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UNIVERSAL ACTIONS OF LOCALLY FINITE GROUPS
ON METRIC AND BANACH SPACES BY ISOMETRIES

MICHAL DOUCHA

Abstract. We construct a universal action of a countable locally
finite group on a separable metric space by isometries. This single
action contains all actions of all countable locally finite groups on
all separable metric spaces as subactions. The main ingredient is
an amalgamation of actions by isometries. We also construct a
universal action of a universal countable torsion abelian group on
a separable Banach space by linear isometries.

We show that the restriction to locally finite groups in our re-
sults is necessary as analogous results do not hold for infinite non-
locally finite groups.

Introduction

Groups acting by isometries on metric and Banach spaces are one of
the active areas of research in geometry, group theory and functional
analysis. In this paper, we are interested in amalgamation of group
actions and constructing universal actions. It is well known from the
beginnings of combinatorial group theory that one can construct an
amalgam of two groups over some common subgroup. At least as old is
the amalgamation of metric spaces, or amalgamation of normed vector
spaces. However, to the best of our knowledge, nobody has considered
yet amalgamation of actions of groups on metric or Banach spaces by
isometries. In metric geometry or functional analysis, amalgamation
techniques are often used to construct various universal metric or Ba-
nach spaces (consider for instance the Urysohn universal metric space
[16], or the Gurarij universal Banach space [6]). The well-known Hall’s
universal locally finite group ([7]) is essentially made by amalgamating
finite groups. Here by amalgamating actions of finite groups on finite
metric spaces by isometries we obtain the following result.
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Theorem 0.1. There exists a universal action of the Hall’s locally
finite group G on the Urysohn space U by isometries. That is, for any
action of a countable locally finite group H on a separable metric space
X by isometries, there exists a subgroup H ′ ≤ G isomorphic to H such
that, after identifying H and H ′, there is an H-equivariant isometric
embedding of X into U.

The meaning of the theorem is that there is a single action of a
countable locally finite group on a separable metric space by isometries
that captures/contains all actions of all countable locally finite groups
on all separable metric spaces.

One of the main ingredients is the amalgamation of actions and we
have the following general theorem.

Theorem 0.2. Let G1, G2 be two groups (countable or not) with a
common subgroup G0. Suppose that G1 acts on a metric space X1

and G2 acts on X2, by isometries in both cases. Let X0 be a com-
mon subspace of X1 and X2 such that the restriction of the two ac-
tions on G0 and X0 coincide. Then there is an amalgam of the ac-
tion, which is an action of G1 ∗G0 G2 on a metric space with density
max{|G1|, |G2|, dens(X1), dens(X2)}.

Following the research of Rosendal in [15] and of Glasner, Kitroser
and Melleray in [4] we investigate the genericity of the universal action
from Theorem 0.1.

Theorem 0.3. The universal action from Theorem 0.1 is weakly generic
in some sense. That is, the set of those actions in the Polish space
IsoUG that are naturally equivalent to the universal one is dense Gδ.

We show that the restriction to locally finite groups is essential.

Theorem 0.4. There are no analogously universal actions of infinite
groups that are not locally finite.

Finally, we investigate universal actions on Banach spaces. General
actions by isometries are by affine isometries. Unfortunately, we show
that no universal action by affine isometries can exist, even of finite
groups. Thus we are forced to restrict to actions by linear isometries.
We are not able to show the result for the Hall’s group, so we restrict
ourselves to abelian locally finite groups, i.e. to torsion abelian groups.

Theorem 0.5. There exists a universal action of the group G =
⊕

n∈N Q/Z
on the Gurarij space G by linear isometries. That is, for any action
of a countable torsion abelian group H on a separable Banach space X
by linear isometries, there exists a subgroup H ′ ≤ G isomorphic to H
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such that, after identifying H and H ′, there is an H-equivariant linear
isometric embedding of X into G.

1. Preliminaries

Let us start with our notational convention. All the group actions in
this paper are by isometries. We usually denote actions by the symbol
‘α : G y X’, where G is a group and X is a metric space. However,
as it is common, we usualy write g · x instead of α(g, x).

Regarding groups, we are mostly concerned with locally finite ones,
where group is locally finite if every finitely generated subgroup is finite.
Since we shall work solely with countable groups, it is the same as
saying that the group is a direct limit of a sequence of finite groups.

Our constructions of universal objects are based on techniques com-
monly referred as “Fräıssé theory”. We refer to Chapter 7 in [8] for
more information about this subject. For a reader unfamiliar with this
method we briefly and informally describe the basics of Fräıssé theory
that we use in the paper.

Let K be some countable class of mathematical objects of some type
with some notion of embedding between these objects. Suppose that
direct limits of objects from K exist. Think of the class of finite groups
for instance. We say it is a Fräıssé class if any two objects from K
can be embedded into a single object from K, such a property is called
joint embedding property, and if whenever we have objects A,B,C ∈ K
such that A embeds into both B and C, witnessed by embeddings ιB,
resp. ιC , then there exists an object D ∈ K and embeddings ρB, resp.
ρC of B into D, resp. C into D such that ρC ◦ ιC = ρB ◦ ιB; i.e we
can do amalgamation with object from K. The latter property is called
amalgamation property. The Fräıssé theorem (see Chapter 7 in [8]) then
asserts that there exists a unique object K, called the Fräıssé limit of
K, which is a direct limit of a sequence of objects from K satisfying

• every object A ∈ K embeds into K;
• whenever we have objects A,B ∈ K such that A embeds via ρA

into K and via ιA into B, then there exists an embedding ρB
of B into K such that ρA = ρB ◦ ιA.

The second property is called the extension property and will be used
in our proofs of universality of certain actions. Note that whenever X
is some direct limit of a sequence of objects from K, then successive
application of the extension property gives an embedding of X into K.

We note that the Fräıssé theorem stated above is the only too which
we shall use and its proof is actually much shorter that the discus-
sion on Fräıssé theory above and may be left as an exercise. Since
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we are going to work with Fräıssé classes which are ‘metric’ we note
that recently a general theory for metric Fräıssé classes was developed
independently in [1] and [9]. However, we shall not directly use their
results in our paper.

Example 1 Consider the countable class of all finite graphs. It is
easy to show it has the joint and amalgamation properties, thus by the
Fräıssé theorem there exists a Fräıssé limit, a certain direct limit of a se-
quence of finite graphs, which is a countable graph commonly known as
the random graph, or the Rado graph. The extension property allows
to show that it contains as a subgraph a copy of every countable graph.

Example 2 Consider now the countable class of all finite abelian
groups. It is again easy to show the joint and amalgamation prop-
erties and one can even show that the Fräıssé limit is nothing else than⊕

n∈N Q/Z.

Example 3 Consider now the countable class of all finite groups, not
necessarily abelian. This is the most important example for us re-
garding the topic of our paper. It is less straightforward, nevertheless
possible to show (see [11]), that this class has the amalgamation prop-
erty, and thus also the joint embedding property. The Fräıssé limit is
what is commonly known as the Hall’s universal locally finite group.

Example 4 Consider the countable class of all finitely presented groups.
It is again easy to show the amalgamation property. We are not aware
anyone has considered the Fräıssé limit of this class yet.

Example 5 Consider the countable class of all finite metric spaces
with rational distances. The amalgamation and joint embedding is
again straightforward. The Fräıssé limit is what is known as the ratio-
nal Urysohn space. Its completion is the Urysohn universal space (see
[16]).

Example 6 As the last example, we present another ‘metric Fräıssé
class’ recently discovered by the author in [3]. It is the class of all
finitely generated free abelian groups with a ‘finitely presented ratio-
nal metric’. The completion of its limit gives the metrically universal
abelian separable group. See the paper for details.



UNIVERSAL ACTIONS 5

2. Universal actions

Definition 2.1. Let G be a group and X a metric space. A pointed
free action of G on X by isometries is a tuple (Gy X, (xi)i∈I), where
G y X is a free action of G on X by isometries and I is some index
set for the orbits of the action and (xi)i∈I is a selector on the orbits,
i.e. X =

⋃
i∈I G · xi and for i 6= j, xi and xj lie in different orbits.

There is also a natural notion of embedding between two pointed
free actions. Suppose we are given two such actions (H y Y, (yi)i∈I)
and (G y X, (xj)j∈J). An embedding of (H y Y, (yi)i∈I) into (G y
X, (xj)j∈J) is a pair (φ, ψ), where φ : H ↪→ G is a group embedding
and ψ : Y ↪→ X is an isometric embedding such that for any i, j ∈ I
and f, h ∈ H we have

dY (f · yi, h · yj) = dX(φ(f) · ψ(yi), φ(h) · ψ(yj)).

In particular, for any i ∈ I there is some j ∈ J such that ψ(yi) = xj,
i.e. ψ sends the distinguished points (yi)i∈I into the set of distinguished
points (xj)j∈J .

Theorem 2.2. The pointed free actions can be amalgamated.

Remark 2.3. It means that for any embeddings ψi : (G0 y X0, (xj)j∈I0) ↪→
(Gi y Xi, (xj)j∈Ii), for j ∈ {1, 2}, where we assume that G0 ≤
G1 and G0 ≤ G2, there are a group G1, G2 ≤ G3, pointed action
(G3 y X3, (xj)j∈I3) and embeddings ρj : (Gi y Xi, (xj)j∈Ii) ↪→ (G3 y
X3, (xj)j∈I3), for j ∈ {1, 2}, such that ρ2 ◦ ψ2 = ρ1 ◦ ψ1.

Proof. Consider such actions from the remark above, i.e. (Gi y Xi, (xj)j∈Ii),
for i ∈ {0, 1, 2}. We may also suppose that I0 ⊆ Ii, for i = 1, 2, and
that I0 = I1 ∩ I2. Let G3 be G1 ∗G0 G2, i.e. the free product of
G1 and G2 amalgamated over G0 (we refer to [10] for constructions
of amalgamated free products of groups). Let I3 = I1 ∪ I2 and set
X3 =

⋃
j∈I3 G3 · j. Clearly, Xi ⊆ X3, for i = 1, 2. We shall define a

metric on X3 so that the canonical action of G3 on X3 is by isome-
tries and that the inclusion of Xi into X3 is isometric (it is obviously
Gi-equivariant), for i = 1, 2.

We define a structure of a weighted graph on X3 that will help us
define a metric there. That is, we define edges on X3 and then associate
a certain weight function w giving positive real numbers to these edges.
For g, h ∈ G3 and i, j ∈ I3, the elements g · xi and h · xj are connected
by an edge if and only if

• either g−1h ∈ G1 and i, j ∈ I1, then its weight is

w(g · xi, h · xj) = dX1(xi, g
−1h · xj);
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• or g−1h ∈ G2 and i, j ∈ I2, then analogously its weight is

w(g · xi, h · xj) = dX2(xi, g
−1h · xj).

In case that g−1h ∈ G0 and i, j ∈ I0 there is no ambiguity in the
definition. Indeed, by assumption, in such a case we have

dX0(xi, g
−1h · xj) = dX1(xi, g

−1h · xj) = dX2(xi, g
−1h · xj).

It is clear that this graph is connected, so we define the graph metric
d on X3 as follows: for x, y ∈ X3 we set

d(x, y) = inf{
n∑
i=1

w(ei) : e1 . . . en is a path from x to y}.

In case the groups and the index sets are finite we may replace the
infimum above by minimum. It follows immediately from the definition
that the natural action of G3 on X3 is a weighted graph automorphism,
i.e. it preserves the edges including their weight. It follows that G3

acts by isometries on X3. We shall check that the canonical embeddings
(inclusions) of X1 and X2 into X3 are isometric.

We shall check it for both X1 and X2. Thus fix some g, h ∈ G and
i, j ∈ I3 such that either both g, h ∈ G1 and both i, j ∈ I1, or both
g, h ∈ G2 and both i, j ∈ I2. We need to check that dXl

(g · xih · xj) =
d(g · xi, h · xj), where l ∈ {1, 2} depending on whether g, h ∈ G1,
i, j ∈ I1, or g, h ∈ G2, i, j ∈ I2. It is clear that dXl

(g · xi, h · xj) ≥
d(g ·xi, h ·xj), so suppose there is a strict inequality and we shall reach
a contradiction. There is then an edge-path e1 . . . en from x = g · xi to
y = h · xj. By induction on n, the length of the path, we shall show
that dXl

(g · xi, h · xj) ≤ w(e1) + . . . + w(en). The case n = 1 is clear,
so we suppose that n ≥ 2 and we have proved it for all paths of length
strictly less than n between all pairs of elements from X1 and all pairs
of elements from X2.

Now without loss of generality we suppose that g, h ∈ G1, i, j ∈ I1,
the other case is analogous. For 1 ≤ l ≤ n, let zl = gl · xil be the start
vertex of el and zl+1 = gl+1 · xil+1 the end vertex. Set hl = g−1l gl+1,
for 1 ≤ l ≤ n. It follows that gh1h2 . . . hn = h and each hl belongs
to either G1 or G2. If all the hl’s belong to G1 then also all the il’s
belong to I1 and the path goes within X1 and we can use the triangle
inequalities there. So we suppose that some hl, 1 ≤ l ≤ n, is from G2;
equivalently, that the path leaves X1 at some point. Let 1 ≤ l < n be
the least index where the path leaves X1, i.e. zl ∈ X1, while zl+1 /∈ X1.
It follows that il ∈ I0. Then let l < l′ ≤ n be the least index such
that the path returns back to X1, i.e. the least index l < l′ such that
zl′ ∈ X1. Again necessarily il′ ∈ I0. If 1 < l or l′ < n, then the subpath
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el . . . el′−1 between two elements ofX1 is strictly shorter than n and thus
by the inductive hypothesis we have dX1(zl, zl′) ≤ w(el)+ . . .+w(el′−1).
So we may replace this subpath by a single edge going from zl to zl′ ,
hereby again shortening the path, so by the inductive hypothesis we
get dX1(g · xi, h · xj) ≤ w(e1) + . . .+ w(en).

Thus we are left with the case l = 1 and l′ = n. In such a case
we have h1 ∈ G2 and hn ∈ G2, i1, i2, in−1, in ∈ I0, and also, since n
is the least number l such that h1 . . . hl ∈ G1, we must actually have
h1 . . . hn ∈ G0. It follows that g and h lie in the same left-coset of G0

in G1, i.e. g−1h ∈ G0. It follows that d(g · xi, h · xj) = d(xi, g
−1h · xj).

Thus it suffices to show that

d(xi, g
−1h · xj) = dX0(xi, g

−1h · xj) = dX1(xi, g
−1h · xj),

where the latter equality is known and we need to show the former. In
other words, we shall thus now, without loss of generality, assume that
g = 1, so h = h1 . . . hn ∈ G0 and xi, h · xj ∈ X0.

We have two cases:

(1) If n = 2, i.e. h = h1h2, then the path e1e2 is within X2 between
two elements from X0. Therefore, by the triangle inequality in
X2, its length is greater or equal to the path consisting of a
single edge from xi to h · xj, that means we have

w(e1) + w(e2) = dX2(xi, h1 · xi2) + dX2(h1 · xi2 , h · xj) ≥

dX2(xi, h · xj) = dX0(xi, h · xj) = dX1(xi, h · xj),
and we are done.

(2) If n > 2, then the non-trivial subpath e2 . . . en−1 is a path of
length strictly less than n between two elements from X2 (note
that z2 = h1 · xi2 ∈ X2 and also zn = hh−1n · xin ∈ X2), thus by
the inductive hypothesis we get that

w(e2) + . . .+ w(en−1) ≥ dX2(z2, zn).

It follows that
n∑
l=1

w(el) ≥ dX2(xi, z2) + dX2(z2, zn) + dX2(zn, h · xj) ≥

dX2(xi, h · xj) = dX0(xi, h · xj) = dX1(xi, h · xj),
and we are again done.

�
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Remark 2.4. The previous theorem was stated and proved for free ac-
tions. However, the proof can be modified to work for non-free actions
as follows: Replace the metric by a pseudometric so that the action be-
comes free. Then proceed completely analogously working with pseu-
dometrics instead of metrics and at the end make a metric quotient.

In the next theorem we shall restrict our attention to actions of finite
groups on finite metric spaces.

Theorem 2.5. The class of pointed free actions of finite groups on
finite metric spaces has the amalgamation property

Proof. Let us start as in the previous theorem with three pointed ac-
tions (Gi y Xi, (xj)j∈Ii), for i ∈ {0, 1, 2} such that G0 ≤ Gi, I0 ⊆ Ii,
for i = 1, 2, I0 = I1 ∩ I2. Now the difference is that all the sets are
finite. Let G be now any amalgam group of G1 and G2 over G0, e.g.
the free product with amalgamation G1 ∗G0 G2. Set I3 = I1 ∪ I2 and
XG =

⋃
j∈I3 G ·xj. As in the proof of Theorem 2.2 we define a weighted

graph structure on XG. That is, for g, h ∈ G and i, j ∈ I3, the elements
g · xi and h · xj are connected by an edge if and only if

• either g−1h ∈ G1 and i, j ∈ I1, then its weight is

w(g · xi, h · xj) = dX1(xi, g
−1h · xj);

• or g−1h ∈ G2 and i, j ∈ I2, then analogously its weight is

w(g · xi, h · xj) = dX2(xi, g
−1h · xj).

There is no ambiguity when g−1h ∈ G0 and i, j ∈ I0. We again define
the graph metric as follows: for x, y ∈ XG we set

dG(x, y) = min{
n∑
i=1

w(ei) : e1 . . . en is a path from x to y}.

Notice that now w assumes only finitely many values, so we may indeed
use the minimum. Again, G acts on XG by graph automorphisms
preserving the weight function, thus also by isometries. In the proof of
Theorem 2.2 we showed that dG extends dX1 and dX2 in case G = G1∗G0

G2. We shall now find a finite amalgamG with the same property. First
set G′ = G1 ∗G0 G2.

Set M = max{w(e) : e is an edge in XG′} and m = min{w(e) :
w(e) 6= 0 and e is an edge in XG′}. Set K = dM

m
e. Consider the finite

set G1 ∪ G2 as the set of generators of G′ and let λ : G′ → [0,∞) be
the corresponding length function, i.e. the distance from the unit in G′

in the Cayley graph of G′ with G1 ∪G2 as the generating set. Since G′

is an amalgam of finite groups, it is residually finite. Thus let G3 be
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a finite group such that there is an onto homomorphism φ : G′ → G3

which is injective on the ball {g ∈ G′ : λ(g) ≤ K + 1}. Clearly, G1

and G2 are subgroups of G3 with the identified common subgroup G0.
Thus in particular, G3 is a finite amalgamation of G1 and G2 over G0.
Moreover, we may suppose that G1 ∪ G2 generates G3. Let ρ be the
length function on G3 with respect to these generators. We have that φ
is isometric with respect to λ and ρ on the ball {g ∈ G : λ(g) ≤ K+1}

We now set X3 to be the finite set XG3 =
⋃
j∈I3 G3 · xj. We again

consider X0, X1, X2 to be subsets of X3. We have a metric dX3 = dG3

defined using the weight function. What remains to check is that the
canonical inclusions of X1, resp. X2 into X3 are isometric. We shall do
it for X1, for X2 it is analogous. So take some g, h ∈ G1 and i, j ∈ I1.
We must check that dX3(g · xi, h · xj) = dX1(g · xi, h · xj). Again, it is
clear that dX3(g · xi, h · xj) ≤ dX1(g · xi, h · xj); suppose that there is
a strict inequality. It follows that there is a path e1 . . . en from g · xi
to h · xj such that

∑n
l=1w(el) < dX1(g · xi, h · xj). We claim that the

length of the path n is less or equal to K. Suppose that n > K. Then
since for every 1 ≤ l ≤ n we have w(el) ≥ m, we get

n∑
l=1

w(el) ≥ n ·m > K · n ≥M.

However, by assumption dX1(g · xi, h · xj) ≤M , a contradiction.
Now, it follows that the path e1 . . . en lies within the finite set

⋃
i∈I3{g ∈

G3 : ρ(g) ≤ K + 1} · xi. Since φ is isometric with respect to λ and ρ
on the ball {g ∈ G : λ(g) ≤ K + 1} it follows that the path e1 . . . en
from G3 also exists in XG′ , and is, by definition, of the same length.
However, we showed in the proof of Theorem 2.2 that in XG′ its weight
was greater or equal to dX1(g · xi, h · xj). This finishes the proof. �

Let (Gn y Xn, (xi)i∈In)n∈N be an enumeration of all pointed free ac-
tions of finite groups on finite metric spaces with rational distances. It
follows from the previous theorem that it is a Fräıssé class. Indeed, it is
clear from the proof that when working with rational spaces the amal-
gam will be rational as well. Moreover, the joint-embedding property is
just a special case of the amalgamation property (note that any two ac-
tions have a common subaction, namely the action of a trivial group on
a one-point space). So it has some Fräıssé limit (α0 : G y X, (xi)i∈I),
where G is some countably infinite locally finite group, X is a count-
ably infinite rational metric space with countably infinite distinguished
set of points (xi)i∈I and α0 : Gy X is a free action by isometries.

It follows from the Fräıssé theorem that (α0 : G y X, (xi)i∈I) has
the following extension property:
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Fact 2.6. Let F ≤ G be a finite subgroup, A ⊆ I a finite subset, and
denote by X0 the finite metric space

⋃
i∈A F · xi. Consider the free

pointed action (F y X0, (xi)i∈A). Let (H y Y, (yj)j∈B) be some free
pointed action of a finite group on a finite rational metric space and let
(ψ, φ) is an embedding from (F y X0, (xi)i∈A) to (H y Y, (yj)j∈B).
Then there exists an embedding (ψ̄, φ̄) from (H y Y, (yj)j∈B) to (Gy
X, (xi)i∈I) such that ψ̄ ◦ ψ = idF and φ̄ ◦ φ = idX0.

Now let X be the metric completion of X. The action α0 : G y X
obviously extends to the action α : G y X by isometries, which is no
longer free though.

Theorem 2.7. The action α : G y X is a universal action of a
countable locally finite group on a separable metric space by isometries.

Remark 2.8. That means that for any countable locally finite group H
and any action β : H y Y by isometries, where Y is a separable metric
space, there is a subgroup H ′ ≤ G isomorphic to H and a subspace
Y ′ ⊆ X isometric to Y such that the restriction of α to H ′ has Y ′ as
an invariant subspace and this restriction is isometric to the action β;
in other words, if we identify H and H ′, the isometric embedding of Y
onto Y ′ ⊆ X is H-equivariant.

Before we prove the theorem we shall need few notions and lemmas.

Definition 2.9. Let X be a set equipped with two pseudometrics d
and p. We define the distance D(d, p) between these two pseudometrics
as their supremum distance, i.e.

D(d, p) = sup
x,y∈X

|d(x, y)− p(x, y)|.

Lemma 2.10. Let (H y X, (xi)i∈I) be a free pointed action by isome-
tries of some finite group H on a finite pseudometric space X =⋃
i∈I H · xi with pseudometric d. Then for any ε > 0 there exists a

rational metric p on X such that the free action of H on (X, p) is still
by isometries and D(d, p) < ε.

Proof of Lemma 2.10. Enumerate by (di)i≤n the distances from (X, d)
in an increasing order. Also, we may suppose that ε < min{|k − l| :
k 6= l, k, l ∈ {di : i ≤ n} ∪ {0}}.

For i ≤ n, let pi be an arbitrary rational number from the open

interval (di+
(n−i)ε
n+1

, di+
(n+1−i)ε
n+1

). Now for a pair x, y ∈ X set p(x, y) = 0
if x = y and for x 6= y ∈ X set

p(x, y) = pi iff d(x, y) = di.
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Let us check that p is a rational metric. By definition it is rational.
It is clear that p(x, y) = 0 iff x = y, and that it is symmetric, so we
must just check the triangle inequality. Take a triple x, y, z ∈ X. We
check that p(x, z) ≤ p(x, y)+p(y, z). If either d(x, y) or d(y, z) is bigger
or equal to d(x, z), then the same is true for p(x, y), p(y, z), p(x, z) by
definition. So we may suppose that d(x, z) > max{d(x, y), d(y, z)}.
Then by setting d(x, z) = di, d(x, y) = dj and d(y, z) = dk, we have
that i > max{j, k}. We must check that pi ≤ pj + pk. However, we
have

pi ≤ di +
(n+ 1− i)ε

n+ 1
≤ dj +

(n− j)ε
n+ 1

+ dk +
(n− k)ε

n+ 1
≤ pj + pk,

and we are done. �

Lemma 2.11. Let H1 ≤ H2 be two finite groups and I ⊆ J two finite
sets. Let d be a metric on X =

⋃
i∈I H1 · xi and p be a metric on

Y =
⋃
j∈J H2 ·xj ⊇ X such that the canonical corresponding actions are

by isometries. Suppose further that D(d, p � X) ≤ ε. Then there exists
a metric ρ on Z, the disjoint union X ⊆

⋃
i∈I H2 ·xi

∐⋃
j∈J H2 ·xj = Y

which is equal to
⋃
i∈I H2 · xi ∪

⋃
j∈J H2 · yj such that

• ρ extends both d and p on the corresponding subspaces,
• for every i ∈ I, ρ(xi, yi) ≤ ε,
• the canonical action of H2 on Z is by isometries.

Proof of Lemma 2.11. As before, we define a weighted graph structure
on Z. A pair x, y is connected by an edge if and only if

• either x, y ∈ X, resp. x, y ∈ Y , in such a case w(x, y) = d(x, y),
resp. w(x, y) = p(x, y);
• or there are i ∈ I ⊆ J and h ∈ H2 such that x = h · xi and
y = h · yi or vice versa, in such a case we set w(x, y) = ε;
• or x = g · xi, y = h · xj such that i ∈ I and g−1h ∈ H1; in such

a case we set w(x, y) = d(xi, g
−1hxj).

It is again immediate that the graph is connected, thus it determines
a metric ρ on Z, and the canonical action of H2 on Z is by isometries.
We need to check that ρ extends d and p. We check both simultane-
ously.

Fix x, y such that either x, y ∈ X or x, y ∈ Y . Suppose that ρ(x, y) <
d(x, y) (it is again clear that ρ(x, y) ≤ d(x, y)), resp. ρ(x, y) < p(x, y)
depending on where x, y lie. Then there is an edge path e1 . . . en such
that w(e1) + . . .+w(en) < d(x, y), resp. w(e1) + . . .+w(en) < p(x, y).
We shall again prove the claim by induction on the length of the edge
path. The case n = 1 is clear. Suppose we have proved it for all l < n
and all edge paths of length at most l between all pairs x, y ∈ X and
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all pairs x, y ∈ Y . We may suppose that there are not two neighboring
edges ei and ei+1 such that both of them lie in X or both of them lie
in Y , for otherwise we could contract them into a single edge using
triangle inequality in X, resp. Y .

Suppose first that x, y ∈ X and let x = g · xi and y = h · xj, for
some g, h ∈ H1 and i, j ∈ I. Denote by X̄ the set

⋃
i∈I H2 · xi ⊇ X.

Notice that there is no edge between an element z ∈ X and an element
z′ ∈ X̄ \X. Thus we may suppose that e1 is an edge between x = g ·xi
and g · yi and en is an edge between h · yj and h · xj = y. Indeed,
otherwise either e1 is an edge within X, so we may use the inductive
assumption for the subpath e2, . . . , en, or en is an edge within X and
we may use the inductive assumption for the subpath e1, . . . , en−1. It
follows that e2, . . . , en−1 is an edge path of length strictly less than
n between two elements of Y , thus by inductive assumption we may
suppose that n = 3 and e2 is an edge between g · yi and h · yj and we
have

w(g · yi, h · yj) = p(g · yi, h · yj) ≥ d(g · xi, h · xj)− ε.
However, since w(e1) = w(e3) = ε, we get that

d(x, y) = d(g · xi, h · xj) < w(e1) + w(e2) + w(e3),

a contradiction.
Suppose now that x, y ∈ Y and again let x = g · yi and y = h · yj,

for some g, h ∈ H2 and i, j ∈ J . As in the paragraph above, we may
without loss of generality assume that e1 is an edge between x = g · yi
and g · xi and en is an edge between h · xj and h · yj = y; thus in
particular i, j ∈ I. If both g, h ∈ H1 then g · xi, h · xj ∈ X and we are
done by the same argument as in the paragraph above. So suppose that
at least one of g, h is in H2 \H1. Say g ∈ H2 \H1, i.e. g · xi ∈ X̄ \X.
Since there is no edge between an element from X and an element
from X̄ \ X there exists a minimal l ≤ n such that e2, . . . , el−1 is a
path within X̄ \X and el is an edge between an element from X̄ \X
and an element from Y . If l < n then we use the inductive hypothesis,
so suppose that l = n, i.e. the subpath e2, . . . , en−1 is within X̄ \ X.
Note also that there is an edge between elements f · xk and f ′ · xk′ in
X̄ \X if and only if f−1f ′ ∈ H1. It follows that g−1h ∈ H1. Translating
the whole path e1, . . . , en by g−1 we does not change the distance (g−1

acts as an isometry). Thus we may assume that g = 1 and h ∈ H1.
However, then we are again done by an argument used above. �

Proof of Theorem 2.7. Let H y Z be an action of an infinite locally
finite group by isometries on a separable metric space. It is sufficient
to prove the theorem in case Z is countable. Indeed, in the general
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case we would find a countable dense H-invariant subspace Z ′. Then
the action on the metric completion of Z ′, thus in particular on Z,
is uniquely determined by its behavior on Z ′. Since the space X is
complete, we are done.

So assume that both H and Z are countable. Without loss of gen-
erality we assume that Z has infinitely many H-orbits and let (zn)n∈N
be a sequence which picks one single element from each orbit, i.e. we
may write the metric space Z as

⋃
n∈NH · zn with a pseudometric d.

Also, without loss of generality we shall assume that H is infinite and
write H as H1 ≤ H2 ≤ H3 ≤ . . . which is an increasing chain of finite
subgroups of H whose union is H. Moreover, for every n define Zn to
be the finite pseudometric subspace

⋃
i≤nHn · zi ⊆ Z.

For every n consider the free pointed action (Hn y Zn, (zi)i≤n). By
Lemma 2.10 there exists a rational metric pn on Zn such that D(d �
Zn, pn) < 1/2n+1. It follows that for every n we haveD(pn, pn+1 � Zn) <
1/2n. By Lemma 2.11, for every n we can define a rational metric ρn
on a disjoint union of Zn

∐
Zn+1 =

⋃
i≤nHn ·zi∪

⋃
j≤n+1Hn+1 ·z′j which

extends the original metrics and for i ≤ n we have ρn(zi, z
′
i) = 1/2n.

Now by a successive application of the extension property of (G y
X, (xi∈I) we obtain

• an increasing chain of finite subgroups H ′1 ≤ H ′2 ≤ . . . ≤ G such
that H ′i

∼= Hi for i ∈ N, and thus also H ′ =
⋃
nH

′
n
∼= H;

• isometric embeddings φn : Zn
∐
Zn+1 ↪→ X such that φn �

Zn+1 = φn+1 � Zn+1, for every n;
• for every n, we have that the free actions Hn y Zn and H ′n y
φn[Zn] are isometric.

For every i we have that the sequence (φn(zi))n≥i is Cauchy, since
dX(φn(zi), φn+1(zi)) = 1/2n. Let yi ∈ X be the limit of that sequence.
Consider the subset Z ′ =

⋃
i∈NH

′ · yi ⊆ X. It follows it is naturally
isometric to Z. Indeed, take any x, y ∈ Z and write them as x = h · zi
and y = g · zj for some h, g ∈ H and i, j ∈ N. Since H and H ′ ≤ G
are isomorphic, let h′, g′ be the corresponding elements of H ′ ≤ G and
consider the elements h′ · yi, g′ · yj ∈ Z ′ ⊆ X. Then

d(h′ ·yi, g′ ·yj) = lim
n
d(h′ ·φn(zi), g

′ ·φn(zj)) = lim
n
dZ(h ·zi, g ·zj)+o(n),

where o(n) ∈ [0, 1/2n], so the claim is proved.
Finally, consider the restriction of the action G y X on H ′ y⋃
i∈NH

′ · yi. It follows from the approximation above that it is iso-
metric to the action H y Z, and we are done. �

Finally, we show that the group G is isomorphic to the Hall’s univer-
sal locally finite group and that the space X is isometric to the rational
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Urysohn space, so the completion X is isometric to the Urysohn univer-
sal space. It is just the use of the extension property of Gy X, (xi)i∈I
from Fact 2.6. These are standard arguments, so we omit some details.

For the former it is necessary to show that G has the extension
property. That is, whenever F ≤ G is some finite subgroup and H ≥ F
is some abstract finite supergroup of F , i.e. a supergroup of F that
does not in principle lie in G, then we can actually find a copy H ′ of
H within G so that it is a supergroup of F there, i.e. F ≤ H ′ ≤ G.

So pick some finite subgroup F ≤ G and some abstract supergroup
H ≥ F . The Fräıssé limit Gy X, (xi)i∈I is a direct limit of a sequence
of some finite actions (Gn y Xn, (xi)i∈In)n∈N. Take n so that F ≤ Gn

and consider the subaction F y X ′n, (xi)i∈In , where X ′n =
⋃
i∈In F · xi.

It is possible to use Lemma 2.11 to extend this action to an action of H
on

⋃
i∈In H · xi. Then we use the extension property of Gy X, (xi)i∈I

to find the action H y
⋃
i∈In H · xi within the universal one, thus in

particular to find a copy of H within G that is a supergroup of F .
Now for the latter, it is necessary to show that the countable rational

metric space X has the extension property. That is, whenever A ⊆ X
is some finite subspace and A ⊆ B is finite abstract extension, still a
rational metric space, then we can actually find this extension within
X. So take some finite A ⊆ X. As above, find some n so that A ⊆ Xn.
By extending the metric by metric amalgamation if necessary we may
assume that A = Xn. Set I ′n = I ∪ (B \ Xn) and X ′n =

⋃
i∈I′n

Gn · xi.
Clearly, A = Xn ⊆ B ⊆ X ′n. By using the technique with defining a
weighted graph structure on X ′n we can extend the metric from B to
X ′n so that Gn acts on X ′n by isometries. Then we use the extension
property of G y X, (xi)i∈I to get a copy of X ′n, thus also of B, in X
so that it is an extension of A there.

2.1. No universal actions for non-locally finite groups. We stress
that the universality of G from the previous theorem does not say that
whenever we have an action of the group G itself on some separable
metric space Z by isometries, then we can find a G-equivariant isomet-
ric embedding of Z into X. What it does say is that we can find a
subgroup G′ ≤ G isomorphic to G itself, so that after identification of
G and G′ there is some G-equivariant isometric embedding of Z into
X. This is not a flaw of the proof. The universality in such a strong
sense is not possible for any countably infinite group G, locally finite
or not. That is the content of the following theorem.

Theorem 2.12. Let G be a countably infinite group. Then there is no
such strongly universal action of G on both metric and Banach spaces.
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Proof. Suppose the contrary, first for the metric spaces. That is, sup-
pose there exists a separable metric space X and an action α : Gy X
by isometries such that for any action β : G y Y by isometries on a
separable metric space Y there is a G-equivariant isometric embedding
of Y into X.

Fix some unbounded length function λ : G → N and a sequence
(gn)n∈N ⊆ G such that (gn)n generate G and 1 < λ(g1) < λ(g2) <
λ(g3) < . . .. That is possible to find for any countably infinite group.

For any x ∈ 2N let λ′x : {gn, g−1n : n ∈ N} → N be defined as follows:

λ′x(g) =

{
1 g ∈ {gn, g−1n } ∧ x(n) = 0,

2 g ∈ {gn, g−1n } ∧ x(n) = 1.

Finally, for any x ∈ 2N define a length function λx : G → N as
follows: for any g ∈ G, set

λx(g) = min{
m∑
i=1

λ′x(hi) : g = h1 . . . hm, (hi)
m
i=1 ⊆ S∪{gn, g−1n : n ∈ N}}.

We claim that λx extends λ′x, i.e. for every g ∈ {gn, g−1n : n ∈ N},
λx(g) = λ′x(g). It suffices to show that for any n such that x(n) = 1 we
have λx(gn) = 2. Suppose the contrary. Then necessarily λx(gn) = 1,
so by definition gn = gm or gn = g−1m for m such that x(m) = 0. How-
ever, that is in contradiction with the assumption that 1 < λ(g1) <
λ(g2) < λ(g3) < . . ..

Now for every x ∈ 2N take the left-invariant metric dx on G induced
by λx. The action of G on itself by left translations is then an ac-
tion of G on (G, dx) by isometries. We claim that there is x ∈ 2N

such that there is no G-equivariant isometric embedding of (G, dx) into
X. Suppose otherwise that for every x ∈ 2N there is a G-equivariant
isometric embedding ιx of (G, dx) into X. For every x ∈ 2N denote
ιx(1G) ∈ X by zx. Then for x 6= y ∈ 2N we have dX(zx, zy) ≥ 1/2, for
if dX(zx, zy) < 1/2 and n ∈ N is such that x(n) 6= y(n), say x(n) = 1,
y(n) = 0, then

1/2 > dX(zx, zy) = dX(gn · zx, gn · zy) ≥

|dX(gn · zx, zx)− dX(zx, zy)− dX(zy, gn · zy)| > 1/2,

a contradiction. Thus we get that {zx : x ∈ 2N} ⊆ X is a 1/2-separated
uncountable set in X which contradicts the separability of X.

To prove the same for the category of Banach spaces, we can for
example extend the action of G on (G, dx), for every x ∈ 2N, to an
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action of G on the Lipschitz-free Banach space F (G, dx) over (G, dx)
(see [5] and [17] for information about Lipschitz-free Banach spaces).
That is, consider a real vector space VG with G \ {1G} as the free
basis, and 1G as a zero. Define a norm ‖ · ‖x on VG as follows: for
v = α1g1 + . . .+ αngn set

‖v‖x = min{
m∑
i=1

|βi| · dx(hi, h′i) : v =
m∑
i=1

βi(hi − h′i)}.

Then it is easy to check (and it is a standard fact about Lipschitz-
free spaces) that for any g, h ∈ G, ‖g − h‖x = dx(g, h). G acts by
(affine) isometries on (VG, ‖ · ‖x) in the following way: for h ∈ G and
α1g1 + . . .+ αngn ∈ VG we set h · (α1g1 + . . .+ αngn) = (α1hg1 + . . .+
αnhgn) − (α1 + . . . + αn − 1)h. It is easy to check that this gives an
action of G on (VG, ‖ · ‖x) by isometries which extends the action of
G on itself by translation. It also extends to an action of G on the
completion Wx. Then arguing exactly the same as with the metric
space one can show that it is not possible to embed in a G-equivariant
way all the spaces Wx,x ∈ 2N, into a single separable Banach space
with an action of G. �

Second, we show that the universality result for the Hall’s group
from Theorem 2.7 is not beyond the locally finite case. Let us start
with a definition.

Definition 2.13. Let G be a countable group. Say that G admits a
universal action by isometries if there is an action α : Gy X on some
separable metric space X such that for any countable group H which is
isomorphic to a subgroup of G and for any action β : H y Y of H on
a separable metric space Y by isometries there is a subgroup H ′ ≤ G
isomorphic to H and an isometric embedding of Y into X which is,
after identifying H and H ′, H-equivariant.

With this definition, the statement of Theorem 2.7 says that the
Hall’s group admits a universal action by isometries.

That is the strongest result possible of this type as shown by the
following proposition.

Proposition 2.14. Let G be a countably infinite non-locally finite
group. Then G does not admit a universal action by isometries.

Proof. Suppose there is such an action α : G y X on some separable
metric space X. Since G is not locally finite it contains a finitely gen-
erated infinite subgroup H ≤ G. By the proof of Theorem 2.12 there
are continuum many somewhat different left-invariant metrics (dx)x∈2N
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on H. Note that G contains at most countably many subgroups iso-
morphic to H. By the pigeonhole principle there is one fixed subgroup
H ′ ≤ G isomorphic to G and an uncountable subset I ⊆ 2N such
that for each x ∈ I there is an H ′-equivariant isometric embedding of
(H ′, dx) into X. We reach a contradiction with separability of X by
the same argument as in the proof of Theorem 2.12. �

3. Genericity of the action

Let us start with a general discussion. Fix some countable group G.
Let X be some Polish metric space, i.e. a complete separable metric
space. We want to define a space of all actions of G on X by isometries.

We have that Iso(X), the group of all isometries on X with the
pointwise-convergence, or equivalently compact-open, topology is a
Polish group, i.e. a completely metrizable second-countable topological
group. Fixing a countable dense subset {xi : i ∈ N} ⊆ X we may define
a compatible complete metric ρ on Iso(X) as follows: for φ, ψ ∈ Iso(X)
we set

ρ(φ, ψ) =
∞∑
i=1

min{dX(φ(xi), ψ(xi)), 1}
2i

.

Since every action α : G y X by isometries is in unique correspon-
dence with some homomorphism f : G → Iso(X), we may define the
space ActG(X) of all actions of G on X by isometries as the space of
all homomorphisms of G into Iso(X). ActG(X) is a closed subspace of
the product space Iso(X)G, thus a Polish space.

There has been a recent research on investigating which countable
groups admit actions, on certain spaces, which are generic in some
sense. That means, fix a countable group G and a Polish metric space
X. Note that there is a natural equivalence relation on the space
ActG(X), that is of conjugation, where two homomorphisms f, g : G→
Iso(X) are conjugate if there exists an autoisometry φ : X → X such
that f = φ−1gφ. Say that an action f (or rather a homomorphism)
is generic if some element f ∈ ActG(X) has a comeager conjugacy
class. In [15] Rosendal proved that every finitely generated group
with the Ribes-Zalesskǐi property ([14]), i.e. products of finitely gener-
ated subgroups are closed in the profinite topology of the group, has a
generic action on the rational Urysohn space. More recently, Glasner,
Kitroser and Melleray ([4]) characterized those countable groups that
have generic actions on a countable set with a trivial metric (attaining
just values 1 and 0).
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We prove a genericity result for the universal action from Theorem
2.7. On the one hand we have the result on a much more complicated
space, the Urysohn space, on the other hand we need to somehow
weaken the definition of genericity. In other words, we need to ex-
tend the equivalence relation of being conjugate by also allowing group
automorphisms. Let us state that precisely in the following definition.

Definition 3.1. Let G be a countable group and X a Polish metric
space. Say that two homomorphisms f, g : G → Iso(X) are weakly
equivalent if there exist an autoisometry φ : X → X and an automor-
phism ψ : G→ G such that for all x ∈ X and v ∈ G we have

f(v)x = φ−1g(ψ(v))φx.

Moreover, we say that an element f ∈ ActG(X) is weakly generic if
it has a comeager equivalence class in the weak equivalence.

We shall prove the following.

Theorem 3.2. The universal action α y U from Theorem 2.7 is
weakly generic.

The rest of this section is devoted to prove the theorem.
We need some notions. When F and F ′ are two isomorphic finite

groups, I and I ′ two finite bijective sets and d, resp. d′ a metric
on

⋃
i∈I G · xi, resp. on

⋃
i∈I′ G

′ · yi, we denote by D((G, {xi : i ∈
I}, d), (G′, {yi : i ∈ I ′}, d′)), analogously as in the previous section, the
supremum distance supi,j∈I,g,h∈H |d(g ·xi, h·xj)−d′(g′ ·yi′ , h′ ·yj′)|, where
g′, h′ ∈ G′ are the images of g, h ∈ G under the given isomorphism
between G and G′ and i′, j′ ∈ I ′ are the images of i, j ∈ I under the
given bijection between I and I ′. Such an isomorphism and a bijection
will be never explicitly mentioned, it should be always clear from the
context. Also, we shall often write D((G, {xi : i ∈ I}), (G′, {yi : i ∈
I ′})), thus suppressing the metrics from the notation; they should also
be clear from the context. The following fact follows from Lemma 2.11,
however we will state it here since it will be used extensively.

Fact 3.3. Suppose we are given two finite isomorphic groups G and G′,
finite bijective sets I and I ′, and metrics d and d′ on

⋃
i∈I G · xi, resp.

on
⋃
i∈I′ G

′ ·yi. Suppose moreover that D((G, {xi : i ∈ I}), (G′, {yi : i ∈
I ′})) < ε for some ε > 0. Then there exists a metric ρ on

⋃
i∈I∪I′ G ·xi

such that

• D((G, {xi : i ∈ I}, d), (G, {xi : i ∈ I}, ρ)) = 0, i.e. ρ extends d;
• D((G, {xi : i ∈ I ′}, ρ), (G′, {yi : i ∈ I ′}, d′)) = 0;
• for every i ∈ I we have ρ(xi, xi′) ≤ ε.
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Remark 3.4. Conversely, notice suppose that a finite groupG acts freely
on some metric space Y and let {yi : i ∈ I} and {zi : i ∈ I} be two
finite subsets of Y indexed by the same set such that for every i ∈ I,
dY (yi, zi) < ε. Then D((G, {yi : i ∈ I}), (G, {zi : i ∈ I})) < 2ε.

We shall now define a subset of ActG(U). By QU we denote the
rational Urysohn space, a countable dense subset of U. We shall denote
the pointed free rational actions of finite groups by (F, {xi :∈ I}) and
we write (F, {xi : i ∈ I}) ≤ (H, {xi : i ∈ I ′}) to denote that the former
actions embeds into the latter. To simplify the notation, we always
assume in such a case that F ≤ H and I ⊆ I ′. Recall that the class K
of all pointed free rational actions by finite groups is countable.

By D we denote the subset of ActG(U) of all actions Gy U satisfy-
ing:

for all ε > ε′ > 0, for all (F, {xi : i ∈ I}) ≤ (H, {xi : i ∈ I ′}) ∈ K and
for every subgroup F ′ ≤ G isomorphic to F and all {ui : i ∈ I} ⊆ QU
such that

D((G, {xi : i ∈ I}), (G′, {ui : i ∈ I}) < ε′

there exist a subgroup F ′ ≤ H ′ ≤ G isomorphic to H, and points
{ui : i ∈ I ′} ⊆ QU such that

D((H, {xi : i ∈ I ′}), (H ′, {ui : i ∈ I ′})) < ε.

We shall refer to the property above as D-property. A simple com-
putation shows that the D-property is a Gδ condition, i.e. D is a Gδ

set. It is non-empty since the universal action from Theorem 2.7 clearly
belongs to D. Moreover, a standard argument following from the con-
struction of the universal action gives that D is actually dense, so dense
Gδ. We need to show that any two actions from D are weakly equiv-
alent. That is, for actions α, β ∈ D we need to find an automorphism
φ : G → G and an autoisometry of ψ : U → U such that for all g ∈ G
and x ∈ U we have

α(g, x) = β(φ(g), ψ(x)).

We now fix two actions α, β ∈ D and show that. Let (zn)n∈N be
some enumeration of QU such that for each i0 ∈ N both sets {zi : i ≥
i0, i is odd} and {zi : i ≥ i0, i is even} are dense in U. Also, write G as
an increasing union G1 ≤ G2 ≤ G3 ≤ . . . of finite subgroups.

By induction, we shall find for each n ∈ N:

• an increasing sequence of finite groups H1 ≤ . . . ≤ Hn ≤ G
and H ′1 ≤ . . . ≤ H ′n such that for each i ≤ n, Hi and H ′i are
isomorphic by some φi and φi ⊇ φi−1, and for every odd i ≤ n
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we have that Gi ≤ Hi, and for every even i ≤ n we have that
Gi ≤ H ′i;
• for each i ≤ n, sequences (uji )

n
j=i ⊆ QU and (vji )

n
j=i ⊆ QU such

that
– for each i ≤ n and i ≤ j < k ≤ n, d(uji , u

k
i ) ≤ 1/2j+1 and

d(vji , v
k
i ) ≤ 1/2j+1,

– for every odd i ≤ n, uii = zi, and for every even i ≤ n,
vii = zi;

• D((Hn, {uni : i ≤ n}), (H ′n, {vni : i ≤ n})) < 1/2n+1.

Once the induction is finished, we have that G =
⋃
nHn =

⋃
nH

′
n,

i.e φ =
⋃
n φn : G → G is an isomorphism. Also we have that for ev-

ery i ≤ n the sequences (uni )n and (vni )n are Cauchy in QU, thus they
have some limit ui ∈ U, resp. vi ∈ U. It follows from the inductive
assumption that both {ui : i ∈ N} and {vi : i ∈ N} are dense in U
and that the map sending ui to vi is an isometry which extends to an
autoisometry ψ of U. By the limit argument we get that the actions α
and β are weakly equivalent witnessed by φ and ψ. Thus we need to
describe the inductive steps to finish the proof.

The first and second step of the induction. Set H1 = G1,
u11 = z1. By Lemma 2.10 there exists (H1, {x1}) ∈ K such that
D((H1, {u11}), (H1, {x1}) < 1/2. Since β satisfies the D-property, there
is a subgroup H ′1 ≤ G isomorphic to H1 (via some φ1) and some v11
which, because of Remark 3.4 we may find in QU, such thatD((H1, {x1}), (H ′1, {v11}) <
1/2, thus by triangle inequality D((H1, {u11}), (H ′1, {v11})) < 1. That
finishes the first step of the induction.

Next, set v21 = v11 and v22 = z2. Let H ′2 ≤ G be an arbitrary fi-
nite group containing both H ′1 and G2, e.g. the subgroup generated by
these two groups. Again by Lemma 2.10 there exists (H ′2, {x1, x2}) ∈ K
such that D((H ′2, {v21, v22}), (H ′2, {x1, x2}) < 1/4. By the D-property of
α, Fact 3.3 and also Remark 3.4 we can find H1 ≤ H2 ≤ G isomor-
phic to H ′2 (via some φ2 extending φ1) and u21, u

2
2 ∈ QU such that

d(u11, u
2
1) < 1/2 and D((H2, {u21, u22}), (H ′2, {v21, v22})) < 1/2. This fin-

ishes the second step of the induction.

The general odd and even step of the induction. The general
steps are treated analogously as the second step of the induction. So
we only briefly show the general odd n-th step of the induction, i.e. n is
now odd greater than 2. For i < n we set uni = un−1i and we set unn = zn.
Let Hn ≤ G be an arbitrary finite subgroup containing both Hn−1 and
Gn. By Lemma 2.10 there exists (Hn, {x1, . . . , xn}) ∈ K such that
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D((Hn, {un1 , . . . , unn}), (Hn, {x1, . . . , xn}) < 1/2n. By the D-property of
β, Fact 3.3 and also Remark 3.4 we can find H ′n−1 ≤ H ′n ≤ G isomor-
phic to Hn (via some φn extending φn−1) and vn1 , . . . , v

n
n ∈ QU such that

d(vn−1i , vni ) < 1/2n−1, for all i < n, andD((Hn, {un1 , . . . , unn}), (H ′n, {vn1 , . . . , vnn})) <
1/2n−1. That finishes the inductive construction and the whole proof.

4. Universal actions on Banach spaces

In the last section we attempt to find some universal actions by
isometries on Banach spaces.

First, we notice that in the full generality, as for metric spaces, it
is not possible. Recall that by the theorem of Mazur and Ulam (see
e.g. Theorem 14.1 in [2]) every (onto) isometry on a Banach space is
affine, that means it is a linear isometry plus translation. From that,
one can derive that every action α : G y X of some group G on a
Banach space X by isometries is determined by an action α0 : Gy X,
which is by linear isometries, and by a cocycle map b : G → X which
determines the corresponding translates. That is, for any g ∈ G and
x ∈ X we have

α(g)x = α0(g)x+ b(g).

Conversely, whenever we have an action α0 : G y X by linear isome-
tries and a map b : G→ X satisfying the so-called ‘cocycle condition’,
i.e. for every g, h ∈ G, we have

b(gh) = α0(g)b(h) + b(g),

we can get an action of G on X by affine isometries. We refer the
reader to Chapter 6 of [12] for more information.

We again provide some definitions of universal actions by isometries
on Banach space. Theorem 2.12 excludes again universal actions in a
strong sense, so we modify Definition 2.13 for actions on Banach spaces.

Definition 4.1. Say that G admits a universal action by isometries on
a (universal) separable Banach space X if there is an action α : Gy X
such that for any countable group H which is isomorphic to a subgroup
of G and for any action β : H y Y of H on a separable Banach space
Y by isometries there is a subgroup H ′ ≤ G isomorphic to H and a
linear isometric embedding of Y into X which is, after identifying H
and H ′, H-equivariant.

Proposition 4.2. No finite or countable group G admits a universal
action by (affine) isometries on a Banach space X.

Proof. Fix an at most countable group G and suppose that it has a
universal action on a Banach space X. Let b : G → X be the cocycle



22 MICHAL DOUCHA

associated to this action. The range of b is at most countable, so in
particular the set R = {‖b(g)‖X : g ∈ G} is an at most countable set of
reals. One can easily find an action of some subgroup H ≤ G on some
Banach space Y such that, if we denote by b′ : H → Y the associated
cocycle, we have that {‖b′(h)‖Y : h ∈ H} * R. It follows the action
was not universal. �

A similar arguments show that the universality cannot be saved if one
replaces theH-equivariant linear isometric embeddings in the definition
by H-equivariant affine isometric embeddings or linear (1+ε)-isometric
embeddings.

The distinguished point in Banach spaces, the zero, is what causes
problems. If one is satisfied with universality for actions by linear
isometries, the problems disappear. Still the proofs are much more
technical than in the case of plain metric spaces without algebraic
structure. We shall only prove that there is a universal action by
linear isometries on Banach spaces of the group

⊕
n∈NQ/Z. This is

the infinite direct sum of all roots of unity and it is a universal abelian
locally finite group. We replace the Urysohn space from Theorem 2.7
by a similar object in the category of Banach spaces, the Gurarij space.
We refer the reader to [6] for more information about this space. We
shall thus show:

Theorem 4.3. Let G =
⊕

n∈N Q/Z. There exists a universal action of
G on the Gurarij space X. That is, for any action β : H y Y by linear
isometries, where H is a countable abelian locally finite group and Y
is a separable Banach space, there exists a subgroup H ′ ≤ G such that,
after identifying H and H ′, there is an H-equivariant linear isometric
embedding of Y into X.

Let F be a finite abelian group and I a non-empty finite set. By
FI we denote the finite set F × I = {xg,i : g ∈ F, i ∈ I}. Instead of
x0,i, where i ∈ I and 0 ∈ F is the group zero, we may just write xi.
Consider now a finite-dimensional real vector space EF,I with FI as a
basis. The canonical action of F on FI , where g · xf,i = xgf,i (resp. the
permutation representation of F on FI), extends to a linear action of
F on EF,I (resp. the representation of F in GL(EF,I)).

Now let W ⊆ EF,I be any finite subset satisfying:

• 0 ∈ W ; if w ∈ W , then −w ∈ W ;
• for every i 6= j ∈ I, xi − xj ∈ W ;
• for every i ∈ I, g ∈ F , xg,i ∈ W ;
• for any g ∈ F and w ∈ W , g · w ∈ W .
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A partial F -norm ‖ · ‖′ on W is a partial norm on the finite set W
compatible with the action of F ; that is, a function satisfying

• ‖w‖′ = 0 iff w = 0; (positivity);
• ‖αw‖′ = |α|‖w‖′ provided that w, αw ∈ W , for α ∈ R; (homo-

geneity)
• ‖w‖′ ≤

∑n
i=1 |αi|‖wi‖′, where w =

∑n
i=1 αiwi w, (wi)

n
i=1 ⊆ W ,

(αi)
n
i=1 ⊆ R; (triangle inequality)

• ‖w‖′ = ‖g · w‖′, for g ∈ F , w ∈ W . (compatibility with the
action)

Having ‖ · ‖′ we define a norm ‖ · ‖ on EF,I as the maximal extension
of ‖ · ‖′ to the whole EF,I . That is, for any x ∈ EF,I we set

‖x‖ = min{
n∑
j=1

|βj|‖wj‖′ : x =
n∑
j=1

βjwj, (wj)i≤n ⊆ W}.

It follows by compactness (from the finite-dimensionality) that the min-
imum is indeed attained.

Now it is straightforward to check that ‖ · ‖ is a norm that extends
‖ · ‖′ and that the action of F on EF,I with ‖ · ‖ is by linear isometries.
Notice that there are several other equivalent ways how to define ‖ · ‖
using ‖ · ‖′. For instance one can take the closed convex hull of the set
{w/‖w‖′ : w ∈ W} and then consider the Minkowski functional of such
a set. The resulting norm will be ‖ · ‖. Another way is to consider the

following set of functions F = {f : FI ∪ {0} → R : f(0) = 0, |f̃(w)| ≤
‖w‖′}, where f̃ is the unique linear extension of f on EF,I . Then we

have, for every x ∈ EF,I , ‖x‖ = supf∈F |f̃(x)|.

We shall call such an action of F on such a finite-dimensional space
finitely presented. If the partial norm ‖ · ‖′ is defined only on linear
combinations of basis vectors with rational coefficients and it has a
rational range, we shall call such a finitely presented action rational.

Let us have finite-dimensional spaces EF,I and EH,J , where F,H are
finite abelian groups and I, J finite sets. Suppose there are embeddings
φ : F ↪→ H and ψ : I ↪→ J . Then they naturally induce a linear embed-
ding of EF,I into EH,I which is also, after identifying F and ψ[F ] ≤ H,
F -equivariant. If EF,I , resp. EH,J are equipped with the finitely pre-
sented norm, invariant by the action, and the linear embedding given
by φ and ψ is also isometric, we call such a pair (φ, ψ) an embedding
between two finitely presented actions.

In most cases, unless stated otherwise, we shall implicitly assume
that φ and ψ are just inclusions, so the determined linear (isometric)
embedding is also an inclusion.



24 MICHAL DOUCHA

Proposition 4.4. The class of all finitely presented rational actions
has the amalgamation property.

Proof. Assume we are given finite abelian groups G0, G1, G2. We sup-
pose (without loss of generality) that G0 ≤ G1, G0 ≤ G2 and G1∩G2 =
G0. Also, we are given finite sets I0, I1, I2; again we assume that
I0 ⊂ I1, I0 ⊆ I2 and I1 ∩ I2 = I0. And finally, we have some finitely
presented rational actions of Gi on Ei = EGi,Ii determined by a partial
norm ‖ · ‖′i defined on finite Wi ⊆ Ei, for i ≤ 2. Again, we may assume
that W0 ⊆ W1, W0 ⊆ W2 and W1 ∩ W2 = W0. Moreover, we may
suppose that every element w ∈ Wi \W0, i = 1, 2, contains a scalar
multiple of a basis element not from E0.

The proof is analogous to the proof of Theorem 2.2, though a bit
more technical.

Set G3 to be the free abelian amalgam of G1 and G2 over G0, i.e.
G3 = G1 ⊕ G2/{(g,−g) : g ∈ G0}. Set I = I1 ∪ I2. Let E3 be the
vector space EG3,I3 . We naturally identify the spaces Ei, i ≤ 2, as
subspaces of E3. Set W ′ = W1 ∪W2 and let W be the ‘closure of W
with respect to the action of G3, i.e. W is the smallest (finite) set
containing W ′ such that for any g ∈ G3 and w ∈ W we have g ·w ∈ W .
We define a function ‖ · ‖′ on W as the unique function which extends
‖ · ‖′i, for i ≤ 2, and satisfying that ‖g · w‖′ = ‖w‖, for w ∈ W and
g ∈ G. This definition is correct, for suppose that for some g ∈ G1,
h ∈ G2 and w1 ∈ W1, w2 ∈ W2 we have g · w1 = h · w2. It follows
that g − h ∈ G0, thus g, h ∈ G0 and so w1, w2 ∈ W0. However we have
‖w1‖′1 = ‖w1‖′0 = ‖w2‖′0 = ‖w2‖′2.

We need to check that ‖ · ‖′ is a partial norm. Once we do that we
again define a norm ‖ · ‖ on E3 using ‖ · ‖′ as follows: for any x ∈ E
we set

‖x‖ = min{
n∑
j=1

|βj|‖wj‖′ : x =
n∑
j=1

βjwj, (wj)i≤n ⊆ W}.

It will follow that ‖ · ‖ extends ‖ · ‖′, thus it also extends ‖ · ‖1, resp.
‖ · ‖2, on E1 ⊆ E, resp. E2 ⊆ E.

The only condition from the definition of a partial norm which is not
obviously satisfied is the triangle inequality. So suppose that for some
x ∈ W1 (the case x ∈ W2 is analogous) there exist w1, . . . , wn ∈ W and
non-zero α1, . . . , αn ∈ R such that x =

∑n
i=1 αiwi and

∑n
i=1 |αi|‖wi‖′ <

‖x‖′. We shall reach a contradiction by induction on the size n of the
decomposition of x on elements from W . Suppose first that n = 2, i.e.
x = α1w1 +α2w2 and |α1|‖w1‖′+ |α2|‖w2‖′ < ‖x‖′. At least one of the
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elements w1 and w2 must not lie in W1 since otherwise

|α1|‖w1‖′ + |α2|‖w2‖′ = |α1|‖w1‖′1 + |α2|‖w2‖′1 ≥ ‖x‖1 = ‖x‖′

Similarly, at least one of the elements w1 and w2 must not lie in W2.
It is also impossible that one of the elements is from W1 \W0 and the
other from W2 \ W0 Suppose that w1 /∈ W1 (recall that we assumed
that every element w ∈ Wi \W0, i = 1, 2, contains a scalar multiple of
a basis element not from E0).

One of these elements, say w1, must contain a scalar multiple of a
basis element from E1. Since w1 /∈ W1 ∪W2 it follows that there must
exist g ∈ G1 and w′1 ∈ W2 such that w1 = g · w′1. In particular, the
multiples of basis elements from w1 that belong to E1 are of the form
xg+a,l, where a ∈ G0 and l ∈ I0. Since w1 /∈ W2, it also must contain
multiples of basis elements of the form xg+h,k, where h ∈ G2\G0. These
elements must cancel out in w2. Thus it follows that also w2 is of the
form g ·w′2, where w′2 ∈ W2. It follows that α1w

′
1 +α2w

′
2 = −g ·x ∈ E0.

Thus we have

‖x‖1 = ‖− g ·x‖1 = ‖− g ·x‖0 = ‖− g ·x‖2 ≤ |α1|‖w′1‖′2 + |α2|‖w′2‖′2 ≤
|α1|‖w′1‖′ + |α2|‖w′2‖′ = |α1|‖w1‖′ + |α2|‖w2‖′ < ‖x‖1,

a contradiction.

Suppose now that n > 2 and that for every x ∈ W1 ∪W2 and every
non-zero (αi)i ≤ l ⊆ R, (wi)i≤l ⊆ W such that x =

∑
i≤l αiwi and

l < n we have that
‖x‖′j ≥

∑
i≤l

|αi|‖wi‖′,

where j = 1, 2 depending on whether x ∈ W1 or x ∈ W2.
So fix x ∈ W1 (the case for W2 being analogous), w1, . . . , wn ∈ W and

non-zero α1, . . . , αn ∈ R such that x =
∑n

i=1 αiwi and
∑n

i=1 |αi|‖wi‖′ <
‖x‖′1. Again we may suppose that for some i ≤ n we have wi /∈ W1.
We claim that we may moreover assume that the element wi contains
a scalar multiple of a basis element from E1, i.e. some xg,j, where
g ∈ G1 and j ∈ I1. Indeed, otherwise we have that for every j ≤ n
we have that either wj ∈ W1, or wj ∈ W2, or wj does not contain
scalar multiples of basis elements of E1. Let J1 ⊆ {1, . . . , n} be the
set of indices j ≤ n such that wj ∈ W1, J2 ⊆ {1, . . . , n} the set of
indices j ≤ n such that wj ∈ W2 and J3 ⊆ {1, . . . , n} the set of indices
j ≤ n such that wj does not contain scalar multiples of basis elements
of E1. We have that {1, . . . , n} = J1 ∪ J2 ∪ J3. Then

∑
j∈J1 αjwj ∈ E1

and
∑

j∈J2∪J3 αjwj ∈ E0. If J1 is non-empty, then |J2 ∪ J3| < n and
we use the inductive hypothesis to reach the contradiction. Thus we
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may suppose that J1 = ∅. Then x ∈ E0 ⊆ E2 and we claim that
necessarily there is i ∈ J3 such that wi contains a scalar multiple of
a basis element from E2, since otherwise

∑
j∈J3 αjwj = 0 and we may

remove these elements from the decomposition of x. However, since
the situation when x ∈ E1 and some wi /∈ W1 ∪W2 contains a scalar
multiple of a basis element from E1, and the situation x ∈ E2 and some
wi /∈ W1∪W2 contains a scalar multiple of a basis element from E2 are
symmetric, we shall treat only the former.

So to repeat, we are now left to the situation where

• x ∈ W1;
• x =

∑n
i=1 αiwi and

∑n
i=1 |αi|‖wi‖′ < ‖x‖′1;

• there is some i ≤ n such that wi /∈ W1 ∪W2 and wi contains a
scalar multiple of a basis element from E1.

Next, since x ∈ E1, there is a minimal subset, with respect to in-
clusion, J ⊆ {1, . . . , n} containing {i} such that

∑
j∈J αjwj ∈ E1.

Without loss of generality we may assume that J = {1, . . . , n}. Now
since wi /∈ W1, however contains basis elements of E1, we get that
there exist g ∈ G1 and w′ ∈ W2 such that wi = g · w′. In particular,
every basis element xg′,l from wi, with a non-zero scalar, that belongs
to E1 is of the form xg+a,l, where a ∈ G0 and l ∈ I0. We claim that
by the minimality of J , actually for every j ∈ J (= {1, . . . , n} by our
assumption) there is some w′j ∈ W2 such that wj = g ·w′j. Let us prove
it. For any g ∈ G3 and i ∈ I3 and any x ∈ E3 let pg,i(x) be the scalar
coefficient of xg,i in x, i.e. for any x ∈ E3 we have

x =
∑

g∈G,i∈I3

pg,ixg,i.

Now since wi /∈ W1 there is some h ∈ G2 \ G0 and k ∈ I2 such that
pg+h,k(wi) 6= 0. There must exist some minimal subset {i} ⊆ J0 ⊆ J
such that for every j ∈ J0 we have pg+h,k(wj) 6= 0 and∑

j∈J0

αjpg+h,k(wj) = 0.

It follows that for each j ∈ J0 we also have that −g · wj ∈ W2. If
x0 :=

∑
j∈J0 αjwj = x, then J0 = J and we are done. Otherwise there

is some h′ ∈ G2 \G0 and k′ ∈ I2 such that pg+h′,k′(x0) 6= 0. Then there
again must exist some minimal subset J0 ⊆ J1 ⊆ J such that for every
j ∈ J1 \ J0 we have pg+h′,k′(wj) 6= 0 and∑

j∈J1

αjpg+h,k(wj) = 0.
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It again follows that for each j ∈ J1 we still have that −g · wj ∈ W2.
If x1 :=

∑
j∈J0 αjwj = x, then J1 = J and we are done. Otherwise we

continue by the same procedure to obtain some Jm such that Jm = J
and proving that for every j ∈ Jm = J we have that −g · wj ∈ W2.

So now for every j ≤ n denote by w′j the element −g · wj. In
particular, w′i = w′ ∈ W2. By the argument above, since we have
x =

∑
j≤n αjwj, we have −g · x =

∑
j≤n αjw

′
j ∈ E0, thus −g · x ∈ W0.

However, since ‖ · ‖′2 is a partial norm, we have

‖x‖′ = ‖x‖′1 = ‖x‖′0 = ‖x‖′2 ≤
∑
i≤n

|αi|‖w′i‖′2 =
∑
i≤n

|αi|‖wi‖′,

a contradiction. �

It follows that the class of finitely presented rational actions has some
Fräıssé limit which is an action of locally finite abelian group G on a
normed vector space EG,J with the corresponding extension property.
Let G be the completion of EG,J . The action of G by linear isometries
extends to G. We omit the proofs that G =

⊕
n∈N Q/Z and that G is

isometric to the Gurarij space.

Proof of Theorem 4.3. Let β : H y Y be some action of a count-
able torsion group on a separable Banach space by linear isometries.
Without loss of generality, we shall assume that H is infinite and Y is
infinite-dimensional. Also, we claim that without loss of generality we
may assume that there is a countably infinite linearly independent set
{en : n ∈ N} ⊆ Y such that

• the linear span of {en : n ∈ N} is dense in Y ,
• {en : n ∈ N} is closed under the action of H, i.e. for any h ∈ H

and n there is m such that h · en = em.

In other words, we suppose that Y has a dense normed subspace on
which H acts freely.

Indeed, fix some countably infinite linearly independent set {en : n ∈
N} ⊆ Y whose linear span is dense in Y . Consider the set {fi,j,h : i, j ∈
N, h ∈ H} and let F be a vector space freely spanned by this countable
set. There is a canonical action of H on F by linear isometries which
is determined by g · fi,j,h = fi,j,g+h. We define a norm on Y ⊕ F such
that

• it extends the norm on Y ,
• F is dense in Y ,
• the derived action of H on Y ⊕ F is still by isometries.
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Once that is done, the claim is proved. Let V = {h · ei − fi,j,h : i, j ∈
N, h ∈ H} and define a function ρ : Y ∪ V → R+

0 as follows. Set

ρ(v) =

{
‖v‖Y v ∈ Y ;

1/2j v ∈ V.

Now we define a norm ‖| · ‖| on Y ⊕ F as follows. We set

‖|x‖| = inf{
l∑

k=1

|αj|ρ(vk) : x =
l∑

k=1

αkvk, (vk)k ⊆ V ∪ Y }.

It is clearly a pseudonorm and clearly ‖|x‖| = ‖|h · x‖| for every x ∈
Y ⊕ F and h ∈ H. We show that it is a norm and that it extends the
norm on Y . Then we will be done. Suppose first that for some y ∈ Y
we have ‖|y‖| < ‖y‖Y . Then there exists (αk)k ⊆ R and (vk)k ⊆ V ∪Y
such that y =

∑l
k=1 αkvk and

∑l
k=1 |αk|ρ(vk) < ‖y‖Y . It follows that

there must be some vk from V , i.e. of the form h · ei − fi,j,h. Let
J ⊆ {1, . . . , l} be the set of those indices such that vk = h ·ei−fi,j,h for
all k ∈ J . It is non-empty and since y ∈ Y we have

∑
k∈J αk = 0. Thus

we may remove the elements αkvk, for k ∈ J , from the decomposition
of y and decrease the sum. Continuing in this fashion we get rid of all
vk’s that belong to V while decreasing the sum, a contradiction.

Now fix some non-zero w ∈ Y ⊕ F and suppose that ‖|w‖| = 0. We
have that w = y +

∑
i,j∈N,h∈H αi,j,hfi,j,h, where y ∈ Y , (αi,j,h)i,j,h ⊆ R

and all but finitely many of these coefficients are zero. However, at
least one of them, say αi,j,h, for some i, j, h, is non-zero since otherwise
w = y ∈ Y and ‖|y‖| = ‖y‖Y > 0. Since ‖|w‖| = 0 there exist (αk)k ⊆
R and (vk)k ⊆ V ∪ Y such that w =

∑l
k=1 αkvk and

∑l
k=1 |αk|ρ(vk) <

|αi,j,h|/2j. Let J ⊆ {1, . . . , l} be the set of those indices k such that
vk = h · ei− fi,j,h. It is non-empty and we have

∑
k∈J αk = αi,j,h. Thus

it follows that
l∑

k=1

|αk|ρ(vk) ≥
∑
k∈J

|αk|ρ(vk) ≥ |αi,j,h|/2j,

a contradiction.

So to repeat, we now may assume that we have an infinite set I
and a linearly independent set {yh,i : h ∈ H, i ∈ I}, on which H acts
freely obviously and such that its linear span is dense in Y . We write
H as an increasing union of finite abelian subgroups (Hn)n such that
H =

⋃
nHn and also we write I as an increasing union of finite subsets

(In)n such that I =
⋃
n In. In particular, we consider the increasing
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sequence of finite dimensional subspaces (Yn)n, such that Y =
⋃
n Yn,

where Yn is spanned by {yh,i : h ∈ Hn, i ∈ In}.
Next we need to approximate the norm restricted to Yn by the finitely

presented rational ones.

Lemma 4.5. For every n and every ε > 0 there exists a finitely pre-
sented rational norm ‖ · ‖εn on Yn such that bot the identity map and its
inverse from (Yn, ‖ · ‖Y ) to (Yn, ‖ · ‖εn) has norm less than 1 + ε.

The proof is analogous to the proof of Lemma 2.10 and uses a stan-
dard argument from Banach space theory - using local compactness (or
say total boundedness of the unit ball) of the finite-dimensional Yn. Fol-
lowing the notation from the first section and the approximation there,
when we have two norms ‖·‖ and ‖·‖′ on some finite-dimensional space
Z, we denote by D(‖·‖, ‖·‖′) the maximum of the norms ‖id‖·‖,‖·‖′} and
‖id‖·‖′,‖·‖‖, where id‖·‖,‖·‖′ is the identity map from (Z, ‖ · ‖) to (Z, ‖ · ‖′)
and vice versa.

The following is an exact analogue of Lemma 2.11 for Banach spaces.

Lemma 4.6. Let H1 ≤ H2 be finite abelian groups and I ⊆ J finite
sets. Suppose we have an H1-finitely presented rational norm ‖ · ‖1
on EH1,I and an H2-finitely presented rational norm ‖ · ‖2 on EH2,J

such that D(‖ · ‖1, ‖ · ‖2 � EH1,I) < ε. Then there exists an H2-finitely
presented rational norm ‖ · ‖ on EH2,I ⊕EH2,J (which is isomorphic to
EH2,I

∐
J) with basis {x′i,h : i ∈ I, h ∈ H2} ∪ {xj,h : j ∈ J, h ∈ H2} such

that

• ‖ · ‖ restricted to the subspace EH1,I of the first summand coin-
cides with ‖ · ‖1;
• ‖ · ‖ restricted on the second summand coincides with ‖ · ‖2;
• for every i ∈ I and h ∈ H2 we have ‖x′i,h − xi,h‖ ≤ ε.

The proof is analogous to the proof of Lemma 2.11, so we only sketch
it.

Sketch of the proof. Identify the first space EH1,I with the subspace of
the first summand, i.e. subspace spanned by {x′i,h : i ∈ I, h ∈ H1},
and the second space EH2,J with the second summand, i.e. subspace
spanned by {xi,h : i ∈ J, h ∈ H2}. The norm ‖ · ‖1 on the first space
is determined by some partial norm ‖ · ‖′1 on some finite W1 and the
norm ‖ · ‖2 on the second space is determined by some partial norm
‖ · ‖′2 on some W2. Extend W1 to W ′

1 by closing it under the action
of H2, i.e. W ′

1 = H2 ·W1 and extends ‖ · ‖′1 on W ′
1. Then let W =

W ′
1 ∪W2 ∪ {±(x′i,h − xi,h) : i ∈ I, h ∈ H2} and define ‖ · ‖′ on W so

that it extends ‖ · ‖′1 on W ′
1, it extends ‖ · ‖′2 on W ′

2 and for every i ∈ I,
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h ∈ H2, ‖x′i,h − xi,h‖′ = ε. The verification that it is a partial norm
is straightforward, easier than in the case of metric spaces in Lemma
2.11. It follows that the norm ‖ · ‖ defined by ‖ · ‖′ extends ‖ · ‖1 and
‖ · ‖2 and is as desired. �

We now finish the proof of Theorem 4.3. By Lemma 4.5, for every n
we can find an Hn-finitely presented rational norm ‖·‖′n on EHn,In

∼= Yn,
whose basis we shall denote by {xnh,i : h ∈ Hn, i ∈ In}, such that
D(‖ · ‖′n, ‖ · ‖Y � Yn) < 1/2n. In particular, by triangle inequality, for
every n we have D(‖ · ‖′n, ‖ · ‖′n+1 � Yn) < 1/2n+1. So by Lemma 4.6, for
every n we may define an Hn+1-finitely presented rational norm ‖ · ‖n
on EHn+1,In ⊕EHn+1,In+1 (∼= Hn+1 · Yn ⊕ Yn+1) such that it extends the
norms ‖·‖′n and ‖·‖′n+1 respectively and for every i ∈ In and h ∈ Hn+1,
‖xnh,i − xn+1

h,i ‖ ≤ 1/2n+1.
Now as in the proof of Theorem 2.7, by a successive application of

the extension property of (Gy EG,J) we obtain

• an increasing chain of finite subgroups H ′1 ≤ H ′2 ≤ . . . ≤ G such
that H ′i

∼= Hi for i ∈ N, and thus also H ′ =
⋃
nH

′
n
∼= H;

• linear isometric embeddings φn : (EHn+1,In⊕EHn+1,In+1 , ‖·‖n) ↪→
EG,J such that φn � (EHn+1,In+1 , ‖ · ‖n) = φn+1 � (EHn+1,In+1 , ‖ ·
‖n+1), for every n;
• for every n, we have that the actions Hn y EHn,In and H ′n y
φn[EH−n,In ] are isometric.

Then since for every i ∈ I and h ∈ H, the sequence (xnh,i) is Cauchy in

G = EG,J , we may take the limit zh,i ∈ G. It is readily checked that
after identifying the groups H and H ′ ≤ G, the linear operator from Y
into G, determined by sending yh,i ∈ Y to zh,i ∈ G, is an H-equivariant
linear isometry. �

Finally, let us note here that when one wants to have an action of a
countable locally finite group on a universal Banach space by (general
affine) isometries which is universal with respect to general actions of
locally finite groups on general metric spaces, i.e. for any such an action
we have a corresponding equivariant (not necessarily linear) isometric
embedding, one can again use the Lipschitz-free Banach spaces.

Let F be the functor which sends a pointed metric space (X, 0) to
its Lipschitz-free Banach space F (X). By functoriality, any autoisom-
etry of X which preserves 0 extends to a linear autoisometry of F (X).
However, even every autoisometry of X extends to an affine autoisom-
etry of F (X). Indeed, let φ : X → X be some autoisometry. In what
follows, we view X as a metric subspace of F (X), i.e. we view every
point x ∈ X as a point in F (X) also. Then the map x→ φ(x)− φ(0)
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from X to F (X) is an isometric embedding of X into F (X) which pre-
serves 0, thus extends to a linear isometric embedding from F (X) into
F (X). It is easy to check that it is actually onto. Composing it with
the translation ‘+φ(0)’ gives the affine autoisometry that extends φ.

Moreover, it is easy to check that by the same method every action
of a group G on a pointed metric space (X, 0) by isometries extends to
the action of G on F (X) by affine isometries; i.e. the cocycle condition
is satisfied. Thus from Theorem 2.7 we get the following corollary. We
refer to Chapter 5 in [13] for information about the Holmes space.

Corollary 4.7. There exists a universal action of the Hall’s group
on the Holmes space F (U), the Lipschitz-free Banach space over the
Urysohn space, which is universal for general actions on general metric
spaces.

4.1. Problems. Although the restriction to locally finite groups is
necessary for our purposes there seems to be much more freedom in
considering the class of metric spaces on which one wish to act. We
considered general metric spaces and general Banach spaces. However,
one may restrict the attention to some special subclasses.

Question 4.8. Does there exist a universal action of a universal locally
finite group on the Hilbert space?

We expect the answer to be negative. On the other hand, the iso-
metric universality for actions on the Hilbert space may not be the
right problem and one could rather consider coarse universality in some
sense.

Next, we assume that the answer to the next question is positive.

Question 4.9. Does there exists a universal action of a universal lo-
cally finite group on a universal Banach space?

Recall that in Theorem 4.3 we only proved the universality for abelian
locally finite groups.
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