lipschitz continuous function ξ : [0, 1] → Ω̄ and a constant C > 0 such that ξ(0) = x ,
ξ(1) = y , |ξ′(σ)| ≤ C|x− y| a. e. (this is possible by the hypotheses on Ω), and use the chain
rule to estimate

|f(x)− f(y)| =

∣∣∣∣∫ 1

0

d

dσ
f(ξ(σ)) dσ

∣∣∣∣
=

∣∣∣∣∫ 1

0

〈∇f(ξ(σ)), ξ′(σ)〉 dσ

∣∣∣∣
≤ MC|x− y| ,

where we denote by 〈·, ·〉 the canonical scalar product in RN . The relative compactness now
follows from Theorem 1.1. �
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3 Spaces Lp(Ω) and W 1,p(Ω)

Let Ω ⊂ RN be any open set. We denote as usual by Lp(Ω) the space of measurable functions
u : Ω → R , for which the norm |u|p,Ω is finite, where

|u|p,Ω =


(∫

Ω

|u(x)|p dx

)1/p

if 1 ≤ p < ∞ ,

sup ess
x∈Ω

|u(x)| if p = ∞ .
(3.1)

The spaces Lp(Ω) with the above norms are Banach spaces . We say that v ∈ Lp(Ω) is a
generalized partial derivative of u ∈ Lp(Ω) with respect to xi , i ∈ {1, . . . , N} , if for every
Lipschitz continuous function ϕ : Ω → R with compact support in Ω, that is,

∃K = K̄ ⊂ Ω ∀x ∈ Ω \K : ϕ(x) = 0 , (3.2)

we have ∫
Ω

u(x)
∂ϕ

∂xi

(x) dx = −
∫

Ω

v(x) ϕ(x) dx . (3.3)

By [4, Chap. 2, Sect. 2.2], condition (3.3) is fulfilled if and only if u is absolutely continuous
along almost all lines parallel to the xi -axis and v coincides with ∂u/∂xi almost everywhere.

The Sobolev space W 1,p(Ω) is defined as the subspace of Lp(Ω) of all functions u , which
together with all generalized partial derivatives ∂u/∂xi belong to Lp(Ω) . With the norm

‖u‖1;p,Ω = |u|p,Ω +
N∑

i=1

∣∣∣∣ ∂u

∂xi

∣∣∣∣
p,Ω

, (3.4)

W 1,p(Ω) is also a Banach space.

The following result is crucial for the proof of embedding theorems, and its proof can be found
in [4, Chap. 2, Sect. 3.6]. We fix an open bounded connected set Ω ⊂ RN with Lipschitzian
boundary, and an open ball B ⊂ RN such that Ω̄ ⊂ B . We define W 1,p

B to be the subset of
W 1,p(RN) consisting of all functions vanishing outside B . The norms in Lp(RN) , W 1,p(RN)
will simply be denoted by | · |p , ‖ · ‖1;p , respectively.

Theorem 3.1 There exists a linear prolongation operator Ep : W 1,p(Ω) → W 1,p
B such that for

every u ∈ W 1,p(Ω) we have

(i) Epu(x) = u(x) for a. e. x ∈ Ω ;

(ii) There exists a constant cp > 0 such that for every u ∈ W 1,p(Ω) we have

‖Epu‖1;p ≤ cp‖u‖1;p,Ω ;

(iii) For every u ∈ W 1,p(Ω) we have

|Epu|p ≤ cp|u|p,Ω ;
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4 Some inequalities

This section collects some auxiliary inequalities that are needed in the sequel.

Proposition 4.1 (Young’s inequality) Let f : [0,∞) → [0,∞) be an absolutely continuous
increasing function, f(0) = 0 . Then for every x, y ≥ 0 we have (see Fig. 2)

xy ≤
∫ x

0

f(u) du +

∫ y

0

f−1(v) dv , (4.1)

where f−1 is the inverse function to f .

Proof. Substituting v = f(u) we have, with the convention
∫ f−1(y)

x
= −

∫ x

f−1(y)
if f−1(y) < x ,

that ∫ x

0

f(u) du +

∫ y

0

f−1(v) dv =

∫ x

0

(f(u) + uf ′(u)) du +

∫ f−1(y)

x

uf ′(u) du

≥ xf(x) + x(y − f(x)) = xy .

�

For 1 < p < ∞ , we denote by p′ the conjugate exponent

p′ =
p

p− 1
. (4.2)

Reciprocally, p is the conjugate of p′ and we have

1

p
+

1

p′
= 1 , p′ − 1 =

1

p− 1
. (4.3)

As an immediate consequence of Proposition 4.1 we obtain, putting f(x) = xp−1 , that

xy ≤ 1

p
xp +

1

p′
yp′ (4.4)

for every x, y ≥ 0 and 1 < p < ∞ .

��u

v

0
x

y

v = f(u)

Figure 2. Young’s inequality.
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Proposition 4.2 (Hölder’s inequality) Let Ω ⊂ RN be any open set and let 1 ≤ p ≤ ∞
be arbitrary. Then for every f ∈ Lp(Ω) and g ∈ Lp′(Ω) we have∫

Ω

f(x) g(x) dx ≤ |f |p,Ω |g|p′,Ω , (4.5)

with the convention 1′ = ∞ , ∞′ = 1 .

Proof. The case p = 1 or p = ∞ is obvious. For 1 < p < ∞ we set

F (x) =
f(x)

|f |p,Ω

, G(x) =
g(x)

|g|p′,Ω
.

By (4.4) we have

|F (x)| |G(x)| ≤ 1

p
|F (x)|p +

1

p′
|G(x)|p′ =

|f(x)|p

p |f |pp,Ω

+
|g(x)|p′

p′ |g|p′p′,Ω
,

hence ∫
Ω

F (x) G(x) dx ≤
∫

Ω

|F (x)| |G(x)| dx ≤ 1

p
+

1

p′
= 1 ,

which we wanted to prove. �

Proposition 4.3 (Minkowski’s inequality) Let X ⊂ Rn , Y ⊂ Rm be open sets, and let
f : X × Y → [0,∞) be a measurable function. Then for every 1 < p < ∞ we have(∫

Y

(∫
X

f(x, y) dx

)p

dy

)1/p

≤
∫

X

(∫
Y

fp(x, y) dy

)1/p

dx . (4.6)

Proof. For y ∈ Y and R > 0 set

F (y) =

∫
X

fR(x, y) dx , g(y) = F p−1(y) ,

where

fR(x, y) =

{
min{R, f(x, y)} if max{|x|, |y|} < R ,
0 if max{|x|, |y|} ≥ R .

Then ∫
Y

F p(y) dy =

∫
Y

F (y) g(y) dy =

∫
X

(∫
Y

fR(x, y) g(y) dy

)
dx

Hölder

≤
∫

X

(∫
Y

fp
R(x, y) dy

)1/p(∫
Y

gp′(y) dy

)1/p′

dx

=

∫
X

(∫
Y

fp
R(x, y) dy

)1/p

dx

(∫
Y

F p(y) dy

)1/p′

,
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hence (∫
Y

F p(y) dy

)1/p

≤
∫

X

(∫
Y

fp
R(x, y) dy

)1/p

dx ≤
∫

X

(∫
Y

fp(x, y) dy

)1/p

dx ,

and we obtain the result from Fatou’s Lemma letting R tend to +∞ . �

Note that replacing X by a finite set {1, . . . , n} , f(x, y) by fk(y) , k = 1, . . . , n , and
∫

X
dx

by
∑n

k=1 , the Minkowski inequality reads∣∣∣∣∣
n∑

k=1

fk

∣∣∣∣∣
p,Y

≤
n∑

k=1

|fk|p,Y , (4.7)

which is nothing but the triangle inequality for the norm | · |p,Y .

The following example shows that the Minkowski inequality cannot be reversed.

Example 4.4 Consider X = Y = (0, 1) , and f(x, y) = ((x− y)+)
−1/p

for some p > 1 . Then

(∫
Y

(∫
X

f(x, y) dx
)p

dy
)1/p

=
(∫ 1

0

(∫ 1

y
(x− y)−1/p dx

)p

dy
)1/p

= 1
p−1

p1−1/p,∫
X

(∫
Y

fp(x, y) dy
)1/p

dx =
∫ 1

0

(∫ x

0
(x− y)−1 dx

)1/p
dy = +∞ .

Remark 4.5 In the same way we prove that for every 1 ≤ q < p < ∞ we have(∫
Y

(∫
X

f q(x, y) dx

)p/q

dy

)1/p

≤

(∫
X

(∫
Y

fp(x, y) dy

)q/p

dx

)1/q

. (4.8)

We set in this case

F (y) =

∫
X

f q
R(x, y) dx , g(y) = F (p/q)−1(y) ,

and estimate
∫

Y
F p/q(y) dy similarly as in the proof of Proposition 4.3.

The proof of the Minkowski inequality is related to the so-called reverse Hölder inequality :∫
Ω

f(x) g(x) dx ≤ C |g|p′,Ω ∀g ∈ Lp′(Ω) =⇒ |f |p,Ω ≤ C . (4.9)

To prove this statement, it suffices to choose g(x) = sign(fR(x)) |fR(x)|p−1 with fR defined
analogously as in the proof of Proposition 4.3, use the fact that∫

Ω

|fR(x)|p dx ≤
∫

Ω

f(x) g(x) dx ≤ C |g|p′,Ω = C |fR|p/p′

p,Ω ,

and let R tend to ∞ .

Proposition 4.6 (Young’s inequality II for convolutions) Let 1 ≤ p, q, r ≤ ∞ be given
such that

1

p
+

1

r
= 1 +

1

q
. (4.10)
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For u ∈ Lp(RN) , v ∈ Lr(RN) , and x ∈ RN set

w(x) =

∫
RN

u(y) v(x− y) dy .

Then w ∈ Lq(RN) and
|w|q ≤ |u|p |v|r . (4.11)

Proof. The case q = ∞ follows immediately from Hölder’s inequality. Hence, assume that q <
∞ , and set α = r/q ∈ (0, 1] . To make the use of the Minkowski inequality more transparent,
we write

∫
X

dx ,
∫

Y
dy instead of

∫
RN dx ,

∫
RN dy . Then, using the fact that 1− α = r/p′ and

that ∫
Y

|v(x− y)|r dy =

∫
Y

|v(y)|r dy

for a. e. x ∈ X , we obtain

|w|q =

(∫
X

∣∣∣∣∫
Y

u(y) v(x− y) dy

∣∣∣∣q dx

)1/q

≤
(∫

X

(∫
Y

|u(y)| |v(x− y)|α |v(x− y)|1−α dy

)q

dx

)1/q

Hölder

≤

(∫
X

(∫
Y

|u(y)|p |v(x− y)|pα dy

)q/p

dx

)1/q (∫
Y

|v(y)|p′(1−α) dy

)1/p′

Minkowski

≤

(∫
Y

(∫
X

|u(y)|q |v(x− y)|qα dx

)p/q

dy

)1/p

|v|1−α
r

=

(∫
Y

|u(y)|p dy

)1/p (∫
X

|v(x)|qα dx

)1/q

|v|1−α
r

= |u|p |v|r .

�

We devote the next section to the Hardy-Littlewood inequality , the proof of which is quite in-
volved and requires a certain number of auxiliary steps. The proof we give here is a modification
of the one from [2].

5 Hardy-Littlewood inequality

We state the Hardy-Littlewood inequality in the following form.

Proposition 5.1 Let 1 < p, q, r < ∞ be such that 1
p
+ 1

q
+ 1

r
= 2 . Then there exists a constant

Hpr > 0 such that for every f ∈ Lp(R) , g ∈ Lq(R) we have∫∫
R2

f(x) g(y) |x− y|−1/r dx dy ≤ Hpr|f |p |g|q . (5.1)
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An explicit estimate for Hpr will be given in (5.18) below.

We first fix an even locally integrable function h : R → [0,∞) , which is non-decreasing in
(−∞, 0) and non-increasing in (0, +∞) , and establish the following easy result.

Lemma 5.2 For a, b > 0 and r, s ∈ R set

ϕab(r, s) =

∫ a+r

−a+r

∫ b+s

−b+s

h(x− y) dy dx . (5.2)

Then for all r, s ∈ R we have ∂ϕab/∂r ≥ 0 , ∂ϕab/∂s ≤ 0 for r < s , ∂ϕab/∂r ≤ 0 , ∂ϕab/∂s ≥
0 for r > s , ϕab(r, r) = ϕab(0, 0) .

Proof. We obviously have ϕab(r, s) = ϕab(r − s, 0) = ϕab(0, s− r) for all r, s , hence it suffices
to prove that ∂ϕab/∂r(r, 0) ≤ 0 for r > 0 , ∂ϕab/∂s(0, s) ≤ 0 for s > 0 . We have

∂ϕab

∂r
(r, 0) =

∫ b

−b

(h(a + r − y)− h(−a + r − y)) dy

=

∫ b

−b

(h(a + r + y)− h(−a + r − y)) dy

=

∫ a+b

a−b

(h(r + z)− h(r − z)) dz

=

∫ a+b

|a−b|
(h(r + z)− h(r − z)) dz .

For a. e. z > 0 we have h(r + z) ≤ h(r − z) , and the assertion follows. The argument for
∂ϕab/∂s(0, s) is identical. �

The idea of the proof of Proposition 5.1 is based on approximations of the functions f and
g by step functions, and for each step function we use a rearrangement formula which will be
proved by induction (see Fig. 3). The induction step is carried out in the following way.

Lemma 5.3 Let h be as in Lemma 5.2, and let m, n ∈ N ∪ {0} be given. Let a0, . . . , an ,
b0, . . . , bm , r0, . . . , rn , s0, . . . , sm be sequences such that ai > 0 , bj > 0 for all i = 0, . . . , n ,
j = 0, . . . ,m , and ri−ri−1 ≥ ai +ai−1 , sj−sj−1 ≥ bj +bj−1 for all i = 1, . . . , n , j = 1, . . . ,m .

(i) If ri0 − ri0−1 = ai0 + ai0−1 for some i0 ∈ {1, . . . , n} , then there exist a∗i > 0 and r∗i ∈ R
for i = 0, . . . , n− 1 such that r∗i − r∗i−1 ≥ a∗i + a∗i−1 for all i = 1, . . . , n− 1 , and

n−1∑
i=0

a∗i =
n∑

i=0

ai ,
n−1∑
i=0

m∑
j=0

ϕa∗i bj
(r∗i , sj) =

n∑
i=0

m∑
j=0

ϕaibj
(ri, sj) . (5.3)

(ii) If sj0 − sj0−1 = bj0 + bj0−1 for some j0 ∈ {1, . . . ,m} , then there exist b∗j > 0 and s∗j ∈ R
for j = 0, . . . ,m− 1 such that s∗j − s∗j−1 ≥ b∗j + b∗j−1 for all j = 1, . . . ,m− 1 , and

m−1∑
j=0

b∗j =
m∑

j=0

bj ,
n∑

i=0

m−1∑
j=0

ϕaib∗j
(ri, s

∗
j) =

n∑
i=0

m∑
j=0

ϕaibj
(ri, sj) . (5.4)
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Proof. We prove only part (i), the rest is similar. If ri0−ri0−1 = ai0 +ai0−1 , then ri0−1+ai0−1 =
ri0 − ai0 , hence for every j we have

ϕai0−1bj
(ri0−1, sj) + ϕai0

bj
(ri0 , sj) = ϕa∗i0−1bj

(r∗i0−1, sj) ,

where

r∗i0−1 =
1

2
(ai0 − ai0−1 + ri0 + ri0−1) , a∗i0−1 = ai0 + ai0−1 .

We now set

r∗i = ri, a
∗
i = ai for i = 0, . . . , i0 − 2 , r∗i = ri−1, a

∗
i = ai−1 for i = i0, . . . , n− 1 .

Then (5.3) is automatically fulfilled by construction. It remains to check that

r∗i0 − r∗i0−1 − a∗i0 − a∗i0−1 = ri0+1 −
1

2
(ai0 − ai0−1 + ri0 + ri0−1)− ai0+1 − ai0 − ai0−1

= ri0+1 − ri0 − ai0+1 − ai0 +
1

2
(ri0 − ri0−1 − ai0 − ai0−1) ≥ 0 ,

r∗i0−1 − r∗i0−2 − a∗i0−1 − a∗i0−2 =
1

2
(ai0 − ai0−1 + ri0 + ri0−1)− ri0−2 −−ai0 − ai0−1 − ai0−2

= ri0−1 − ri0−2 − ai0−1 − ai0−2 −
1

2
(ri0 − ri0−1 − ai0 − ai0−1)

≥ 0 ,

and the proof is complete. �

Lemma 5.4 Let h be as in Lemma 5.2, and let a0, . . . , an , b0, . . . , bm , r0, . . . , rn , s0, . . . , sm

be as in Lemma 5.3. Set

A =
n∑

i=0

ai , B =
m∑

j=0

bj .

Then

S :=
n∑

i=0

m∑
j=0

ϕaibj
(ri, sj) ≤ ϕAB(0, 0) .

Proof. We proceed by induction over N = n + m . For N = 0 we have ϕa0b0(r0, s0) =
ϕa0b0(r0 − s0, 0) ≤ ϕa0b0(0, 0) by Lemma 5.2. Suppose now that the statement is proven for
some N ≥ 0 , and consider n, m such that n + m = N + 1. We will assume for definiteness
that

rn ≥ sm

(the opposite case is fully analogous). We distinguish two cases:

(i) n = 0. Then we set ŝj = sj +sm−sm−1− bm− bm−1 ≥ sj for j = 0, . . . ,m−1 , ŝm = sm .
Then ŝj − ŝj−1 = sj − sj−1 for j = 1, . . . ,m − 1 , ŝm − ŝm−1 = bm + bm−1 . By Lemma
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5.2 we have ϕa0bj
(r0, sj) ≤ ϕa0bj

(r0, ŝj) for all j = 0, . . . ,m . By Lemma 5.3 there exist
s∗0, . . . , s

∗
m−1 and b∗0, . . . , b

∗
m−1 such that

m−1∑
j=0

b∗j =
m∑

j=0

bj ,
m−1∑
j=0

ϕa0b∗j
(r0, s

∗
j) =

m∑
j=0

ϕa0bj
(r0, ŝj) .

We have m− 1 = N , and the induction hypothesis yields

m∑
j=0

ϕa0bj
(r0, sj) ≤

m−1∑
j=0

ϕa0b∗j
(r0, s

∗
j) ≤ ϕAB(0, 0) .

(ii) n > 0 . Set
r̂n = max{sm, rn−1 + an + an−1} ≤ rn

r̂i = ri for i = 0, . . . , n− 1 .

By Lemma 5.2, we have

Ŝ :=
n∑

i=0

m∑
j=0

ϕaibj
(r̂i, sj) ≥ S .

If r̂n = rn−1 + an + an−1 , then Ŝ ≤ ϕAB(0, 0) by Lemma 5.3 and by the induction
hypothesis similarly as in case (i). If r̂n = sm > rn−1 + an + an−1 , then set

s̄m = max{sm−1 + bm + bm−1, rn−1 + an + an−1} ≤ sm ,
s̄j = sj for j = 0, . . . ,m− 1 ,
r̄n = s̄m ,
r̄i = ri for i = 0, . . . , n− 1 ,

with the convention s−1 = −∞ , b−1 = b0 if m = 0. We have

Ŝ =
n−1∑
i=0

m−1∑
j=0

ϕaibj
(r̂i, sj) +

n−1∑
i=0

ϕaibm(r̂i, sm) +
m−1∑
j=0

ϕanbj
(sm, sj) + ϕanbm(sm, sm)

Lemma 5.2

≤
n−1∑
i=0

m−1∑
j=0

ϕaibj
(r̄i, s̄j) +

n−1∑
i=0

ϕaibm(r̄i, s̄m) +
m−1∑
j=0

ϕanbj
(s̄m, s̄j) + ϕanbm(s̄m, s̄m)

=
n∑

i=0

m∑
j=0

ϕaibj
(r̄i, s̄j) .

By construction, we have either s̄m = s̄m−1 + bm + bm−1 or r̄n = r̄n−1 + an + an−1 , and
the assertion follows again from Lemma 5.3 and the induction hypothesis.

�
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	�x

y

−ai−1+ri−1 −ai+ri
ai−1+ri−1 ai+ri

−ai+1+ri+1 ai+1+ri+1

−bj−1+sj−1

bj−1+sj−1

−bj +sj

bj +sj

Figure 3. Illustration to Lemmas 5.3, 5.4.

Corollary 5.5 Let h be as in Lemma 5.2, and let {(αi, βi) ; i = 0, . . . , n} , {(γj, δj) ; j =
0, . . . ,m} , be two systems of intervals such that (αi1 , βi1)∩(αi2 , βi2) = ∅ , (γj1 , δj1)∩(γj2 , δj2) = ∅
for all i1 6= i2 ∈ {0, . . . , n} , j1 6= j2 ∈ {0, . . . ,m} . Set

A =
1

2

n∑
i=0

(βi − αi) , B =
1

2

m∑
j=0

(δj − γj) .

Then
n∑

i=0

m∑
j=0

∫ βi

αi

∫ δj

γj

h(x− y) dy dx ≤ ϕAB(0, 0) .

Proof. We change the ordering of the intervals (αi, βi) , (γj, δj) in such a way that βi−1 ≤ αi ,
δj−1 ≤ γj for all i = 1, . . . , n , j = 1, . . . ,m , and set

ri = 1
2
(αi + βi) , ai = 1

2
(βi − αi) ,

sj = 1
2
(γj + δj) , bj = 1

2
(δj − γj)

for i = 0, . . . , n , j = 0, . . . ,m . We have ri−ri−1−ai−ai−1 = αi−βi−1 ≥ 0 , sj−sj−1−bj−bj−1 =
γj−δj−1 ≥ 0 , αi = −ai+ri , βi = ai+ri , γj = −bj +sj , δj = bj +sj , and Lemma 5.4 completes
the proof. �

The next step consists in a rearrangement formula we summarize in Lemma 5.6 below. We fix
K, L ∈ N and for sequences

−∞ < a0 < a1 < · · · < ak < +∞ , 0 = f0 ≤ f1 ≤ · · · ≤ fK ,

−∞ < b0 < b1 < · · · < bL < +∞ , 0 = g0 ≤ g1 ≤ · · · ≤ gL ,
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consider step functions f , g of the form

f(x) =
K∑

i=1

fi χ(a%(i)−1,a%(i))(x) =
K∑

I=1

f%−1(I) χ(aI−1,aI)(x) ,

g(y) =
L∑

j=1

gj χ(bσ(j)−1,bσ(j))(y) =
L∑

J=1

gσ−1(J) χ(bJ−1,bJ )(y)

 (5.5)

for x, y ∈ R , where χM is the characteristic function of a set M ⊂ R , and % : {1, . . . , K} →
{1, . . . , K} , σ : {1, . . . , L} → {1, . . . , L} are some permutations of indices.

We now define
Fk = fk − fk−1 for k = 1, . . . , K . (5.6)

Then fi =
∑i

k=1 Fk for all i , and we have

f(x) =
K∑

i=1

i∑
k=1

Fk χ(a%(i)−1,a%(i))(x) =
K∑

k=1

Fk

K∑
i=k

χ(a%(i)−1,a%(i))(x) . (5.7)

We further introduce for k = 1, . . . , K the numbers

a∗k =
1

2

K∑
i=k

(a%(i) − a%(i)−1) , a∗K+1 = 0 , (5.8)

and for x ∈ R put

f ∗(x) =
K∑

k=1

Fk χ(−a∗k,a∗k)(x) =
K∑

i=1

fi χ(−a∗i ,−a∗i+1]∪[a∗i+1,a∗i )(x) . (5.9)

Similarly, we put
G` = g` − g`−1 for ` = 1, . . . , L . (5.10)

Then

g(y) =
L∑

j=1

j∑
`=1

G` χ(bσ(j)−1,bσ(j))(y) =
L∑

`=1

G`

L∑
j=`

χ(bσ(j)−1,bσ(j))(y) . (5.11)

As before, we introduce for ` = 1, . . . , L the numbers

b∗` =
1

2

L∑
j=`

(bσ(j) − bσ(j)−1) , b∗L+1 = 0 , (5.12)

and for y ∈ R put

g∗(y) =
L∑

`=1

G` χ(−b∗` ,b∗` )(y) =
L∑

j=1

gj χ(−b∗j ,−b∗j+1]∪[b∗j+1,b∗j )(y) . (5.13)

We now prove the following crucial inequality.
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Lemma 5.6 Let f, g be as in (5.5), and let f ∗, g∗ be given by (5.9), (5.13), respectively. Let
h be as in Lemma 5.2. Then we have |f |p = |f ∗|p , |g|q = |g∗|q for all p ≥ 1 , q ≥ 1 , and∫∫

R2

f(x) g(y) h(x− y) dy dx ≤
∫∫

R2

f ∗(x) g∗(y) h(x− y) dy dx . (5.14)

Proof. The fact that the Lp norms of f and f ∗ coincide, follows immediately from (5.5) and
(5.9), taking into account the fact that for all i we have a%(i) − a%(i)−1 = 2(a∗i − a∗i+1) . The
same argument works for g and g∗ , indeed.

We further have by (5.7), (5.11) that∫∫
R2

f(x) g(y) h(x− y) dy dx =
K∑

k=1

L∑
`=1

FkG`

K∑
i=k

L∑
j=`

∫ a%(i)

a%(i)−1

∫ bσ(j)

bσ(j)−1

h(x− y) dy dx . (5.15)

By Corollary 5.5, we have for every k and ` that

K∑
i=k

L∑
j=`

∫ a%(i)

a%(i)−1

∫ bσ(j)

bσ(j)−1

h(x− y) dy dx ≤
∫ a∗k

−a∗k

∫ b∗`

−b∗`

h(x− y) dy dx ,

and (5.14) follows from (5.9), (5.13), and (5.15). �

We are now ready to pass to the proof of Proposition 5.1.

Proof of Proposition 5.1. We restrict ourselves to the case that f and g are non-negative step
functions of the form (5.5). The general case then follows from the density of step functions in
Lp(R) , Lq(R) . By Lemma 5.6 we have∫∫

R2

f(x) g(y) |x− y|−1/r dx dy ≤
∫∫

R2

f ∗(x) g∗(y) |x− y|−1/r dx dy . (5.16)

For y ∈ R set

F (y) =

∫
R

f ∗(x) |x− y|−1/r dx .

The function f ∗ is even, nondecreasing in (−∞, 0) and nonincreasing in (0, +∞) , hence

|f |pp ≥
∫ |x|

−|x|
(f ∗(ξ))p dξ ≥ 2|x|(f ∗(x))p ∀x ∈ R . (5.17)

Choosing α = p/q′ , we thus obtain for every y ∈ R that

F (y) ≤
∫

R
(f ∗(x))α|2x|(1−α)/p|f |1−α

p |x− y|−1/r dx

= 2−1+1/r |f |1−p/q′

p

∫
R
(f ∗(x))p/q′|x|−1+1/r |x− y|−1/r dx

= 2−1+1/r |f |1−p/q′

p

∫
R
(f ∗(yt))p/q′|t|−1+1/r |t− 1|−1/r dt .
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We now use the Minkowski inequality (4.6) to estimate the Lq′ norm of F . We have

|F |q′ ≤ 2−1+1/r |f |1−p/q′

p

(∫
R

(∫
R
(f ∗(yt))p/q′|t|−1+1/r |t− 1|−1/r dt

)q′

dy

)1/q′

Minkowski

≤ 2−1+1/r |f |1−p/q′

p

∫
R

(∫
R
(f ∗(yt))p|t|−q′+q′/r |t− 1|−q′/r dy

)1/q′

dt

= 2−1+1/r |f |1−p/q′

p

∫
R
|t|−1+1/r |t− 1|−1/r

(∫
R
(f ∗(yt))p dy

)1/q′

dt

= 2−1+1/r |f |p
∫

R
|t|−1/p |t− 1|−1/r dt .

By Hölder’s inequality, Lemma 5.6, and inequality (5.16), the left-hand side of (5.1) is estimated
from above by |g|q|F |q′ . Hence, (5.1) holds with

Hpr = 2−1+1/r

∫
R
|t|−1/p |t− 1|−1/r dt . (5.18)

�

6 Smooth approximation of Lp functions

We fix a smooth (C1 is enough for our purposes) function ϕ : RN → [0,∞) such that ϕ(x) = 0
outside the set B(1) := {x ∈ RN ; |x| ≤ 1} , and∫

B(1)

ϕ(x) dx = 1 . (6.1)

For u ∈ Lp(RN) , x ∈ RN , and a parameter σ ∈ (0, 1] we set

uσ(x) = σ−N

∫
RN

ϕ

(
x− y

σ

)
u(y) dy . (6.2)

For all σ ∈ (0, 1] , the function uσ is continuously differentiable, and we have∫
RN

|uσ − u|p(x) dx =

∫
RN

∣∣∣∣∫
B(1)

ϕ(z)(u(x− σz)− u(x)) dz

∣∣∣∣p dx

Hölder

≤
(∫

B(1)

ϕp′(x) dx

)p/p′ ∫
B(1)

∫
RN

|u(x− σz)− u(x)|p dx dz , (6.3)

hence
uσ → u strongly in Lp(RN) as σ → 0+ (6.4)

as a consequence of the Mean Continuity Theorem, see [4, Chap. 2, Sect. 1.2].

In the sequel, we will use the following relation between the Lq norm of uσ and Lp norm of
u , which follows directly from Proposition 4.6:

|uσ|q ≤ σ−N(1/p−1/q)|ϕ|r |u|p ∀q ≥ p , (6.5)

where r is as in (4.10).
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7 Sobolev embeddings

We now state and prove the main result of this text.

Theorem 7.1 Let p, q ∈ (1,∞) be such that

1

p
≥ 1

q
>

1

p
− 1

N
,

and set

κ := 1−N

(
1

p
− 1

q

)
∈ (0, 1) .

Then there exists Cpq > 0 such that for every u ∈ W 1,p(RN) and every σ ∈ (0, 1] we have

|uσ − u|q ≤ Cpq σκ |∇u|p . (7.1)

Proof. Notice first that for every x ∈ RN and σ ∈ (0, 1) we obtain, integrating by parts, that

∂

∂σ
uσ(x) = σ−N

∫
RN

N∑
i=1

∂

∂yi

(
xi − yi

σ
ϕ

(
x− y

σ

))
u(y) dy

= −σ−N

∫
RN

〈
Φ

(
x− y

σ

)
,∇u(y)

〉
dy , (7.2)

where we set Φ(ξ) = ξϕ(ξ) . This yields in particular,

|uβ(x)− uα(x)| ≤
∫ β

α

σ−N

∣∣∣∣∫
RN

〈
Φ

(
x− y

σ

)
,∇u(y)

〉
dy

∣∣∣∣ dσ (7.3)

for every 0 < α < β ≤ 1 . To estimate the difference uβ − uα in (7.3) in the space Lq(RN) , we
make use of the Minkowski and Young II inequalities with r as in (4.10), using the notation∫

X
,
∫

Y
for

∫
RN as in Proposition 4.3. More specifically, we have

|uβ − uα|q ≤

(∫
X

(∫ β

α

σ−N

∫
Y

∣∣∣∣Φ(x− y

σ

)∣∣∣∣ |∇u(y)| dy dσ

)q

dx

)1/q

Minkowski

≤
∫ β

α

σ−N

(∫
X

(∫
Y

∣∣∣∣Φ(x− y

σ

)∣∣∣∣ |∇u(y)| dy

)q

dx

)1/q

dσ

Young II

≤
∫ β

α

σ−N

(∫
RN

∣∣∣Φ(y

σ

)∣∣∣r dy

)1/r (∫
RN

|∇u(x)|p dx

)1/p

dσ

≤ |∇u|p
(∫

B(1)

|Φ (x)|r dx

)1/r ∫ β

α

σN(1/r−1) dσ . (7.4)

We have N(1/r − 1) = κ− 1 , hence

|uβ − uα|q ≤ Cpq (βκ − ακ) |∇u|p (7.5)

with Cpq = |Φ|r/κ . Hence, for every sequence σi → 0+, uσi is a Cauchy sequence in Lq(RN) .
By (6.4), uσi converge to u in Lp(RN) , hence u ∈ Lq(RN) and uσi converge to u (strongly)
in Lq(RN) . Letting α tend to 0 and replacing β by σ , we thus obtain (7.1). �
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Corollary 7.2 Let Ω ⊂ RN be an open bounded connected set with Lipschitzian boundary, and
let

1

q
>

1

p
− 1

N
.

Then the space W 1,p(Ω) is compactly embedded in Lq(Ω) .

Proof. Assume first q ≥ p , and set u∗ = Epu , where Ep : W 1,p(Ω) → W 1,p
B is the prolongation

operator from Theorem 3.1. By Theorems 3.1 and 7.1, there exist constants C1 and C2 such
that for every σ ∈ (0, 1] we have

|uσ
∗ − u∗|q ≤ C1 σκ |∇u∗|p ≤ C2 σκ ‖u‖1;p,Ω . (7.6)

By (6.5) and Theorem 3.1 we have

|uσ
∗ |q ≤ C3 σκ−1 |u∗|p ≤ C3 cp σκ−1 |u|p,Ω , (7.7)

with C3 = |ϕ|r . Consequently, there exists a constant C4 > 0 such that

|u|q,Ω ≤ |u∗|q ≤ C4

(
σκ−1 |u|p,Ω + σκ ‖u‖1;p,Ω

)
(7.8)

for all σ ∈ (0, 1] . According to (1.1), W 1,p(Ω) is thus embedded in Lq(Ω) . To see that the
embedding is compact, consider a bounded set M ⊂ W 1,p(Ω) and an arbitrary ε > 0 . We fix
σ > 0 such that, with the notation of Theorem 7.1, we have

Cpq σκ |∇u∗|p <
ε

4
∀u ∈ M . (7.9)

With this fixed σ , every element uσ
∗ of the set Mσ = {uσ

∗ ; u ∈ M} vanishes outside of the set
(1 + σ)B(1) =: B(1 + σ) . Moreover, Mσ is bounded in C1(B(1 + σ)) , hence, by Proposition
2.1, there exist u1, . . . , un ∈ M such that

∀u ∈ M ∃k ∈ {1, . . . , n} ∀x ∈ B(1 + σ) : |uσ
∗ (x)− uσ

k(x)| < ε

4meas(B(1 + σ))
. (7.10)

We then have, by (7.9), (7.10), and Theorem 7.1, that

|u∗ − uσ
k |q ≤ |uσ

∗ − uσ
k |q +

ε

4
<

ε

2
. (7.11)

For k = 1, . . . , n set Mk = {u ∈ M ; |u∗ − uσ
k |q < ε/2 , and J = {k ∈ {1, . . . , n} ; Mk 6= ∅} .

For every k ∈ J we fix one representative ûk ∈ Mk , so that for every u ∈ Mk we have
|u − ûk|q,Ω < ε and M =

⋃
k∈J Mk . The proof is thus complete for q ≥ p . Let now q < p .

Hölder’s inequality yields

|uσ
∗ − u∗|q ≤ (meas(B(1 + σ)))1/q−1/p|uσ

∗ − u∗|p ,

hence the above argument remains valid. �

Corollary 7.3 Let Ω ⊂ RN be an open bounded connected set with Lipschitzian boundary, and
let p > N . Then the space W 1,p(Ω) is compactly embedded in C(Ω̄) .
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Proof. We repeat the argument of the proof of Theorem 7.1 and Corollary 7.2, putting

κ := 1− N

p
∈ (0, 1) .

A computation analogous to (7.4) yields for every x ∈ RN that

|uβ
∗ (x)− uα

∗ (x)| ≤
∫ β

α

σ−N

∫
Y

∣∣∣∣Φ(x− y

σ

)∣∣∣∣ |∇u∗(y)| dy dσ

Hölder

≤
∫ β

α

σ−N

(∫
RN

∣∣∣Φ(y

σ

)∣∣∣p′ dy

)1/p′ (∫
RN

|∇u∗(x)|p dx

)1/p

dσ

≤ |∇u∗|p
(∫

B(1)

|Φ (x)|p
′
dx

)1/p′ ∫ β

α

σ−N/p dσ , (7.12)

and we proceed as above. �

8 Limit cases and counterexamples

Proposition 8.1 Let Ω ⊂ RN , N ≥ 2 , be an open bounded connected set with Lipschitzian
boundary, and let

1

q
=

1

p
− 1

N
. (8.1)

Then the space W 1,p(Ω) is embedded in Lq(Ω) .

Proof. We proceed in principle as in the proof of Theorem 7.1. The main difference is that
the number κ is zero here and we have to proceed more carefully. We represent x ∈ RN as
x = (x′, xN) , x′ ∈ RN−1 , and rewrite inequality (7.3) as

|uβ(x′, xN)− uα(x′, xN)| ≤
∫ β

α

σ−N

∫
RN

∣∣∣∣Φ(x′ − y′

σ
,
xN − yN

σ

)∣∣∣∣ |∇u(y′, yN)| dy′ dyN dσ .

(8.2)
With r = N/(N − 1) , we now repeat the computation from (7.4), restricted to the component
x′ , to obtain

|uβ(·, xN)− uα(·, xN)|q

≤

(∫
RN−1

(∫ β

α

σ−N

∫
R

∫
RN−1

∣∣∣∣Φ(x′ − y′

σ
,
xN − yN

σ

)∣∣∣∣ |∇u(y′, yN)| dy′ dyN dσ

)q

dx

)1/q

Minkowski

≤
∫

R

∫ β

α

σ−N

(∫
RN−1

(∫
RN−1

∣∣∣∣Φ(x′ − y′

σ
,
xN − yN

σ

)∣∣∣∣ |∇u(y′, yN)| dy′
)q

dx′
)1/q

dσ dyN

Young II

≤
∫

R

∫ β

α

σ−N

(∫
RN−1

∣∣∣∣Φ(y′

σ
,
xN − yN

σ

)∣∣∣∣r dy′
)1/r (∫

RN−1

|∇u(x′, yN)|pdx′
)1/p

dσ dyN

≤
∫

R

∫ β

α

σ−N+N−1/r|∇u(·, yN)|p
∣∣∣∣Φ(·, xN − yN

σ

)∣∣∣∣
r

dσ dyN . (8.3)
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The function
∣∣Φ (·, xN−yN

σ

)∣∣
r

vanishes if σ < |xN −yN | . Moreover, Φ is bounded by a constant
Φ0 > 0 . Hence, using the fact that −N + N − 1/r = −2 + 1/N , we have∫ β

α

σ−N+N−1/r

∣∣∣∣Φ(·, xN − yN

σ

)∣∣∣∣
r

dσ ≤ Φ0

∫ ∞

|xN−yN |
σ−2+1/N dσ = Φ0 r |xN − yN |−1/r .

We thus have

|uβ(·, xN)− uα(·, xN)|q ≤ Φ0 r

∫
R
|∇u(·, yN)|p |xN − yN |−1/r dyN .

At this point, we use the Hardy-Littlewood inequality (5.1), with q replaced by q′ . Indeed,
1/q′ + 1/p + 1/r = 2. Hence, for every function g ∈ Lq(R) we have by Proposition 5.1 that∫

R
|uβ(·, xN)− uα(·, xN)|q g(xN) dxN ≤ C|g|q′|∇u|p

with some constant C > 0 , hence, by the reverse Hölder inequality (4.9), we have

|uβ − uα|q ≤ C|∇u|p . (8.4)

Since uσ converge strongly to u in Lp(RN) and their Lq norms are bounded, we conclude that
they converge strongly in Lq(RN) as well and the embedding formula follows. �

We now show a few examples to illustrate that the embedding inequalities are (at least quali-
tatively) optimal.

(i) To see that the embedding in Proposition 8.1 is not compact, and that W 1,p(Ω) is not
embedded in Lq(Ω) if

1

q
<

1

p
− 1

N
, (8.5)

it suffices to fix any open set Ω, some x0 ∈ Ω, find s0 > 0 such that x0 + s0B(1) ⊂ Ω,
and consider the family of functions

us(x) = s1−N/pϕ

(
x− x0

s

)
, s ∈ (0, s0) , (8.6)

with ϕ as in (6.2). We have

|us|p,Ω = s|ϕ|p ,

∣∣∣∣∂us

∂xi

∣∣∣∣
p,Ω

=

∣∣∣∣ ∂ϕ

∂xi

∣∣∣∣
p

, |us|q,Ω = sα|ϕ|q ∀s ∈ (0, s0) ,

where α = 1−N(1/p− 1/q) . In the case (8.1), we have α = 0. Using the fact that us

converge to 0 in Lp(Ω) as s → 0+, we conclude that the family {us} , having constant
nonzero norm in Lq(Ω) , does not contain any convergent subsequence in Lq(Ω) , hence
the embedding is not compact. In the case (8.5), we have α < 0 , hence the family {us}
is unbounded in Lq(Ω) and no embedding takes place.
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(ii) In another limit case
p = N , (8.7)

the space W 1,p(Ω) is embedded in L∞(Ω) if and only if p = N = 1, and the embedding
is not compact. For N ≥ 2 , it suffices to consider Ω = B(1) , and

u(x) =

(
− log

(
|x|
2

))α

,

for any 0 < α < 1 − 1/N . Then u is unbounded, but belongs to W 1,N(B(1)) . For
N = 1, the embedding of W 1,1(Ω) into C(Ω̄) (hence L∞(Ω)) for every bounded interval
Ω is obvious. To see that it is not compact, we may consider for n ∈ N the sequence

un(x) =

{
sin 1

x
for x ∈

[
1

(n+1)π
, 1

nπ

]
0 otherwise.

It is bounded in W 1,1(0, 1/π) , but sup |un(x)−um(x)| = 1 for all m 6= n , hence it is not
precompact in L∞(0, 1/π) .

(iii) The assumption on the Lipschitzian boundary is substantial. We show that there exists
an open simply connected set Ω ⊂ R2 such that W 1,p(Ω) is not embedded in Lq(Ω) for
any q > p ≥ 1 . This set can be defined as (see Fig. 4)

Ω =
{
x = (x1, x2) ∈ R2 ; 0 < x1 < 1, 0 < x2 < e −1/x1

}
.

For any q > p we set
upq(x) = e 2/(p+q)x1 .

Then upq ∈ W 1,p(Ω) , but upq /∈ Lq(Ω) .

��x1

x2

0

Ω

Figure 4. Non-Lipschitzian boundary.

9 Anisotropic embeddings

In evolution problems, one deals with functions which depend on a space variable x ∈ Ω and
time t ∈ ω , where ω ⊂ R is an open interval corresponding to the time of the process. For
1 ≤ p, q < ∞ , we introduce the spaces

Lp(ω ; Lq(Ω)) =

{
u ∈ L1(Ω× ω) ; |u|p,q,Ω,ω :=

(∫
ω

|u(·, t)|pq,Ω dt

)1/p

< ∞

}
, (9.1)
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with obvious modifications for p = ∞ or q = ∞ .

We state explicitly one possible embedding result for such spaces, without going into much
detail in the proof, which is fully analogous to the above ones.

Theorem 9.1 Let Ω ⊂ RN be an open bounded connected set with Lipschitzian boundary, let
ω be a bounded open interval, and let W p0,q0;p1,q1(ω; Ω) be the space

W p0,q0;p1,q1(ω; Ω) =
{

u ∈ L1(Ω× ω) ;
∂u

∂t
∈ Lp0(ω ; Lq0(Ω)),

∂u

∂xi

∈ Lp1(ω ; Lq1(Ω)) for i = 1, . . . , N
}

.

If
p′0

p1q0

+
1

q1

<
1

N
, (9.2)

then the space W p0,q0;p1,q1(ω; Ω) is compactly embedded in C(Ω̄ × ω̄) . If q2 ≥ max{q0, q1} ,
p2 ≥ max{p0, p1} , and(

1− 1

p0

+
1

p2

)(
1

N
− 1

q1

+
1

q2

)
>

(
1

p1

− 1

p2

)(
1

q0

− 1

q2

)
, (9.3)

then W p0,q0;p1,q1(ω; Ω) is compactly embedded in Lp2(ω ; Lq2(Ω)) .

Hint for the proof. Consider as before the extensions to the space W p0,q0;p1,q1(R; RN) , where
the norms | · |pi,qi,Ω,ω are denoted again for simplicity as | · |pi,qi

, i = 0, 1 . For σ ∈ (0, 1] and
u ∈ W p0,q0;p1,q1(R; RN) , we define regularizations analogous to (6.2) in the form

uσ(x, t) = σ−N−λ

∫
R

∫
RN

ϕ

(
x− y

σ
,
t− s

σλ

)
u(y, s) dy ds , (9.4)

where ϕ is a smooth nonnegative function on RN+1 , which vanishes outside B(1) × (−1, 1) ,
and ∫ 1

−1

∫
B(1)

ϕ(x, t) dx dt = 1 .

The number λ is to be chosen as

λ =
1 + N

(
1
q0
− 1

q1

)
1
p′0

+ 1
p1

. (9.5)

Note that λ > 0 by (9.3). A computation similar to (7.2)–(7.4) yields

∂

∂σ
uσ(x, t) = −λσ−N−1

∫
RN

Φ0

(
x− y

σ
,
t− s

σλ

)
∂u

∂s
(y, s) dy ds

−σ−N−λ

∫
RN

〈
Φ1

(
x− y

σ
,
t− s

σλ

)
,∇yu(y, s)

〉
dy ds , (9.6)
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where Φ0(ξ, τ) = τϕ(ξ, τ) , Φ1(ξ, τ) = ξϕ(ξ, τ) , hence

|uβ(x, t)− uα(x, t)| ≤ λI0(x, t) + I1(x, t) (9.7)

for 0 < α < β ≤ 1 , where

I0(x, t) =
∫ β

α
σ−N−1

∫
R

∫
RN

∣∣Φ0

(
x−y

σ
, t−s

σλ

)∣∣ ∣∣∂u
∂s

(y, s)
∣∣ dy ds dσ ,

I1(x, t) =
∫ β

α
σ−N−λ

∫
R

∫
RN

∣∣Φ1

(
x−y

σ
, t−s

σλ

)∣∣ |∇yu(y, s)| dy ds dσ .

 (9.8)

Let (9.3) hold. With the intention to use Young’s inequality for convolutions again, we introduce
the numbers r0, s0, r1, s1 by the identities

1

r0

= 1− 1

q0

+
1

q2

,
1

s0

= 1− 1

p0

+
1

p2

,
1

r1

= 1− 1

q1

+
1

q2

,
1

s1

= 1− 1

p1

+
1

p2

. (9.9)

We use again the notation
∫

X
dx ,

∫
Y

dy for
∫

RN dx ,
∫

RN dy , and
∫

T
dt ,

∫
S

ds for
∫

R dt ,
∫

R ds .
For t ∈ R , we have

|I0(·, t)|q2

Minkowski

≤
∫ β

α

σ−N−1

∫
S

(∫
X

(∫
Y

∣∣∣∣Φ0

(
x− y

σ
,
t− s

σλ

)∣∣∣∣ ∣∣∣∣∂u

∂s
(y, s)

∣∣∣∣ dy

)q2

dx

)1/q2

ds dσ

Young II

≤
∫ β

α

σ−N−1

∫
S

∣∣∣∣Φ0

(
·
σ

,
t− s

σλ

)∣∣∣∣
r0

∣∣∣∣∂u

∂s
(·, s)

∣∣∣∣
q0

ds dσ

=

∫ β

α

σ−N−1+N/r0

∫
S

∣∣∣∣Φ0

(
·, t− s

σλ

)∣∣∣∣
r0

∣∣∣∣∂u

∂s
(·, s)

∣∣∣∣
q0

ds dσ , (9.10)

hence

|I0|p2,q2

Minkowski

≤
∫ β

α

σ−N−1+N/r0

(∫
T

(∫
S

∣∣∣∣Φ0

(
·, t− s

σλ

)∣∣∣∣
r0

∣∣∣∣∂u

∂s
(·, s)

∣∣∣∣
q0

ds

)p2

dt

)1/p2

dσ

Young II

≤
∫ β

α

σ−N−1+N/r0

∣∣∣Φ0

(
·, ·

σλ

)∣∣∣
s0,r0

∣∣∣∣∂u

∂s

∣∣∣∣
p0,q0

dσ

= |Φ0|s0,r0

∣∣∣∣∂u

∂s

∣∣∣∣
p0,q0

∫ β

α

σ−N−1+N/r0+λ/s0 dσ . (9.11)

Similarly,

|I1(·, t)|q2

Minkowski

≤
∫ β

α

σ−N−λ

∫
S

(∫
X

(∫
Y

∣∣∣∣Φ1

(
x− y

σ
,
t− s

σλ

)∣∣∣∣ |∇yu(y, s)| dy

)q2

dx

)1/q2

ds dσ

Young II

≤
∫ β

α

σ−N−λ

∫
S

∣∣∣∣Φ1

(
·
σ

,
t− s

σλ

)∣∣∣∣
r1

|∇yu(·, s)|q1
ds dσ

=

∫ β

α

σ−N−λ+N/r1

∫
S

∣∣∣∣Φ1

(
·, t− s

σλ

)∣∣∣∣
r1

|∇yu(·, s)|q1
ds dσ , (9.12)
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hence

|I1|p2,q2

Minkowski

≤
∫ β

α

σ−N−λ+N/r1

(∫
T

(∫
S

∣∣∣∣Φ1

(
·, t− s

σλ

)∣∣∣∣
r1

|∇yu(·, s)|q1
ds

)p2

dt

)1/p2

dσ

Young II

≤
∫ β

α

σ−N−λ+N/r1

∣∣∣Φ1

(
·, ·

σλ

)∣∣∣
s1,r1

|∇yu|p1,q1
dσ

= |Φ1|s1,r1
|∇yu|p1,q1

∫ β

α

σ−N−λ+N/r1+λ/s1 dσ . (9.13)

Set

κ = N

(
1

p′0
+

1

p1

)−1((
1− 1

p0

+
1

p2

)(
1

N
− 1

q1

+
1

q2

)
−
(

1

q0

− 1

q2

)(
1

p1

− 1

p2

))
.

Then κ > 0 by (9.3), and we have

−N − 1 +
N

r0

+
λ

s0

= −N − λ +
N

r1

+
λ

s1

= κ− 1 .

Combining (9.7) with (9.8), (9.11), and (9.13) yields

|uβ − uα|p2,q2 ≤ Cp0,p1,p2,q0,q1,q2 (βκ − ακ)

(∣∣∣∣∂u

∂t

∣∣∣∣
p0,q0

+ |∇xu|p1,q1

)
, (9.14)

and we obtain the result similarly as in Theorem 7.1. �

Note that the order of integration in (9.1) cannot be reversed. For p ≥ q we have by Remark
4.5 that Lq(Ω ; Lp(ω)) is embedded into Lp(ω ; Lq(Ω)) , but the opposite inclusion does not
hold, see Example 4.4. On the other hand, denoting

W q0,p0;q1,p1(Ω; ω) =
{

u ∈ L1(Ω× ω) ;
∂u

∂t
∈ Lq0(Ω ; Lp0(ω)),

∂u

∂xi

∈ Lq1(Ω ; Lp1(ω)) for i = 1, . . . , N
}

,

we may repeat the computations in (9.10)–(9.13) with reversed order of integration, to check
that conditions (9.2) and (9.3) remain valid for the compact embedding of W q0,p0;q1,p1(Ω; ω)
into C(Ω̄× ω̄) and Lq2(Ω ; Lp2(ω)) , respectively. Let us mention one important particular case
which frequently occurs in applications. We omit the proof which is the same as for the other
cases.

Corollary 9.2 If q2 ≥ max{q0, q1} , and

1

p′0

(
1

N
− 1

q1

+
1

q2

)
>

1

p1

(
1

q0

− 1

q2

)
, (9.15)

then the space W q0,p0;q1,p1(Ω; ω) is compactly embedded in Lq2(Ω ; C(ω̄)) .
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Embeddings of function spaces that are “anisotropic” also in the space variables, for example

∂u

∂xi

∈ Lpi(ω ; Lqi(Ω)) , i = 1, . . . , N ,

can be treated in the same way. The regularizations then have to be chosen in the form

uσ(x, t) = σ−1−
P

µi

∫
R

∫
RN

ϕ

(
x1 − y1

σµ1
, . . . ,

xN − yN

σµN
,
t− s

σ

)
u(y, s) dy ds , (9.16)

with suitably chosen exponents µ1, . . . , µN .

10 Interpolations

We first recall the following classical interpolation result in Lp spaces.

Proposition 10.1 Let Ω ⊂ RN be an open set (bounded or unbounded), and let 1 ≤ p0 <
p1 ≤ ∞ be given. If u ∈ Lp0(Ω) ∩ Lp1(Ω) , then u ∈ Lp(Ω) for all p ∈ [p0, p1] , and we have

|u|p,Ω ≤ |u|1−α
p0,Ω|u|

α
p1,Ω

for all u ∈ Lp0(Ω) ∩ Lp1(Ω) , where

α =

1
p0
− 1

p

1
p0
− 1

p1

.

Proof. Set q = p1/αp . Then q′ = p0/(1− α)p , and we may use Hölder’s inequality to obtain

|u|p,Ω =

(∫
Ω

|u(x)|(1−α)p|u(x)|αpdx

)1/p

≤
(∫

Ω

|u(x)|(1−α)pq′dx

)1/pq′ (∫
Ω

|u(x)|αpqdx

)1/pq

= |u|1−α
p0,Ω|u|

α
p1,Ω .

�

We now establish an interpolation formula between Lp spaces and Sobolev spaces.

Theorem 10.2 Let p, q, s ∈ (1,∞) be such that

1

s
>

1

q
>

1

p
− 1

N
,

and set

κ := 1−N

(
1

p
− 1

q

)
, γ = N

(
1

s
− 1

q

)
.

Then there exists Cpqs > 0 such that for every u ∈ W 1,p(RN) ∩ Ls(RN) and every σ ∈ (0, 1]
we have

|u|q ≤ Cpqs

(
σ−γ|u|s + σκ |∇u|p

)
. (10.1)
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Proof. The assertion follows from (6.5) and (7.1) provided q ≥ p . In particular, for q = p we
have κ = 1, γ = γ0 := N(1/s− 1/p) , and

|u|p ≤ Cpps

(
σ−γ0|u|s + σ |∇u|p

)
. (10.2)

Let now q < p . By Proposition 10.1 we have

|u|q ≤ |u|1−α
s |u|αp ,

where

α =

1
s
− 1

q

1
s
− 1

p

.

This yields
|u|p ≤ Cα

pps

(
σ−αγ0|u|s + σα |u|1−α

s |∇u|αp
)

.

We now use inequality (4.4) with p replaced by 1/α , and with x = µσα|∇u|αp , y = |u|1−α
s /µ ,

where we set µ = σ(1−α)αγ0 , and obtain

σα |u|1−α
s |∇u|αp ≤ ασ1+(1−α)γ0 |∇u|p + (1− α)σ−αγ0 |u|s .

Hence,
|u|p ≤ 2Cα

pps

(
σ−αγ0|u|s + σ1+(1−α)γ0 |∇u|p

)
,

which is precisely (10.1). �

We conclude this text with the famous Gagliardo-Nirenberg inequality.

Corollary 10.3 (Gagliardo-Nirenberg inequality) Let Ω ⊂ RN be an open bounded con-
nected set with Lipschitzian boundary, and let

1

s
>

1

q
>

1

p
− 1

N
.

Set

% =

1
s
− 1

q

1
N

+ 1
s
− 1

p

.

Then there exists a constant Kpqs > 0 such that for every u ∈ W 1,p(Ω) we have

|u|q,Ω ≤ Kpqs

(
|u|s,Ω + |u|1−%

s,Ω ‖u‖
%
1;p,Ω

)
. (10.3)

Proof. As in the proof of Corollary 7.2, we set u∗ = Epu . By Theorem 10.2, we have

|u∗|q ≤ Cpqs

(
σ−γ|u∗|s + σκ |∇u∗|p

)
. (10.4)

If |∇u∗|p > |u∗|s , then we set

σ =

(
|u∗|s
|∇u∗|p

)1/(γ+κ)

,

otherwise we choose σ = 1. In both cases we obtain

|u∗|q ≤ 2Cpqs

(
|u∗|s + |u∗|κ/(γ+κ)

s |∇u∗|γ/(γ+κ)
p

)
. (10.5)

We have κ/(γ + κ) = 1− % , γ/(γ + κ) = % , and the desired result follows from Theorem 3.1.
�

It is in principle possible to derive from (9.14) the corresponding interpolation inequalities also
for anisotropic spaces. The general formulas then become, however, rather complicated and we
omit them here.
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