INSTITUTE OF MATHEMATICS

Universal actions of locally finite groups on metric and Banach spaces by isometries

Michal Doucha

ぁACADEMY

THE

Preprint No. 19-2017
PRAHA 2017

UNIVERSAL ACTIONS OF LOCALLY FINITE GROUPS ON METRIC AND BANACH SPACES BY ISOMETRIES

MICHAL DOUCHA

Abstract

We construct a universal action of a countable locally finite group on a separable metric space by isometries. This single action contains all actions of all countable locally finite groups on all separable metric spaces as subactions. The main ingredient is an amalgamation of actions by isometries. We also construct a universal action of a universal countable torsion abelian group on a separable Banach space by linear isometries.

We show that the restriction to locally finite groups in our results is necessary as analogous results do not hold for infinite nonlocally finite groups.

Introduction

Groups acting by isometries on metric and Banach spaces are one of the active areas of research in geometry, group theory and functional analysis. In this paper, we are interested in amalgamation of group actions and constructing universal actions. It is well known from the beginnings of combinatorial group theory that one can construct an amalgam of two groups over some common subgroup. At least as old is the amalgamation of metric spaces, or amalgamation of normed vector spaces. However, to the best of our knowledge, nobody has considered yet amalgamation of actions of groups on metric or Banach spaces by isometries. In metric geometry or functional analysis, amalgamation techniques are often used to construct various universal metric or Banach spaces (consider for instance the Urysohn universal metric space [16], or the Gurarij universal Banach space [6]). The well-known Hall's universal locally finite group ([7]) is essentially made by amalgamating finite groups. Here by amalgamating actions of finite groups on finite metric spaces by isometries we obtain the following result.

[^0]Theorem 0.1. There exists a universal action of the Hall's locally finite group G on the Urysohn space \mathbb{U} by isometries. That is, for any action of a countable locally finite group H on a separable metric space X by isometries, there exists a subgroup $H^{\prime} \leq G$ isomorphic to H such that, after identifying H and H^{\prime}, there is an H-equivariant isometric embedding of X into \mathbb{U}.

The meaning of the theorem is that there is a single action of a countable locally finite group on a separable metric space by isometries that captures/contains all actions of all countable locally finite groups on all separable metric spaces.

One of the main ingredients is the amalgamation of actions and we have the following general theorem.

Theorem 0.2. Let G_{1}, G_{2} be two groups (countable or not) with a common subgroup G_{0}. Suppose that G_{1} acts on a metric space X_{1} and G_{2} acts on X_{2}, by isometries in both cases. Let X_{0} be a common subspace of X_{1} and X_{2} such that the restriction of the two actions on G_{0} and X_{0} coincide. Then there is an amalgam of the action, which is an action of $G_{1} *_{G_{0}} G_{2}$ on a metric space with density $\max \left\{\left|G_{1}\right|,\left|G_{2}\right|, \operatorname{dens}\left(X_{1}\right), \operatorname{dens}\left(X_{2}\right)\right\}$.

Following the research of Rosendal in [15] and of Glasner, Kitroser and Melleray in [4] we investigate the genericity of the universal action from Theorem 0.1.

Theorem 0.3. The universal action from Theorem 0.1 is weakly generic in some sense. That is, the set of those actions in the Polish space Iso \mathbb{U}^{G} that are naturally equivalent to the universal one is dense G_{δ}.

We show that the restriction to locally finite groups is essential.
Theorem 0.4. There are no analogously universal actions of infinite groups that are not locally finite.

Finally, we investigate universal actions on Banach spaces. General actions by isometries are by affine isometries. Unfortunately, we show that no universal action by affine isometries can exist, even of finite groups. Thus we are forced to restrict to actions by linear isometries. We are not able to show the result for the Hall's group, so we restrict ourselves to abelian locally finite groups, i.e. to torsion abelian groups.

Theorem 0.5. There exists a universal action of the group $G=\bigoplus_{n \in \mathbb{N}} \mathbb{Q} / \mathbb{Z}$ on the Gurarij space \mathbb{G} by linear isometries. That is, for any action of a countable torsion abelian group H on a separable Banach space X by linear isometries, there exists a subgroup $H^{\prime} \leq G$ isomorphic to H
such that, after identifying H and H^{\prime}, there is an H-equivariant linear isometric embedding of X into \mathbb{G}.

1. Preliminaries

Let us start with our notational convention. All the group actions in this paper are by isometries. We usually denote actions by the symbol ' $\alpha: G \curvearrowright X$ ', where G is a group and X is a metric space. However, as it is common, we usualy write $g \cdot x$ instead of $\alpha(g, x)$.

Regarding groups, we are mostly concerned with locally finite ones, where group is locally finite if every finitely generated subgroup is finite. Since we shall work solely with countable groups, it is the same as saying that the group is a direct limit of a sequence of finite groups.

Our constructions of universal objects are based on techniques commonly referred as "Fraïssé theory". We refer to Chapter 7 in [8] for more information about this subject. For a reader unfamiliar with this method we briefly and informally describe the basics of Fraïssé theory that we use in the paper.

Let \mathcal{K} be some countable class of mathematical objects of some type with some notion of embedding between these objects. Suppose that direct limits of objects from \mathcal{K} exist. Think of the class of finite groups for instance. We say it is a Fraïssé class if any two objects from \mathcal{K} can be embedded into a single object from \mathcal{K}, such a property is called joint embedding property, and if whenever we have objects $A, B, C \in \mathcal{K}$ such that A embeds into both B and C, witnessed by embeddings ι_{B}, resp. ι_{C}, then there exists an object $D \in \mathcal{K}$ and embeddings ρ_{B}, resp. ρ_{C} of B into D, resp. C into D such that $\rho_{C} \circ \iota_{C}=\rho_{B} \circ \iota_{B}$; i.e we can do amalgamation with object from \mathcal{K}. The latter property is called amalgamation property. The Fraïssé theorem (see Chapter 7 in [8]) then asserts that there exists a unique object K, called the Fraïssé limit of \mathcal{K}, which is a direct limit of a sequence of objects from \mathcal{K} satisfying

- every object $A \in \mathcal{K}$ embeds into K;
- whenever we have objects $A, B \in \mathcal{K}$ such that A embeds via ρ_{A} into K and via ι_{A} into B, then there exists an embedding ρ_{B} of B into K such that $\rho_{A}=\rho_{B} \circ \iota_{A}$.
The second property is called the extension property and will be used in our proofs of universality of certain actions. Note that whenever X is some direct limit of a sequence of objects from \mathcal{K}, then successive application of the extension property gives an embedding of X into K.

We note that the Fraïssé theorem stated above is the only too which we shall use and its proof is actually much shorter that the discussion on Fraïssé theory above and may be left as an exercise. Since
we are going to work with Fraïssé classes which are 'metric' we note that recently a general theory for metric Fraïssé classes was developed independently in [1] and [9]. However, we shall not directly use their results in our paper.

Example 1 Consider the countable class of all finite graphs. It is easy to show it has the joint and amalgamation properties, thus by the Fraïssé theorem there exists a Fraïssé limit, a certain direct limit of a sequence of finite graphs, which is a countable graph commonly known as the random graph, or the Rado graph. The extension property allows to show that it contains as a subgraph a copy of every countable graph.

Example 2 Consider now the countable class of all finite abelian groups. It is again easy to show the joint and amalgamation properties and one can even show that the Fraïssé limit is nothing else than $\bigoplus_{n \in \mathbb{N}} \mathbb{Q} / \mathbb{Z}$.

Example 3 Consider now the countable class of all finite groups, not necessarily abelian. This is the most important example for us regarding the topic of our paper. It is less straightforward, nevertheless possible to show (see [11]), that this class has the amalgamation property, and thus also the joint embedding property. The Fraïssé limit is what is commonly known as the Hall's universal locally finite group.

Example 4 Consider the countable class of all finitely presented groups. It is again easy to show the amalgamation property. We are not aware anyone has considered the Fraïssé limit of this class yet.

Example 5 Consider the countable class of all finite metric spaces with rational distances. The amalgamation and joint embedding is again straightforward. The Fraïssé limit is what is known as the rational Urysohn space. Its completion is the Urysohn universal space (see [16]).

Example 6 As the last example, we present another 'metric Fraïssé class' recently discovered by the author in [3]. It is the class of all finitely generated free abelian groups with a 'finitely presented rational metric'. The completion of its limit gives the metrically universal abelian separable group. See the paper for details.

2. Universal actions

Definition 2.1. Let G be a group and X a metric space. A pointed free action of G on X by isometries is a tuple $\left(G \curvearrowright X,\left(x_{i}\right)_{i \in I}\right)$, where $G \curvearrowright X$ is a free action of G on X by isometries and I is some index set for the orbits of the action and $\left(x_{i}\right)_{i \in I}$ is a selector on the orbits, i.e. $X=\bigcup_{i \in I} G \cdot x_{i}$ and for $i \neq j, x_{i}$ and x_{j} lie in different orbits.

There is also a natural notion of embedding between two pointed free actions. Suppose we are given two such actions $\left(H \curvearrowright Y,\left(y_{i}\right)_{i \in I}\right)$ and $\left(G \curvearrowright X,\left(x_{j}\right)_{j \in J}\right)$. An embedding of $\left(H \curvearrowright Y,\left(y_{i}\right)_{i \in I}\right)$ into $(G \curvearrowright$ $\left.X,\left(x_{j}\right)_{j \in J}\right)$ is a pair (ϕ, ψ), where $\phi: H \hookrightarrow G$ is a group embedding and $\psi: Y \hookrightarrow X$ is an isometric embedding such that for any $i, j \in I$ and $f, h \in H$ we have

$$
d_{Y}\left(f \cdot y_{i}, h \cdot y_{j}\right)=d_{X}\left(\phi(f) \cdot \psi\left(y_{i}\right), \phi(h) \cdot \psi\left(y_{j}\right)\right)
$$

In particular, for any $i \in I$ there is some $j \in J$ such that $\psi\left(y_{i}\right)=x_{j}$, i.e. ψ sends the distinguished points $\left(y_{i}\right)_{i \in I}$ into the set of distinguished points $\left(x_{j}\right)_{j \in J}$.
Theorem 2.2. The pointed free actions can be amalgamated.
Remark 2.3. It means that for any embeddings $\psi_{i}:\left(G_{0} \curvearrowright X_{0},\left(x_{j}\right)_{j \in I_{0}}\right) \hookrightarrow$ $\left(G_{i} \curvearrowright X_{i},\left(x_{j}\right)_{j \in I_{i}}\right)$, for $j \in\{1,2\}$, where we assume that $G_{0} \leq$ G_{1} and $G_{0} \leq G_{2}$, there are a group $G_{1}, G_{2} \leq G_{3}$, pointed action $\left(G_{3} \curvearrowright X_{3},\left(x_{j}\right)_{j \in I_{3}}\right)$ and embeddings $\rho_{j}:\left(G_{i} \curvearrowright X_{i},\left(x_{j}\right)_{j \in I_{i}}\right) \hookrightarrow\left(G_{3} \curvearrowright\right.$ $\left.X_{3},\left(x_{j}\right)_{j \in I_{3}}\right)$, for $j \in\{1,2\}$, such that $\rho_{2} \circ \psi_{2}=\rho_{1} \circ \psi_{1}$.
Proof. Consider such actions from the remark above, i.e. $\left(G_{i} \curvearrowright X_{i},\left(x_{j}\right)_{j \in I_{i}}\right)$, for $i \in\{0,1,2\}$. We may also suppose that $I_{0} \subseteq I_{i}$, for $i=1,2$, and that $I_{0}=I_{1} \cap I_{2}$. Let G_{3} be $G_{1} *_{G_{0}} G_{2}$, i.e. the free product of G_{1} and G_{2} amalgamated over G_{0} (we refer to [10] for constructions of amalgamated free products of groups). Let $I_{3}=I_{1} \cup I_{2}$ and set $X_{3}=\bigcup_{j \in I_{3}} G_{3} \cdot j$. Clearly, $X_{i} \subseteq X_{3}$, for $i=1,2$. We shall define a metric on X_{3} so that the canonical action of G_{3} on X_{3} is by isometries and that the inclusion of X_{i} into X_{3} is isometric (it is obviously G_{i}-equivariant), for $i=1,2$.

We define a structure of a weighted graph on X_{3} that will help us define a metric there. That is, we define edges on X_{3} and then associate a certain weight function w giving positive real numbers to these edges. For $g, h \in G_{3}$ and $i, j \in I_{3}$, the elements $g \cdot x_{i}$ and $h \cdot x_{j}$ are connected by an edge if and only if

- either $g^{-1} h \in G_{1}$ and $i, j \in I_{1}$, then its weight is

$$
w\left(g \cdot x_{i}, h \cdot x_{j}\right)=d_{X_{1}}\left(x_{i}, g^{-1} h \cdot x_{j}\right) ;
$$

- or $g^{-1} h \in G_{2}$ and $i, j \in I_{2}$, then analogously its weight is

$$
w\left(g \cdot x_{i}, h \cdot x_{j}\right)=d_{X_{2}}\left(x_{i}, g^{-1} h \cdot x_{j}\right) .
$$

In case that $g^{-1} h \in G_{0}$ and $i, j \in I_{0}$ there is no ambiguity in the definition. Indeed, by assumption, in such a case we have

$$
d_{X_{0}}\left(x_{i}, g^{-1} h \cdot x_{j}\right)=d_{X_{1}}\left(x_{i}, g^{-1} h \cdot x_{j}\right)=d_{X_{2}}\left(x_{i}, g^{-1} h \cdot x_{j}\right) .
$$

It is clear that this graph is connected, so we define the graph metric d on X_{3} as follows: for $x, y \in X_{3}$ we set

$$
d(x, y)=\inf \left\{\sum_{i=1}^{n} w\left(e_{i}\right): e_{1} \ldots e_{n} \text { is a path from } x \text { to } y\right\}
$$

In case the groups and the index sets are finite we may replace the infimum above by minimum. It follows immediately from the definition that the natural action of G_{3} on X_{3} is a weighted graph automorphism, i.e. it preserves the edges including their weight. It follows that G_{3} acts by isometries on X_{3}. We shall check that the canonical embeddings (inclusions) of X_{1} and X_{2} into X_{3} are isometric.

We shall check it for both X_{1} and X_{2}. Thus fix some $g, h \in G$ and $i, j \in I_{3}$ such that either both $g, h \in G_{1}$ and both $i, j \in I_{1}$, or both $g, h \in G_{2}$ and both $i, j \in I_{2}$. We need to check that $d_{X_{l}}\left(g \cdot x_{i} h \cdot x_{j}\right)=$ $d\left(g \cdot x_{i}, h \cdot x_{j}\right)$, where $l \in\{1,2\}$ depending on whether $g, h \in G_{1}$, $i, j \in I_{1}$, or $g, h \in G_{2}, i, j \in I_{2}$. It is clear that $d_{X_{l}}\left(g \cdot x_{i}, h \cdot x_{j}\right) \geq$ $d\left(g \cdot x_{i}, h \cdot x_{j}\right)$, so suppose there is a strict inequality and we shall reach a contradiction. There is then an edge-path $e_{1} \ldots e_{n}$ from $x=g \cdot x_{i}$ to $y=h \cdot x_{j}$. By induction on n, the length of the path, we shall show that $d_{X_{l}}\left(g \cdot x_{i}, h \cdot x_{j}\right) \leq w\left(e_{1}\right)+\ldots+w\left(e_{n}\right)$. The case $n=1$ is clear, so we suppose that $n \geq 2$ and we have proved it for all paths of length strictly less than n between all pairs of elements from X_{1} and all pairs of elements from X_{2}.

Now without loss of generality we suppose that $g, h \in G_{1}, i, j \in I_{1}$, the other case is analogous. For $1 \leq l \leq n$, let $z_{l}=g_{l} \cdot x_{i_{l}}$ be the start vertex of e_{l} and $z_{l+1}=g_{l+1} \cdot x_{i_{l}+1}$ the end vertex. Set $h_{l}=g_{l}^{-1} g_{l+1}$, for $1 \leq l \leq n$. It follows that $g h_{1} h_{2} \ldots h_{n}=h$ and each h_{l} belongs to either G_{1} or G_{2}. If all the h_{l} 's belong to G_{1} then also all the i_{l} 's belong to I_{1} and the path goes within X_{1} and we can use the triangle inequalities there. So we suppose that some $h_{l}, 1 \leq l \leq n$, is from G_{2}; equivalently, that the path leaves X_{1} at some point. Let $1 \leq l<n$ be the least index where the path leaves X_{1}, i.e. $z_{l} \in X_{1}$, while $z_{l+1} \notin X_{1}$. It follows that $i_{l} \in I_{0}$. Then let $l<l^{\prime} \leq n$ be the least index such that the path returns back to X_{1}, i.e. the least index $l<l^{\prime}$ such that $z_{l^{\prime}} \in X_{1}$. Again necessarily $i_{l^{\prime}} \in I_{0}$. If $1<l$ or $l^{\prime}<n$, then the subpath
$e_{l} \ldots e_{l^{\prime}-1}$ between two elements of X_{1} is strictly shorter than n and thus by the inductive hypothesis we have $d_{X_{1}}\left(z_{l}, z_{l^{\prime}}\right) \leq w\left(e_{l}\right)+\ldots+w\left(e_{l^{\prime}-1}\right)$. So we may replace this subpath by a single edge going from z_{l} to $z_{l^{\prime}}$, hereby again shortening the path, so by the inductive hypothesis we get $d_{X_{1}}\left(g \cdot x_{i}, h \cdot x_{j}\right) \leq w\left(e_{1}\right)+\ldots+w\left(e_{n}\right)$.

Thus we are left with the case $l=1$ and $l^{\prime}=n$. In such a case we have $h_{1} \in G_{2}$ and $h_{n} \in G_{2}, i_{1}, i_{2}, i_{n-1}, i_{n} \in I_{0}$, and also, since n is the least number l such that $h_{1} \ldots h_{l} \in G_{1}$, we must actually have $h_{1} \ldots h_{n} \in G_{0}$. It follows that g and h lie in the same left-coset of G_{0} in G_{1}, i.e. $g^{-1} h \in G_{0}$. It follows that $d\left(g \cdot x_{i}, h \cdot x_{j}\right)=d\left(x_{i}, g^{-1} h \cdot x_{j}\right)$. Thus it suffices to show that

$$
d\left(x_{i}, g^{-1} h \cdot x_{j}\right)=d_{X_{0}}\left(x_{i}, g^{-1} h \cdot x_{j}\right)=d_{X_{1}}\left(x_{i}, g^{-1} h \cdot x_{j}\right),
$$

where the latter equality is known and we need to show the former. In other words, we shall thus now, without loss of generality, assume that $g=1$, so $h=h_{1} \ldots h_{n} \in G_{0}$ and $x_{i}, h \cdot x_{j} \in X_{0}$.

We have two cases:
(1) If $n=2$, i.e. $h=h_{1} h_{2}$, then the path $e_{1} e_{2}$ is within X_{2} between two elements from X_{0}. Therefore, by the triangle inequality in X_{2}, its length is greater or equal to the path consisting of a single edge from x_{i} to $h \cdot x_{j}$, that means we have

$$
\begin{gathered}
w\left(e_{1}\right)+w\left(e_{2}\right)=d_{X_{2}}\left(x_{i}, h_{1} \cdot x_{i_{2}}\right)+d_{X_{2}}\left(h_{1} \cdot x_{i_{2}}, h \cdot x_{j}\right) \geq \\
d_{X_{2}}\left(x_{i}, h \cdot x_{j}\right)=d_{X_{0}}\left(x_{i}, h \cdot x_{j}\right)=d_{X_{1}}\left(x_{i}, h \cdot x_{j}\right),
\end{gathered}
$$

and we are done.
(2) If $n>2$, then the non-trivial subpath $e_{2} \ldots e_{n-1}$ is a path of length strictly less than n between two elements from X_{2} (note that $z_{2}=h_{1} \cdot x_{i_{2}} \in X_{2}$ and also $z_{n}=h h_{n}^{-1} \cdot x_{i_{n}} \in X_{2}$), thus by the inductive hypothesis we get that

$$
w\left(e_{2}\right)+\ldots+w\left(e_{n-1}\right) \geq d_{X_{2}}\left(z_{2}, z_{n}\right)
$$

It follows that

$$
\begin{gathered}
\sum_{l=1}^{n} w\left(e_{l}\right) \geq d_{X_{2}}\left(x_{i}, z_{2}\right)+d_{X_{2}}\left(z_{2}, z_{n}\right)+d_{X_{2}}\left(z_{n}, h \cdot x_{j}\right) \geq \\
d_{X_{2}}\left(x_{i}, h \cdot x_{j}\right)=d_{X_{0}}\left(x_{i}, h \cdot x_{j}\right)=d_{X_{1}}\left(x_{i}, h \cdot x_{j}\right),
\end{gathered}
$$

and we are again done.

Remark 2.4. The previous theorem was stated and proved for free actions. However, the proof can be modified to work for non-free actions as follows: Replace the metric by a pseudometric so that the action becomes free. Then proceed completely analogously working with pseudometrics instead of metrics and at the end make a metric quotient.

In the next theorem we shall restrict our attention to actions of finite groups on finite metric spaces.

Theorem 2.5. The class of pointed free actions of finite groups on finite metric spaces has the amalgamation property

Proof. Let us start as in the previous theorem with three pointed actions $\left(G_{i} \curvearrowright X_{i},\left(x_{j}\right)_{j \in I_{i}}\right)$, for $i \in\{0,1,2\}$ such that $G_{0} \leq G_{i}, I_{0} \subseteq I_{i}$, for $i=1,2, I_{0}=I_{1} \cap I_{2}$. Now the difference is that all the sets are finite. Let G be now any amalgam group of G_{1} and G_{2} over G_{0}, e.g. the free product with amalgamation $G_{1} *_{G_{0}} G_{2}$. Set $I_{3}=I_{1} \cup I_{2}$ and $X_{G}=\bigcup_{j \in I_{3}} G \cdot x_{j}$. As in the proof of Theorem 2.2 we define a weighted graph structure on X_{G}. That is, for $g, h \in G$ and $i, j \in I_{3}$, the elements $g \cdot x_{i}$ and $h \cdot x_{j}$ are connected by an edge if and only if

- either $g^{-1} h \in G_{1}$ and $i, j \in I_{1}$, then its weight is

$$
w\left(g \cdot x_{i}, h \cdot x_{j}\right)=d_{X_{1}}\left(x_{i}, g^{-1} h \cdot x_{j}\right) ;
$$

- or $g^{-1} h \in G_{2}$ and $i, j \in I_{2}$, then analogously its weight is

$$
w\left(g \cdot x_{i}, h \cdot x_{j}\right)=d_{X_{2}}\left(x_{i}, g^{-1} h \cdot x_{j}\right) .
$$

There is no ambiguity when $g^{-1} h \in G_{0}$ and $i, j \in I_{0}$. We again define the graph metric as follows: for $x, y \in X_{G}$ we set

$$
d_{G}(x, y)=\min \left\{\sum_{i=1}^{n} w\left(e_{i}\right): e_{1} \ldots e_{n} \text { is a path from } x \text { to } y\right\} .
$$

Notice that now w assumes only finitely many values, so we may indeed use the minimum. Again, G acts on X_{G} by graph automorphisms preserving the weight function, thus also by isometries. In the proof of Theorem 2.2 we showed that d_{G} extends $d_{X_{1}}$ and $d_{X_{2}}$ in case $G=G_{1} *_{G_{0}}$ G_{2}. We shall now find a finite amalgam G with the same property. First set $G^{\prime}=G_{1} *_{G_{0}} G_{2}$.

Set $M=\max \left\{w(e): e\right.$ is an edge in $\left.X_{G^{\prime}}\right\}$ and $m=\min \{w(e):$ $w(e) \neq 0$ and e is an edge in $\left.X_{G^{\prime}}\right\}$. Set $K=\left\lceil\frac{M}{m}\right\rceil$. Consider the finite set $G_{1} \cup G_{2}$ as the set of generators of G^{\prime} and let $\lambda: G^{\prime} \rightarrow[0, \infty)$ be the corresponding length function, i.e. the distance from the unit in G^{\prime} in the Cayley graph of G^{\prime} with $G_{1} \cup G_{2}$ as the generating set. Since G^{\prime} is an amalgam of finite groups, it is residually finite. Thus let G_{3} be
a finite group such that there is an onto homomorphism $\phi: G^{\prime} \rightarrow G_{3}$ which is injective on the ball $\left\{g \in G^{\prime}: \lambda(g) \leq K+1\right\}$. Clearly, G_{1} and G_{2} are subgroups of G_{3} with the identified common subgroup G_{0}. Thus in particular, G_{3} is a finite amalgamation of G_{1} and G_{2} over G_{0}. Moreover, we may suppose that $G_{1} \cup G_{2}$ generates G_{3}. Let ρ be the length function on G_{3} with respect to these generators. We have that ϕ is isometric with respect to λ and ρ on the ball $\{g \in G: \lambda(g) \leq K+1\}$

We now set X_{3} to be the finite set $X_{G_{3}}=\bigcup_{j \in I_{3}} G_{3} \cdot x_{j}$. We again consider X_{0}, X_{1}, X_{2} to be subsets of X_{3}. We have a metric $d_{X_{3}}=d_{G_{3}}$ defined using the weight function. What remains to check is that the canonical inclusions of X_{1}, resp. X_{2} into X_{3} are isometric. We shall do it for X_{1}, for X_{2} it is analogous. So take some $g, h \in G_{1}$ and $i, j \in I_{1}$. We must check that $d_{X_{3}}\left(g \cdot x_{i}, h \cdot x_{j}\right)=d_{X_{1}}\left(g \cdot x_{i}, h \cdot x_{j}\right)$. Again, it is clear that $d_{X_{3}}\left(g \cdot x_{i}, h \cdot x_{j}\right) \leq d_{X_{1}}\left(g \cdot x_{i}, h \cdot x_{j}\right)$; suppose that there is a strict inequality. It follows that there is a path $e_{1} \ldots e_{n}$ from $g \cdot x_{i}$ to $h \cdot x_{j}$ such that $\sum_{l=1}^{n} w\left(e_{l}\right)<d_{X_{1}}\left(g \cdot x_{i}, h \cdot x_{j}\right)$. We claim that the length of the path n is less or equal to K. Suppose that $n>K$. Then since for every $1 \leq l \leq n$ we have $w\left(e_{l}\right) \geq m$, we get

$$
\sum_{l=1}^{n} w\left(e_{l}\right) \geq n \cdot m>K \cdot n \geq M
$$

However, by assumption $d_{X_{1}}\left(g \cdot x_{i}, h \cdot x_{j}\right) \leq M$, a contradiction.
Now, it follows that the path $e_{1} \ldots e_{n}$ lies within the finite set $\bigcup_{i \in I_{3}}\{g \in$ $\left.G_{3}: \rho(g) \leq K+1\right\} \cdot x_{i}$. Since ϕ is isometric with respect to λ and ρ on the ball $\{g \in G: \lambda(g) \leq K+1\}$ it follows that the path $e_{1} \ldots e_{n}$ from G_{3} also exists in $X_{G^{\prime}}$, and is, by definition, of the same length. However, we showed in the proof of Theorem 2.2 that in $X_{G^{\prime}}$ its weight was greater or equal to $d_{X_{1}}\left(g \cdot x_{i}, h \cdot x_{j}\right)$. This finishes the proof.

Let $\left(G_{n} \curvearrowright X_{n},\left(x_{i}\right)_{i \in I_{n}}\right)_{n \in \mathbb{N}}$ be an enumeration of all pointed free actions of finite groups on finite metric spaces with rational distances. It follows from the previous theorem that it is a Fraïssé class. Indeed, it is clear from the proof that when working with rational spaces the amalgam will be rational as well. Moreover, the joint-embedding property is just a special case of the amalgamation property (note that any two actions have a common subaction, namely the action of a trivial group on a one-point space). So it has some Fraïssé limit $\left(\alpha_{0}: G \curvearrowright X,\left(x_{i}\right)_{i \in I}\right)$, where G is some countably infinite locally finite group, X is a countably infinite rational metric space with countably infinite distinguished set of points $\left(x_{i}\right)_{i \in I}$ and $\alpha_{0}: G \curvearrowright X$ is a free action by isometries.

It follows from the Fraïssé theorem that $\left(\alpha_{0}: G \curvearrowright X,\left(x_{i}\right)_{i \in I}\right)$ has the following extension property:

Fact 2.6. Let $F \leq G$ be a finite subgroup, $A \subseteq I$ a finite subset, and denote by X_{0} the finite metric space $\bigcup_{i \in A} F \cdot x_{i}$. Consider the free pointed action $\left(F \curvearrowright X_{0},\left(x_{i}\right)_{i \in A}\right)$. Let $\left(H \curvearrowright Y,\left(y_{j}\right)_{j \in B}\right)$ be some free pointed action of a finite group on a finite rational metric space and let (ψ, ϕ) is an embedding from $\left(F \curvearrowright X_{0},\left(x_{i}\right)_{i \in A}\right)$ to $\left(H \curvearrowright Y,\left(y_{j}\right)_{j \in B}\right)$. Then there exists an embedding $(\bar{\psi}, \bar{\phi})$ from $\left(H \curvearrowright Y,\left(y_{j}\right)_{j \in B}\right)$ to $(G \curvearrowright$ $\left.X,\left(x_{i}\right)_{i \in I}\right)$ such that $\bar{\psi} \circ \psi=\mathrm{id}_{F}$ and $\bar{\phi} \circ \phi=\mathrm{id}_{X_{0}}$.

Now let \mathbb{X} be the metric completion of X. The action $\alpha_{0}: G \curvearrowright X$ obviously extends to the action $\alpha: G \curvearrowright \mathbb{X}$ by isometries, which is no longer free though.

Theorem 2.7. The action $\alpha: G \curvearrowright \mathbb{X}$ is a universal action of a countable locally finite group on a separable metric space by isometries.

Remark 2.8. That means that for any countable locally finite group H and any action $\beta: H \curvearrowright Y$ by isometries, where Y is a separable metric space, there is a subgroup $H^{\prime} \leq G$ isomorphic to H and a subspace $Y^{\prime} \subseteq \mathbb{X}$ isometric to Y such that the restriction of α to H^{\prime} has Y^{\prime} as an invariant subspace and this restriction is isometric to the action β; in other words, if we identify H and H^{\prime}, the isometric embedding of Y onto $Y^{\prime} \subseteq \mathbb{X}$ is H-equivariant.

Before we prove the theorem we shall need few notions and lemmas.
Definition 2.9. Let X be a set equipped with two pseudometrics d and p. We define the distance $D(d, p)$ between these two pseudometrics as their supremum distance, i.e.

$$
D(d, p)=\sup _{x, y \in X}|d(x, y)-p(x, y)|
$$

Lemma 2.10. Let $\left(H \curvearrowright X,\left(x_{i}\right)_{i \in I}\right)$ be a free pointed action by isometries of some finite group H on a finite pseudometric space $X=$ $\bigcup_{i \in I} H \cdot x_{i}$ with pseudometric d. Then for any $\varepsilon>0$ there exists a rational metric p on X such that the free action of H on (X, p) is still by isometries and $D(d, p)<\varepsilon$.

Proof of Lemma 2.10. Enumerate by $\left(d_{i}\right)_{i \leq n}$ the distances from (X, d) in an increasing order. Also, we may suppose that $\varepsilon<\min \{|k-l|$: $\left.k \neq l, k, l \in\left\{d_{i}: i \leq n\right\} \cup\{0\}\right\}$.

For $i \leq n$, let p_{i} be an arbitrary rational number from the open interval $\left(d_{i}+\frac{(n-i) \varepsilon}{n+1}, d_{i}+\frac{(n+1-i) \varepsilon}{n+1}\right)$. Now for a pair $x, y \in X \operatorname{set} p(x, y)=0$ if $x=y$ and for $x \neq y \in X$ set

$$
p(x, y)=p_{i} \text { iff } d(x, y)=d_{i} .
$$

Let us check that p is a rational metric. By definition it is rational. It is clear that $p(x, y)=0$ iff $x=y$, and that it is symmetric, so we must just check the triangle inequality. Take a triple $x, y, z \in X$. We check that $p(x, z) \leq p(x, y)+p(y, z)$. If either $d(x, y)$ or $d(y, z)$ is bigger or equal to $d(x, z)$, then the same is true for $p(x, y), p(y, z), p(x, z)$ by definition. So we may suppose that $d(x, z)>\max \{d(x, y), d(y, z)\}$. Then by setting $d(x, z)=d_{i}, d(x, y)=d_{j}$ and $d(y, z)=d_{k}$, we have that $i>\max \{j, k\}$. We must check that $p_{i} \leq p_{j}+p_{k}$. However, we have

$$
p_{i} \leq d_{i}+\frac{(n+1-i) \varepsilon}{n+1} \leq d_{j}+\frac{(n-j) \varepsilon}{n+1}+d_{k}+\frac{(n-k) \varepsilon}{n+1} \leq p_{j}+p_{k}
$$

and we are done.
Lemma 2.11. Let $H_{1} \leq H_{2}$ be two finite groups and $I \subseteq J$ two finite sets. Let d be a metric on $X=\bigcup_{i \in I} H_{1} \cdot x_{i}$ and p be a metric on $Y=\bigcup_{j \in J} H_{2} \cdot x_{j} \supseteq X$ such that the canonical corresponding actions are by isometries. Suppose further that $D(d, p \upharpoonright X) \leq \varepsilon$. Then there exists a metric ρ on Z, the disjoint union $X \subseteq \bigcup_{i \in I} H_{2} \cdot x_{i} \coprod \bigcup_{j \in J} H_{2} \cdot x_{j}=Y$ which is equal to $\bigcup_{i \in I} H_{2} \cdot x_{i} \cup \bigcup_{j \in J} H_{2} \cdot y_{j}$ such that

- ρ extends both d and p on the corresponding subspaces,
- for every $i \in I, \rho\left(x_{i}, y_{i}\right) \leq \varepsilon$,
- the canonical action of H_{2} on Z is by isometries.

Proof of Lemma 2.11. As before, we define a weighted graph structure on Z. A pair x, y is connected by an edge if and only if

- either $x, y \in X$, resp. $x, y \in Y$, in such a case $w(x, y)=d(x, y)$, resp. $w(x, y)=p(x, y)$;
- or there are $i \in I \subseteq J$ and $h \in H_{2}$ such that $x=h \cdot x_{i}$ and $y=h \cdot y_{i}$ or vice versa, in such a case we set $w(x, y)=\varepsilon$;
- or $x=g \cdot x_{i}, y=h \cdot x_{j}$ such that $i \in I$ and $g^{-1} h \in H_{1}$; in such a case we set $w(x, y)=d\left(x_{i}, g^{-1} h x_{j}\right)$.
It is again immediate that the graph is connected, thus it determines a metric ρ on Z, and the canonical action of H_{2} on Z is by isometries. We need to check that ρ extends d and p. We check both simultaneously.

Fix x, y such that either $x, y \in X$ or $x, y \in Y$. Suppose that $\rho(x, y)<$ $d(x, y)$ (it is again clear that $\rho(x, y) \leq d(x, y)$), resp. $\rho(x, y)<p(x, y)$ depending on where x, y lie. Then there is an edge path $e_{1} \ldots e_{n}$ such that $w\left(e_{1}\right)+\ldots+w\left(e_{n}\right)<d(x, y)$, resp. $w\left(e_{1}\right)+\ldots+w\left(e_{n}\right)<p(x, y)$. We shall again prove the claim by induction on the length of the edge path. The case $n=1$ is clear. Suppose we have proved it for all $l<n$ and all edge paths of length at most l between all pairs $x, y \in X$ and
all pairs $x, y \in Y$. We may suppose that there are not two neighboring edges e_{i} and e_{i+1} such that both of them lie in X or both of them lie in Y, for otherwise we could contract them into a single edge using triangle inequality in X, resp. Y.

Suppose first that $x, y \in X$ and let $x=g \cdot x_{i}$ and $y=h \cdot x_{j}$, for some $g, h \in H_{1}$ and $i, j \in I$. Denote by \bar{X} the set $\bigcup_{i \in I} H_{2} \cdot x_{i} \supseteq X$. Notice that there is no edge between an element $z \in X$ and an element $z^{\prime} \in \bar{X} \backslash X$. Thus we may suppose that e_{1} is an edge between $x=g \cdot x_{i}$ and $g \cdot y_{i}$ and e_{n} is an edge between $h \cdot y_{j}$ and $h \cdot x_{j}=y$. Indeed, otherwise either e_{1} is an edge within X, so we may use the inductive assumption for the subpath e_{2}, \ldots, e_{n}, or e_{n} is an edge within X and we may use the inductive assumption for the subpath e_{1}, \ldots, e_{n-1}. It follows that e_{2}, \ldots, e_{n-1} is an edge path of length strictly less than n between two elements of Y, thus by inductive assumption we may suppose that $n=3$ and e_{2} is an edge between $g \cdot y_{i}$ and $h \cdot y_{j}$ and we have

$$
w\left(g \cdot y_{i}, h \cdot y_{j}\right)=p\left(g \cdot y_{i}, h \cdot y_{j}\right) \geq d\left(g \cdot x_{i}, h \cdot x_{j}\right)-\varepsilon .
$$

However, since $w\left(e_{1}\right)=w\left(e_{3}\right)=\varepsilon$, we get that

$$
d(x, y)=d\left(g \cdot x_{i}, h \cdot x_{j}\right)<w\left(e_{1}\right)+w\left(e_{2}\right)+w\left(e_{3}\right),
$$

a contradiction.
Suppose now that $x, y \in Y$ and again let $x=g \cdot y_{i}$ and $y=h \cdot y_{j}$, for some $g, h \in H_{2}$ and $i, j \in J$. As in the paragraph above, we may without loss of generality assume that e_{1} is an edge between $x=g \cdot y_{i}$ and $g \cdot x_{i}$ and e_{n} is an edge between $h \cdot x_{j}$ and $h \cdot y_{j}=y$; thus in particular $i, j \in I$. If both $g, h \in H_{1}$ then $g \cdot x_{i}, h \cdot x_{j} \in X$ and we are done by the same argument as in the paragraph above. So suppose that at least one of g, h is in $H_{2} \backslash H_{1}$. Say $g \in H_{2} \backslash H_{1}$, i.e. $g \cdot x_{i} \in \bar{X} \backslash X$. Since there is no edge between an element from X and an element from $\bar{X} \backslash X$ there exists a minimal $l \leq n$ such that e_{2}, \ldots, e_{l-1} is a path within $\bar{X} \backslash X$ and e_{l} is an edge between an element from $\bar{X} \backslash X$ and an element from Y. If $l<n$ then we use the inductive hypothesis, so suppose that $l=n$, i.e. the subpath e_{2}, \ldots, e_{n-1} is within $\bar{X} \backslash X$. Note also that there is an edge between elements $f \cdot x_{k}$ and $f^{\prime} \cdot x_{k^{\prime}}$ in $\bar{X} \backslash X$ if and only if $f^{-1} f^{\prime} \in H_{1}$. It follows that $g^{-1} h \in H_{1}$. Translating the whole path e_{1}, \ldots, e_{n} by g^{-1} we does not change the distance $\left(g^{-1}\right.$ acts as an isometry). Thus we may assume that $g=1$ and $h \in H_{1}$. However, then we are again done by an argument used above.

Proof of Theorem 2.7. Let $H \curvearrowright Z$ be an action of an infinite locally finite group by isometries on a separable metric space. It is sufficient to prove the theorem in case Z is countable. Indeed, in the general
case we would find a countable dense H-invariant subspace Z^{\prime}. Then the action on the metric completion of Z^{\prime}, thus in particular on Z, is uniquely determined by its behavior on Z^{\prime}. Since the space \mathbb{X} is complete, we are done.

So assume that both H and Z are countable. Without loss of generality we assume that Z has infinitely many H-orbits and let $\left(z_{n}\right)_{n \in \mathbb{N}}$ be a sequence which picks one single element from each orbit, i.e. we may write the metric space Z as $\bigcup_{n \in \mathbb{N}} H \cdot z_{n}$ with a pseudometric d. Also, without loss of generality we shall assume that H is infinite and write H as $H_{1} \leq H_{2} \leq H_{3} \leq \ldots$ which is an increasing chain of finite subgroups of H whose union is H. Moreover, for every n define Z_{n} to be the finite pseudometric subspace $\bigcup_{i \leq n} H_{n} \cdot z_{i} \subseteq Z$.

For every n consider the free pointed action $\left(H_{n} \curvearrowright Z_{n},\left(z_{i}\right)_{i \leq n}\right)$. By Lemma 2.10 there exists a rational metric p_{n} on Z_{n} such that $D(d \upharpoonright$ $\left.Z_{n}, p_{n}\right)<1 / 2^{n+1}$. It follows that for every n we have $D\left(p_{n}, p_{n+1} \upharpoonright Z_{n}\right)<$ $1 / 2^{n}$. By Lemma 2.11, for every n we can define a rational metric ρ_{n} on a disjoint union of $Z_{n} \coprod Z_{n+1}=\bigcup_{i \leq n} H_{n} \cdot z_{i} \cup \bigcup_{j \leq n+1} H_{n+1} \cdot z_{j}^{\prime}$ which extends the original metrics and for $i \leq n$ we have $\rho_{n}\left(z_{i}, z_{i}^{\prime}\right)=1 / 2^{n}$. Now by a successive application of the extension property of ($G \curvearrowright$ $X,\left(x_{i \in I}\right)$ we obtain

- an increasing chain of finite subgroups $H_{1}^{\prime} \leq H_{2}^{\prime} \leq \ldots \leq G$ such that $H_{i}^{\prime} \cong H_{i}$ for $i \in \mathbb{N}$, and thus also $H^{\prime}=\bigcup_{n} H_{n}^{\prime} \cong H$;
- isometric embeddings $\phi_{n}: Z_{n} \coprod Z_{n+1} \hookrightarrow X$ such that $\phi_{n} \upharpoonright$ $Z_{n+1}=\phi_{n+1} \upharpoonright Z_{n+1}$, for every n;
- for every n, we have that the free actions $H_{n} \curvearrowright Z_{n}$ and $H_{n}^{\prime} \curvearrowright$ $\phi_{n}\left[Z_{n}\right]$ are isometric.
For every i we have that the sequence $\left(\phi_{n}\left(z_{i}\right)\right)_{n \geq i}$ is Cauchy, since $d_{X}\left(\phi_{n}\left(z_{i}\right), \phi_{n+1}\left(z_{i}\right)\right)=1 / 2^{n}$. Let $y_{i} \in \mathbb{X}$ be the limit of that sequence. Consider the subset $Z^{\prime}=\bigcup_{i \in \mathbb{N}} H^{\prime} \cdot y_{i} \subseteq \mathbb{X}$. It follows it is naturally isometric to Z. Indeed, take any $x, y \in Z$ and write them as $x=h \cdot z_{i}$ and $y=g \cdot z_{j}$ for some $h, g \in H$ and $i, j \in \mathbb{N}$. Since H and $H^{\prime} \leq G$ are isomorphic, let h^{\prime}, g^{\prime} be the corresponding elements of $H^{\prime} \leq G$ and consider the elements $h^{\prime} \cdot y_{i}, g^{\prime} \cdot y_{j} \in Z^{\prime} \subseteq \mathbb{X}$. Then
$d\left(h^{\prime} \cdot y_{i}, g^{\prime} \cdot y_{j}\right)=\lim _{n} d\left(h^{\prime} \cdot \phi_{n}\left(z_{i}\right), g^{\prime} \cdot \phi_{n}\left(z_{j}\right)\right)=\lim _{n} d_{Z}\left(h \cdot z_{i}, g \cdot z_{j}\right)+o(n)$, where $o(n) \in\left[0,1 / 2^{n}\right]$, so the claim is proved.

Finally, consider the restriction of the action $G \curvearrowright \mathbb{X}$ on $H^{\prime} \curvearrowright$ $\bigcup_{i \in \mathbb{N}} H^{\prime} \cdot y_{i}$. It follows from the approximation above that it is isometric to the action $H \curvearrowright Z$, and we are done.

Finally, we show that the group G is isomorphic to the Hall's universal locally finite group and that the space X is isometric to the rational

Urysohn space, so the completion \mathbb{X} is isometric to the Urysohn universal space. It is just the use of the extension property of $G \curvearrowright X,\left(x_{i}\right)_{i \in I}$ from Fact 2.6. These are standard arguments, so we omit some details.

For the former it is necessary to show that G has the extension property. That is, whenever $F \leq G$ is some finite subgroup and $H \geq F$ is some abstract finite supergroup of F, i.e. a supergroup of F that does not in principle lie in G, then we can actually find a copy H^{\prime} of H within G so that it is a supergroup of F there, i.e. $F \leq H^{\prime} \leq G$.

So pick some finite subgroup $F \leq G$ and some abstract supergroup $H \geq F$. The Fraïssé limit $G \curvearrowright X,\left(x_{i}\right)_{i \in I}$ is a direct limit of a sequence of some finite actions $\left(G_{n} \curvearrowright X_{n},\left(x_{i}\right)_{i \in I_{n}}\right)_{n \in \mathbb{N}}$. Take n so that $F \leq G_{n}$ and consider the subaction $F \curvearrowright X_{n}^{\prime},\left(x_{i}\right)_{i \in I_{n}}$, where $X_{n}^{\prime}=\bigcup_{i \in I_{n}} F \cdot x_{i}$. It is possible to use Lemma 2.11 to extend this action to an action of H on $\bigcup_{i \in I_{n}} H \cdot x_{i}$. Then we use the extension property of $G \curvearrowright X,\left(x_{i}\right)_{i \in I}$ to find the action $H \curvearrowright \bigcup_{i \in I_{n}} H \cdot x_{i}$ within the universal one, thus in particular to find a copy of H within G that is a supergroup of F.

Now for the latter, it is necessary to show that the countable rational metric space X has the extension property. That is, whenever $A \subseteq X$ is some finite subspace and $A \subseteq B$ is finite abstract extension, still a rational metric space, then we can actually find this extension within X. So take some finite $A \subseteq X$. As above, find some n so that $A \subseteq X_{n}$. By extending the metric by metric amalgamation if necessary we may assume that $A=X_{n}$. Set $I_{n}^{\prime}=I \cup\left(B \backslash X_{n}\right)$ and $X_{n}^{\prime}=\bigcup_{i \in I_{n}^{\prime}} G_{n} \cdot x_{i}$. Clearly, $A=X_{n} \subseteq B \subseteq X_{n}^{\prime}$. By using the technique with defining a weighted graph structure on X_{n}^{\prime} we can extend the metric from B to X_{n}^{\prime} so that G_{n} acts on X_{n}^{\prime} by isometries. Then we use the extension property of $G \curvearrowright X,\left(x_{i}\right)_{i \in I}$ to get a copy of X_{n}^{\prime}, thus also of B, in X so that it is an extension of A there.
2.1. No universal actions for non-locally finite groups. We stress that the universality of G from the previous theorem does not say that whenever we have an action of the group G itself on some separable metric space Z by isometries, then we can find a G-equivariant isometric embedding of Z into \mathbb{X}. What it does say is that we can find a subgroup $G^{\prime} \leq G$ isomorphic to G itself, so that after identification of G and G^{\prime} there is some G-equivariant isometric embedding of Z into \mathbb{X}. This is not a flaw of the proof. The universality in such a strong sense is not possible for any countably infinite group G, locally finite or not. That is the content of the following theorem.

Theorem 2.12. Let G be a countably infinite group. Then there is no such strongly universal action of G on both metric and Banach spaces.

Proof. Suppose the contrary, first for the metric spaces. That is, suppose there exists a separable metric space X and an action $\alpha: G \curvearrowright X$ by isometries such that for any action $\beta: G \curvearrowright Y$ by isometries on a separable metric space Y there is a G-equivariant isometric embedding of Y into X.

Fix some unbounded length function $\lambda: G \rightarrow \mathbb{N}$ and a sequence $\left(g_{n}\right)_{n \in \mathbb{N}} \subseteq G$ such that $\left(g_{n}\right)_{n}$ generate G and $1<\lambda\left(g_{1}\right)<\lambda\left(g_{2}\right)<$ $\lambda\left(g_{3}\right)<\ldots$. That is possible to find for any countably infinite group.

For any $x \in 2^{\mathbb{N}}$ let $\lambda_{x}^{\prime}:\left\{g_{n}, g_{n}^{-1}: n \in \mathbb{N}\right\} \rightarrow \mathbb{N}$ be defined as follows:

$$
\lambda_{x}^{\prime}(g)= \begin{cases}1 & g \in\left\{g_{n}, g_{n}^{-1}\right\} \wedge x(n)=0 \\ 2 & g \in\left\{g_{n}, g_{n}^{-1}\right\} \wedge x(n)=1\end{cases}
$$

Finally, for any $x \in 2^{\mathbb{N}}$ define a length function $\lambda_{x}: G \rightarrow \mathbb{N}$ as follows: for any $g \in G$, set
$\lambda_{x}(g)=\min \left\{\sum_{i=1}^{m} \lambda_{x}^{\prime}\left(h_{i}\right): g=h_{1} \ldots h_{m},\left(h_{i}\right)_{i=1}^{m} \subseteq S \cup\left\{g_{n}, g_{n}^{-1}: n \in \mathbb{N}\right\}\right\}$.
We claim that λ_{x} extends λ_{x}^{\prime}, i.e. for every $g \in\left\{g_{n}, g_{n}^{-1}: n \in \mathbb{N}\right\}$, $\lambda_{x}(g)=\lambda_{x}^{\prime}(g)$. It suffices to show that for any n such that $x(n)=1$ we have $\lambda_{x}\left(g_{n}\right)=2$. Suppose the contrary. Then necessarily $\lambda_{x}\left(g_{n}\right)=1$, so by definition $g_{n}=g_{m}$ or $g_{n}=g_{m}^{-1}$ for m such that $x(m)=0$. However, that is in contradiction with the assumption that $1<\lambda\left(g_{1}\right)<$ $\lambda\left(g_{2}\right)<\lambda\left(g_{3}\right)<\ldots$.

Now for every $x \in 2^{\mathbb{N}}$ take the left-invariant metric d_{x} on G induced by λ_{x}. The action of G on itself by left translations is then an action of G on $\left(G, d_{x}\right)$ by isometries. We claim that there is $x \in 2^{\mathbb{N}}$ such that there is no G-equivariant isometric embedding of $\left(G, d_{x}\right)$ into X. Suppose otherwise that for every $x \in 2^{\mathbb{N}}$ there is a G-equivariant isometric embedding ι_{x} of $\left(G, d_{x}\right)$ into X. For every $x \in 2^{\mathbb{N}}$ denote $\iota_{x}\left(1_{G}\right) \in X$ by z_{x}. Then for $x \neq y \in 2^{\mathbb{N}}$ we have $d_{X}\left(z_{x}, z_{y}\right) \geq 1 / 2$, for if $d_{X}\left(z_{x}, z_{y}\right)<1 / 2$ and $n \in \mathbb{N}$ is such that $x(n) \neq y(n)$, say $x(n)=1$, $y(n)=0$, then

$$
\begin{gathered}
1 / 2>d_{X}\left(z_{x}, z_{y}\right)=d_{X}\left(g_{n} \cdot z_{x}, g_{n} \cdot z_{y}\right) \geq \\
\left|d_{X}\left(g_{n} \cdot z_{x}, z_{x}\right)-d_{X}\left(z_{x}, z_{y}\right)-d_{X}\left(z_{y}, g_{n} \cdot z_{y}\right)\right|>1 / 2,
\end{gathered}
$$

a contradiction. Thus we get that $\left\{z_{x}: x \in 2^{\mathbb{N}}\right\} \subseteq X$ is a $1 / 2$-separated uncountable set in X which contradicts the separability of X.

To prove the same for the category of Banach spaces, we can for example extend the action of G on $\left(G, d_{x}\right)$, for every $x \in 2^{\mathbb{N}}$, to an
action of G on the Lipschitz-free Banach space $F\left(G, d_{x}\right)$ over $\left(G, d_{x}\right)$ (see [5] and [17] for information about Lipschitz-free Banach spaces). That is, consider a real vector space V_{G} with $G \backslash\left\{1_{G}\right\}$ as the free basis, and 1_{G} as a zero. Define a norm $\|\cdot\|_{x}$ on V_{G} as follows: for $v=\alpha_{1} g_{1}+\ldots+\alpha_{n} g_{n}$ set

$$
\|v\|_{x}=\min \left\{\sum_{i=1}^{m}\left|\beta_{i}\right| \cdot d_{x}\left(h_{i}, h_{i}^{\prime}\right): v=\sum_{i=1}^{m} \beta_{i}\left(h_{i}-h_{i}^{\prime}\right)\right\} .
$$

Then it is easy to check (and it is a standard fact about Lipschitzfree spaces) that for any $g, h \in G,\|g-h\|_{x}=d_{x}(g, h) . G$ acts by (affine) isometries on $\left(V_{G},\|\cdot\|_{x}\right)$ in the following way: for $h \in G$ and $\alpha_{1} g_{1}+\ldots+\alpha_{n} g_{n} \in V_{G}$ we set $h \cdot\left(\alpha_{1} g_{1}+\ldots+\alpha_{n} g_{n}\right)=\left(\alpha_{1} h g_{1}+\ldots+\right.$ $\left.\alpha_{n} h g_{n}\right)-\left(\alpha_{1}+\ldots+\alpha_{n}-1\right) h$. It is easy to check that this gives an action of G on $\left(V_{G},\|\cdot\|_{x}\right)$ by isometries which extends the action of G on itself by translation. It also extends to an action of G on the completion W_{x}. Then arguing exactly the same as with the metric space one can show that it is not possible to embed in a G-equivariant way all the spaces $W_{x}, x \in 2^{\mathbb{N}}$, into a single separable Banach space with an action of G.

Second, we show that the universality result for the Hall's group from Theorem 2.7 is not beyond the locally finite case. Let us start with a definition.

Definition 2.13. Let G be a countable group. Say that G admits a universal action by isometries if there is an action $\alpha: G \curvearrowright X$ on some separable metric space X such that for any countable group H which is isomorphic to a subgroup of G and for any action $\beta: H \curvearrowright Y$ of H on a separable metric space Y by isometries there is a subgroup $H^{\prime} \leq G$ isomorphic to H and an isometric embedding of Y into X which is, after identifying H and H^{\prime}, H-equivariant.

With this definition, the statement of Theorem 2.7 says that the Hall's group admits a universal action by isometries.

That is the strongest result possible of this type as shown by the following proposition.

Proposition 2.14. Let G be a countably infinite non-locally finite group. Then G does not admit a universal action by isometries.

Proof. Suppose there is such an action $\alpha: G \curvearrowright X$ on some separable metric space X. Since G is not locally finite it contains a finitely generated infinite subgroup $H \leq G$. By the proof of Theorem 2.12 there are continuum many somewhat different left-invariant metrics $\left(d_{x}\right)_{x \in 2^{\mathbb{N}}}$
on H. Note that G contains at most countably many subgroups isomorphic to H. By the pigeonhole principle there is one fixed subgroup $H^{\prime} \leq G$ isomorphic to G and an uncountable subset $I \subseteq 2^{\mathbb{N}}$ such that for each $x \in I$ there is an H^{\prime}-equivariant isometric embedding of $\left(H^{\prime}, d_{x}\right)$ into X. We reach a contradiction with separability of X by the same argument as in the proof of Theorem 2.12.

3. Genericity of the action

Let us start with a general discussion. Fix some countable group G. Let X be some Polish metric space, i.e. a complete separable metric space. We want to define a space of all actions of G on X by isometries.

We have that $\operatorname{Iso}(X)$, the group of all isometries on X with the pointwise-convergence, or equivalently compact-open, topology is a Polish group, i.e. a completely metrizable second-countable topological group. Fixing a countable dense subset $\left\{x_{i}: i \in \mathbb{N}\right\} \subseteq X$ we may define a compatible complete metric ρ on $\operatorname{Iso}(X)$ as follows: for $\phi, \psi \in \operatorname{Iso}(X)$ we set

$$
\rho(\phi, \psi)=\sum_{i=1}^{\infty} \frac{\min \left\{d_{X}\left(\phi\left(x_{i}\right), \psi\left(x_{i}\right)\right), 1\right\}}{2^{i}}
$$

Since every action $\alpha: G \curvearrowright X$ by isometries is in unique correspondence with some homomorphism $f: G \rightarrow \operatorname{Iso}(X)$, we may define the space $\operatorname{Act}_{G}(X)$ of all actions of G on X by isometries as the space of all homomorphisms of G into $\operatorname{Iso}(X) . \operatorname{Act}_{G}(X)$ is a closed subspace of the product space $\operatorname{Iso}(X)^{G}$, thus a Polish space.

There has been a recent research on investigating which countable groups admit actions, on certain spaces, which are generic in some sense. That means, fix a countable group G and a Polish metric space X. Note that there is a natural equivalence relation on the space $\operatorname{Act}_{G}(X)$, that is of conjugation, where two homomorphisms $f, g: G \rightarrow$ Iso (X) are conjugate if there exists an autoisometry $\phi: X \rightarrow X$ such that $f=\phi^{-1} g \phi$. Say that an action f (or rather a homomorphism) is generic if some element $f \in \operatorname{Act}_{G}(X)$ has a comeager conjugacy class. In [15] Rosendal proved that every finitely generated group with the Ribes-Zalesskii property ([14]), i.e. products of finitely generated subgroups are closed in the profinite topology of the group, has a generic action on the rational Urysohn space. More recently, Glasner, Kitroser and Melleray ([4]) characterized those countable groups that have generic actions on a countable set with a trivial metric (attaining just values 1 and 0).

We prove a genericity result for the universal action from Theorem 2.7. On the one hand we have the result on a much more complicated space, the Urysohn space, on the other hand we need to somehow weaken the definition of genericity. In other words, we need to extend the equivalence relation of being conjugate by also allowing group automorphisms. Let us state that precisely in the following definition.

Definition 3.1. Let G be a countable group and X a Polish metric space. Say that two homomorphisms $f, g: G \rightarrow \operatorname{Iso}(X)$ are weakly equivalent if there exist an autoisometry $\phi: X \rightarrow X$ and an automorphism $\psi: G \rightarrow G$ such that for all $x \in X$ and $v \in G$ we have

$$
f(v) x=\phi^{-1} g(\psi(v)) \phi x
$$

Moreover, we say that an element $f \in \operatorname{Act}_{G}(X)$ is weakly generic if it has a comeager equivalence class in the weak equivalence.

We shall prove the following.
Theorem 3.2. The universal action $\alpha \curvearrowright \mathbb{U}$ from Theorem 2.7 is weakly generic.

The rest of this section is devoted to prove the theorem.
We need some notions. When F and F^{\prime} are two isomorphic finite groups, I and I^{\prime} two finite bijective sets and d, resp. d^{\prime} a metric on $\bigcup_{i \in I} G \cdot x_{i}$, resp. on $\bigcup_{i \in I^{\prime}} G^{\prime} \cdot y_{i}$, we denote by $D\left(\left(G,\left\{x_{i}: i \in\right.\right.\right.$ $\left.I\}, d),\left(G^{\prime},\left\{y_{i}: i \in I^{\prime}\right\}, d^{\prime}\right)\right)$, analogously as in the previous section, the supremum distance $\sup _{i, j \in I, g, h \in H}\left|d\left(g \cdot x_{i}, h \cdot x_{j}\right)-d^{\prime}\left(g^{\prime} \cdot y_{i^{\prime}}, h^{\prime} \cdot y_{j^{\prime}}\right)\right|$, where $g^{\prime}, h^{\prime} \in G^{\prime}$ are the images of $g, h \in G$ under the given isomorphism between G and G^{\prime} and $i^{\prime}, j^{\prime} \in I^{\prime}$ are the images of $i, j \in I$ under the given bijection between I and I^{\prime}. Such an isomorphism and a bijection will be never explicitly mentioned, it should be always clear from the context. Also, we shall often write $D\left(\left(G,\left\{x_{i}: i \in I\right\}\right),\left(G^{\prime},\left\{y_{i}: i \in\right.\right.\right.$ $\left.\left.I^{\prime}\right\}\right)$), thus suppressing the metrics from the notation; they should also be clear from the context. The following fact follows from Lemma 2.11, however we will state it here since it will be used extensively.

Fact 3.3. Suppose we are given two finite isomorphic groups G and G^{\prime}, finite bijective sets I and I^{\prime}, and metrics d and d^{\prime} on $\bigcup_{i \in I} G \cdot x_{i}$, resp. on $\bigcup_{i \in I^{\prime}} G^{\prime} \cdot y_{i}$. Suppose moreover that $D\left(\left(G,\left\{x_{i}: i \in I\right\}\right),\left(G^{\prime},\left\{y_{i}: i \in\right.\right.\right.$ $\left.\left.\left.I^{\prime}\right\}\right)\right)<\varepsilon$ for some $\varepsilon>0$. Then there exists a metric ρ on $\bigcup_{i \in I \cup I^{\prime}} G \cdot x_{i}$ such that

- $D\left(\left(G,\left\{x_{i}: i \in I\right\}, d\right),\left(G,\left\{x_{i}: i \in I\right\}, \rho\right)\right)=0$, i.e. ρ extends d;
- $D\left(\left(G,\left\{x_{i}: i \in I^{\prime}\right\}, \rho\right),\left(G^{\prime},\left\{y_{i}: i \in I^{\prime}\right\}, d^{\prime}\right)\right)=0$;
- for every $i \in I$ we have $\rho\left(x_{i}, x_{i^{\prime}}\right) \leq \varepsilon$.

Remark 3.4. Conversely, notice suppose that a finite group G acts freely on some metric space Y and let $\left\{y_{i}: i \in I\right\}$ and $\left\{z_{i}: i \in I\right\}$ be two finite subsets of Y indexed by the same set such that for every $i \in I$, $d_{Y}\left(y_{i}, z_{i}\right)<\varepsilon$. Then $D\left(\left(G,\left\{y_{i}: i \in I\right\}\right),\left(G,\left\{z_{i}: i \in I\right\}\right)\right)<2 \varepsilon$.

We shall now define a subset of $\operatorname{Act}_{G}(\mathbb{U})$. By $\mathbb{Q} \mathbb{U}$ we denote the rational Urysohn space, a countable dense subset of \mathbb{U}. We shall denote the pointed free rational actions of finite groups by ($F,\left\{x_{i}: \in I\right\}$) and we write $\left(F,\left\{x_{i}: i \in I\right\}\right) \leq\left(H,\left\{x_{i}: i \in I^{\prime}\right\}\right)$ to denote that the former actions embeds into the latter. To simplify the notation, we always assume in such a case that $F \leq H$ and $I \subseteq I^{\prime}$. Recall that the class \mathcal{K} of all pointed free rational actions by finite groups is countable.

By \mathbb{D} we denote the subset of $\operatorname{Act}_{G}(\mathbb{U})$ of all actions $G \curvearrowright \mathbb{U}$ satisfying:
for all $\varepsilon>\varepsilon^{\prime}>0$, for all $\left(F,\left\{x_{i}: i \in I\right\}\right) \leq\left(H,\left\{x_{i}: i \in I^{\prime}\right\}\right) \in \mathcal{K}$ and for every subgroup $F^{\prime} \leq G$ isomorphic to F and all $\left\{u_{i}: i \in I\right\} \subseteq \mathbb{Q} \mathbb{U}$ such that

$$
D\left(\left(G,\left\{x_{i}: i \in I\right\}\right),\left(G^{\prime},\left\{u_{i}: i \in I\right\}\right)<\varepsilon^{\prime}\right.
$$

there exist a subgroup $F^{\prime} \leq H^{\prime} \leq G$ isomorphic to H, and points $\left\{u_{i}: i \in I^{\prime}\right\} \subseteq \mathbb{Q} \mathbb{U}$ such that

$$
D\left(\left(H,\left\{x_{i}: i \in I^{\prime}\right\}\right),\left(H^{\prime},\left\{u_{i}: i \in I^{\prime}\right\}\right)\right)<\varepsilon .
$$

We shall refer to the property above as D-property. A simple computation shows that the D-property is a G_{δ} condition, i.e. \mathbb{D} is a G_{δ} set. It is non-empty since the universal action from Theorem 2.7 clearly belongs to \mathbb{D}. Moreover, a standard argument following from the construction of the universal action gives that \mathbb{D} is actually dense, so dense G_{δ}. We need to show that any two actions from \mathbb{D} are weakly equivalent. That is, for actions $\alpha, \beta \in \mathbb{D}$ we need to find an automorphism $\phi: G \rightarrow G$ and an autoisometry of $\psi: \mathbb{U} \rightarrow \mathbb{U}$ such that for all $g \in G$ and $x \in \mathbb{U}$ we have

$$
\alpha(g, x)=\beta(\phi(g), \psi(x)) .
$$

We now fix two actions $\alpha, \beta \in \mathbb{D}$ and show that. Let $\left(z_{n}\right)_{n \in \mathbb{N}}$ be some enumeration of $\mathbb{Q U}$ such that for each $i_{0} \in \mathbb{N}$ both sets $\left\{z_{i}: i \geq\right.$ i_{0}, i is odd $\}$ and $\left\{z_{i}: i \geq i_{0}, i\right.$ is even $\}$ are dense in \mathbb{U}. Also, write G as an increasing union $G_{1} \leq G_{2} \leq G_{3} \leq \ldots$ of finite subgroups.

By induction, we shall find for each $n \in \mathbb{N}$:

- an increasing sequence of finite groups $H_{1} \leq \ldots \leq H_{n} \leq G$ and $H_{1}^{\prime} \leq \ldots \leq H_{n}^{\prime}$ such that for each $i \leq n, H_{i}$ and H_{i}^{\prime} are isomorphic by some ϕ_{i} and $\phi_{i} \supseteq \phi_{i-1}$, and for every odd $i \leq n$
we have that $G_{i} \leq H_{i}$, and for every even $i \leq n$ we have that $G_{i} \leq H_{i}^{\prime}$;
- for each $i \leq n$, sequences $\left(u_{i}^{j}\right)_{j=i}^{n} \subseteq \mathbb{Q U}$ and $\left(v_{i}^{j}\right)_{j=i}^{n} \subseteq \mathbb{Q U}$ such that
- for each $i \leq n$ and $i \leq j<k \leq n, d\left(u_{i}^{j}, u_{i}^{k}\right) \leq 1 / 2^{j+1}$ and $d\left(v_{i}^{j}, v_{i}^{k}\right) \leq 1 / 2^{j+1}$,
- for every odd $i \leq n, u_{i}^{i}=z_{i}$, and for every even $i \leq n$, $v_{i}^{i}=z_{i}$;
- $D\left(\left(H_{n},\left\{u_{i}^{n}: i \leq n\right\}\right),\left(H_{n}^{\prime},\left\{v_{i}^{n}: i \leq n\right\}\right)\right)<1 / 2^{n+1}$.

Once the induction is finished, we have that $G=\bigcup_{n} H_{n}=\bigcup_{n} H_{n}^{\prime}$, i.e $\phi=\bigcup_{n} \phi_{n}: G \rightarrow G$ is an isomorphism. Also we have that for every $i \leq n$ the sequences $\left(u_{i}^{n}\right)_{n}$ and $\left(v_{i}^{n}\right)_{n}$ are Cauchy in $\mathbb{Q U}$, thus they have some limit $u_{i} \in \mathbb{U}$, resp. $v_{i} \in \mathbb{U}$. It follows from the inductive assumption that both $\left\{u_{i}: i \in \mathbb{N}\right\}$ and $\left\{v_{i}: i \in \mathbb{N}\right\}$ are dense in \mathbb{U} and that the map sending u_{i} to v_{i} is an isometry which extends to an autoisometry ψ of \mathbb{U}. By the limit argument we get that the actions α and β are weakly equivalent witnessed by ϕ and ψ. Thus we need to describe the inductive steps to finish the proof.

The first and second step of the induction. Set $H_{1}=G_{1}$, $u_{1}^{1}=z_{1}$. By Lemma 2.10 there exists $\left(H_{1},\left\{x_{1}\right\}\right) \in \mathcal{K}$ such that $D\left(\left(H_{1},\left\{u_{1}^{1}\right\}\right),\left(H_{1},\left\{x_{1}\right\}\right)<1 / 2\right.$. Since β satisfies the D-property, there is a subgroup $H_{1}^{\prime} \leq G$ isomorphic to H_{1} (via some ϕ_{1}) and some v_{1}^{1} which, because of Remark 3.4 we may find in $\mathbb{Q} \mathbb{U}$, such that $D\left(\left(H_{1},\left\{x_{1}\right\}\right),\left(H_{1}^{\prime},\left\{v_{1}^{1}\right\}\right)<\right.$ $1 / 2$, thus by triangle inequality $D\left(\left(H_{1},\left\{u_{1}^{1}\right\}\right),\left(H_{1}^{\prime},\left\{v_{1}^{1}\right\}\right)\right)<1$. That finishes the first step of the induction.

Next, set $v_{1}^{2}=v_{1}^{1}$ and $v_{2}^{2}=z_{2}$. Let $H_{2}^{\prime} \leq G$ be an arbitrary finite group containing both H_{1}^{\prime} and G_{2}, e.g. the subgroup generated by these two groups. Again by Lemma 2.10 there exists $\left(H_{2}^{\prime},\left\{x_{1}, x_{2}\right\}\right) \in \mathcal{K}$ such that $D\left(\left(H_{2}^{\prime},\left\{v_{1}^{2}, v_{2}^{2}\right\}\right),\left(H_{2}^{\prime},\left\{x_{1}, x_{2}\right\}\right)<1 / 4\right.$. By the D-property of α, Fact 3.3 and also Remark 3.4 we can find $H_{1} \leq H_{2} \leq G$ isomorphic to H_{2}^{\prime} (via some ϕ_{2} extending ϕ_{1}) and $u_{1}^{2}, u_{2}^{2} \in \mathbb{Q} \mathbb{U}$ such that $d\left(u_{1}^{1}, u_{1}^{2}\right)<1 / 2$ and $D\left(\left(H_{2},\left\{u_{1}^{2}, u_{2}^{2}\right\}\right),\left(H_{2}^{\prime},\left\{v_{1}^{2}, v_{2}^{2}\right\}\right)\right)<1 / 2$. This finishes the second step of the induction.

The general odd and even step of the induction. The general steps are treated analogously as the second step of the induction. So we only briefly show the general odd n-th step of the induction, i.e. n is now odd greater than 2 . For $i<n$ we set $u_{i}^{n}=u_{i}^{n-1}$ and we set $u_{n}^{n}=z_{n}$. Let $H_{n} \leq G$ be an arbitrary finite subgroup containing both H_{n-1} and G_{n}. By Lemma 2.10 there exists $\left(H_{n},\left\{x_{1}, \ldots, x_{n}\right\}\right) \in \mathcal{K}$ such that
$D\left(\left(H_{n},\left\{u_{1}^{n}, \ldots, u_{n}^{n}\right\}\right),\left(H_{n},\left\{x_{1}, \ldots, x_{n}\right\}\right)<1 / 2^{n}\right.$. By the D-property of β, Fact 3.3 and also Remark 3.4 we can find $H_{n-1}^{\prime} \leq H_{n}^{\prime} \leq G$ isomorphic to H_{n} (via some ϕ_{n} extending ϕ_{n-1}) and $v_{1}^{n}, \ldots, v_{n}^{n} \in \mathbb{Q} \mathbb{U}$ such that $d\left(v_{i}^{n-1}, v_{i}^{n}\right)<1 / 2^{n-1}$, for all $i<n$, and $D\left(\left(H_{n},\left\{u_{1}^{n}, \ldots, u_{n}^{n}\right\}\right),\left(H_{n}^{\prime},\left\{v_{1}^{n}, \ldots, v_{n}^{n}\right\}\right)\right)<$ $1 / 2^{n-1}$. That finishes the inductive construction and the whole proof.

4. Universal actions on Banach spaces

In the last section we attempt to find some universal actions by isometries on Banach spaces.

First, we notice that in the full generality, as for metric spaces, it is not possible. Recall that by the theorem of Mazur and Ulam (see e.g. Theorem 14.1 in [2]) every (onto) isometry on a Banach space is affine, that means it is a linear isometry plus translation. From that, one can derive that every action $\alpha: G \curvearrowright X$ of some group G on a Banach space X by isometries is determined by an action $\alpha_{0}: G \curvearrowright X$, which is by linear isometries, and by a cocycle map $b: G \rightarrow X$ which determines the corresponding translates. That is, for any $g \in G$ and $x \in X$ we have

$$
\alpha(g) x=\alpha_{0}(g) x+b(g)
$$

Conversely, whenever we have an action $\alpha_{0}: G \curvearrowright X$ by linear isometries and a map $b: G \rightarrow X$ satisfying the so-called 'cocycle condition', i.e. for every $g, h \in G$, we have

$$
b(g h)=\alpha_{0}(g) b(h)+b(g),
$$

we can get an action of G on X by affine isometries. We refer the reader to Chapter 6 of [12] for more information.

We again provide some definitions of universal actions by isometries on Banach space. Theorem 2.12 excludes again universal actions in a strong sense, so we modify Definition 2.13 for actions on Banach spaces.

Definition 4.1. Say that G admits a universal action by isometries on a (universal) separable Banach space X if there is an action $\alpha: G \curvearrowright X$ such that for any countable group H which is isomorphic to a subgroup of G and for any action $\beta: H \curvearrowright Y$ of H on a separable Banach space Y by isometries there is a subgroup $H^{\prime} \leq G$ isomorphic to H and a linear isometric embedding of Y into X which is, after identifying H and H^{\prime}, H-equivariant.

Proposition 4.2. No finite or countable group G admits a universal action by (affine) isometries on a Banach space X.

Proof. Fix an at most countable group G and suppose that it has a universal action on a Banach space X. Let $b: G \rightarrow X$ be the cocycle
associated to this action. The range of b is at most countable, so in particular the set $R=\left\{\|b(g)\|_{X}: g \in G\right\}$ is an at most countable set of reals. One can easily find an action of some subgroup $H \leq G$ on some Banach space Y such that, if we denote by $b^{\prime}: H \rightarrow Y$ the associated cocycle, we have that $\left\{\left\|b^{\prime}(h)\right\|_{Y}: h \in H\right\} \nsubseteq R$. It follows the action was not universal.

A similar arguments show that the universality cannot be saved if one replaces the H-equivariant linear isometric embeddings in the definition by H-equivariant affine isometric embeddings or linear $(1+\varepsilon)$-isometric embeddings.

The distinguished point in Banach spaces, the zero, is what causes problems. If one is satisfied with universality for actions by linear isometries, the problems disappear. Still the proofs are much more technical than in the case of plain metric spaces without algebraic structure. We shall only prove that there is a universal action by linear isometries on Banach spaces of the group $\bigoplus_{n \in \mathbb{N}} \mathbb{Q} / \mathbb{Z}$. This is the infinite direct sum of all roots of unity and it is a universal abelian locally finite group. We replace the Urysohn space from Theorem 2.7 by a similar object in the category of Banach spaces, the Gurarij space. We refer the reader to [6] for more information about this space. We shall thus show:

Theorem 4.3. Let $G=\bigoplus_{n \in \mathbb{N}} \mathbb{Q} / \mathbb{Z}$. There exists a universal action of G on the Gurarij space \mathbb{X}. That is, for any action $\beta: H \curvearrowright Y$ by linear isometries, where H is a countable abelian locally finite group and Y is a separable Banach space, there exists a subgroup $H^{\prime} \leq G$ such that, after identifying H and H^{\prime}, there is an H-equivariant linear isometric embedding of Y into \mathbb{X}.

Let F be a finite abelian group and I a non-empty finite set. By F_{I} we denote the finite set $F \times I=\left\{x_{g, i}: g \in F, i \in I\right\}$. Instead of $x_{0, i}$, where $i \in I$ and $0 \in F$ is the group zero, we may just write x_{i}. Consider now a finite-dimensional real vector space $E_{F, I}$ with F_{I} as a basis. The canonical action of F on F_{I}, where $g \cdot x_{f, i}=x_{g f, i}$ (resp. the permutation representation of F on F_{I}), extends to a linear action of F on $E_{F, I}$ (resp. the representation of F in $\left.\operatorname{GL}\left(E_{F, I}\right)\right)$.

Now let $W \subseteq E_{F, I}$ be any finite subset satisfying:

- $0 \in W$; if $w \in W$, then $-w \in W$;
- for every $i \neq j \in I, x_{i}-x_{j} \in W$;
- for every $i \in I, g \in F, x_{g, i} \in W$;
- for any $g \in F$ and $w \in W, g \cdot w \in W$.

A partial F-norm $\|\cdot\|^{\prime}$ on W is a partial norm on the finite set W compatible with the action of F; that is, a function satisfying

- $\|w\|^{\prime}=0$ iff $w=0$; (positivity);
- $\|\alpha w\|^{\prime}=|\alpha|\|w\|^{\prime}$ provided that $w, \alpha w \in W$, for $\alpha \in \mathbb{R}$; (homogeneity)
- $\|w\|^{\prime} \leq \sum_{i=1}^{n}\left|\alpha_{i}\right|\left\|w_{i}\right\|^{\prime}$, where $w=\sum_{i=1}^{n} \alpha_{i} w_{i} w,\left(w_{i}\right)_{i=1}^{n} \subseteq W$, $\left(\alpha_{i}\right)_{i=1}^{n} \subseteq \mathbb{R}$; (triangle inequality)
- $\|w\|^{\prime}=\|g \cdot w\|^{\prime}$, for $g \in F, w \in W$. (compatibility with the action)
Having $\|\cdot\|^{\prime}$ we define a norm $\|\cdot\|$ on $E_{F, I}$ as the maximal extension of $\|\cdot\|^{\prime}$ to the whole $E_{F, I}$. That is, for any $x \in E_{F, I}$ we set

$$
\|x\|=\min \left\{\sum_{j=1}^{n}\left|\beta_{j}\right|\left\|w_{j}\right\|^{\prime}: x=\sum_{j=1}^{n} \beta_{j} w_{j},\left(w_{j}\right)_{i \leq n} \subseteq W\right\}
$$

It follows by compactness (from the finite-dimensionality) that the minimum is indeed attained.

Now it is straightforward to check that $\|\cdot\|$ is a norm that extends $\|\cdot\|^{\prime}$ and that the action of F on $E_{F, I}$ with $\|\cdot\|$ is by linear isometries. Notice that there are several other equivalent ways how to define $\|\cdot\|$ using $\|\cdot\|^{\prime}$. For instance one can take the closed convex hull of the set $\left\{w /\|w\|^{\prime}: w \in W\right\}$ and then consider the Minkowski functional of such a set. The resulting norm will be $\|\cdot\|$. Another way is to consider the following set of functions $\mathcal{F}=\left\{f: F_{I} \cup\{0\} \rightarrow \mathbb{R}: f(0)=0,|\tilde{f}(w)| \leq\right.$ $\left.\|w\|^{\prime}\right\}$, where \tilde{f} is the unique linear extension of f on $E_{F, I}$. Then we have, for every $x \in E_{F, I},\|x\|=\sup _{f \in \mathcal{F}}|\tilde{f}(x)|$.

We shall call such an action of F on such a finite-dimensional space finitely presented. If the partial norm $\|\cdot\|^{\prime}$ is defined only on linear combinations of basis vectors with rational coefficients and it has a rational range, we shall call such a finitely presented action rational.

Let us have finite-dimensional spaces $E_{F, I}$ and $E_{H, J}$, where F, H are finite abelian groups and I, J finite sets. Suppose there are embeddings $\phi: F \hookrightarrow H$ and $\psi: I \hookrightarrow J$. Then they naturally induce a linear embedding of $E_{F, I}$ into $E_{H, I}$ which is also, after identifying F and $\psi[F] \leq H$, F-equivariant. If $E_{F, I}$, resp. $E_{H, J}$ are equipped with the finitely presented norm, invariant by the action, and the linear embedding given by ϕ and ψ is also isometric, we call such a pair (ϕ, ψ) an embedding between two finitely presented actions.

In most cases, unless stated otherwise, we shall implicitly assume that ϕ and ψ are just inclusions, so the determined linear (isometric) embedding is also an inclusion.

Proposition 4.4. The class of all finitely presented rational actions has the amalgamation property.

Proof. Assume we are given finite abelian groups G_{0}, G_{1}, G_{2}. We suppose (without loss of generality) that $G_{0} \leq G_{1}, G_{0} \leq G_{2}$ and $G_{1} \cap G_{2}=$ G_{0}. Also, we are given finite sets I_{0}, I_{1}, I_{2}; again we assume that $I_{0} \subset I_{1}, I_{0} \subseteq I_{2}$ and $I_{1} \cap I_{2}=I_{0}$. And finally, we have some finitely presented rational actions of G_{i} on $E_{i}=E_{G_{i}, I_{i}}$ determined by a partial norm $\|\cdot\|_{i}^{\prime}$ defined on finite $W_{i} \subseteq E_{i}$, for $i \leq 2$. Again, we may assume that $W_{0} \subseteq W_{1}, W_{0} \subseteq W_{2}$ and $W_{1} \cap W_{2}=W_{0}$. Moreover, we may suppose that every element $w \in W_{i} \backslash W_{0}, i=1,2$, contains a scalar multiple of a basis element not from E_{0}.

The proof is analogous to the proof of Theorem 2.2, though a bit more technical.

Set G_{3} to be the free abelian amalgam of G_{1} and G_{2} over G_{0}, i.e. $G_{3}=G_{1} \oplus G_{2} /\left\{(g,-g): g \in G_{0}\right\}$. Set $I=I_{1} \cup I_{2}$. Let E_{3} be the vector space $E_{G_{3}, I_{3}}$. We naturally identify the spaces $E_{i}, i \leq 2$, as subspaces of E_{3}. Set $W^{\prime}=W_{1} \cup W_{2}$ and let W be the 'closure of W with respect to the action of G_{3}, i.e. W is the smallest (finite) set containing W^{\prime} such that for any $g \in G_{3}$ and $w \in W$ we have $g \cdot w \in W$. We define a function $\|\cdot\|^{\prime}$ on W as the unique function which extends $\|\cdot\|_{i}^{\prime}$, for $i \leq 2$, and satisfying that $\|g \cdot w\|^{\prime}=\|w\|$, for $w \in W$ and $g \in G$. This definition is correct, for suppose that for some $g \in G_{1}$, $h \in G_{2}$ and $w_{1} \in W_{1}, w_{2} \in W_{2}$ we have $g \cdot w_{1}=h \cdot w_{2}$. It follows that $g-h \in G_{0}$, thus $g, h \in G_{0}$ and so $w_{1}, w_{2} \in W_{0}$. However we have $\left\|w_{1}\right\|_{1}^{\prime}=\left\|w_{1}\right\|_{0}^{\prime}=\left\|w_{2}\right\|_{0}^{\prime}=\left\|w_{2}\right\|_{2}^{\prime}$.

We need to check that $\|\cdot\|^{\prime}$ is a partial norm. Once we do that we again define a norm $\|\cdot\|$ on E_{3} using $\|\cdot\|^{\prime}$ as follows: for any $x \in E$ we set

$$
\|x\|=\min \left\{\sum_{j=1}^{n}\left|\beta_{j}\right|\left\|w_{j}\right\|^{\prime}: x=\sum_{j=1}^{n} \beta_{j} w_{j},\left(w_{j}\right)_{i \leq n} \subseteq W\right\} .
$$

It will follow that $\|\cdot\|$ extends $\|\cdot\|^{\prime}$, thus it also extends $\|\cdot\|_{1}$, resp. $\|\cdot\|_{2}$, on $E_{1} \subseteq E$, resp. $E_{2} \subseteq E$.

The only condition from the definition of a partial norm which is not obviously satisfied is the triangle inequality. So suppose that for some $x \in W_{1}$ (the case $x \in W_{2}$ is analogous) there exist $w_{1}, \ldots, w_{n} \in W$ and non-zero $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$ such that $x=\sum_{i=1}^{n} \alpha_{i} w_{i}$ and $\sum_{i=1}^{n}\left|\alpha_{i}\right|\left\|w_{i}\right\|^{\prime}<$ $\|x\|^{\prime}$. We shall reach a contradiction by induction on the size n of the decomposition of x on elements from W. Suppose first that $n=2$, i.e. $x=\alpha_{1} w_{1}+\alpha_{2} w_{2}$ and $\left|\alpha_{1}\right|\left\|w_{1}\right\|^{\prime}+\left|\alpha_{2}\right|\left\|w_{2}\right\|^{\prime}<\|x\|^{\prime}$. At least one of the
elements w_{1} and w_{2} must not lie in W_{1} since otherwise

$$
\left|\alpha_{1}\right|\left\|w_{1}\right\|^{\prime}+\left|\alpha_{2}\right|\left\|w_{2}\right\|^{\prime}=\left|\alpha_{1}\right|\left\|w_{1}\right\|_{1}^{\prime}+\left|\alpha_{2}\right|\left\|w_{2}\right\|_{1}^{\prime} \geq\|x\|_{1}=\|x\|^{\prime}
$$

Similarly, at least one of the elements w_{1} and w_{2} must not lie in W_{2}. It is also impossible that one of the elements is from $W_{1} \backslash W_{0}$ and the other from $W_{2} \backslash W_{0}$ Suppose that $w_{1} \notin W_{1}$ (recall that we assumed that every element $w \in W_{i} \backslash W_{0}, i=1,2$, contains a scalar multiple of a basis element not from E_{0}).

One of these elements, say w_{1}, must contain a scalar multiple of a basis element from E_{1}. Since $w_{1} \notin W_{1} \cup W_{2}$ it follows that there must exist $g \in G_{1}$ and $w_{1}^{\prime} \in W_{2}$ such that $w_{1}=g \cdot w_{1}^{\prime}$. In particular, the multiples of basis elements from w_{1} that belong to E_{1} are of the form $x_{g+a, l}$, where $a \in G_{0}$ and $l \in I_{0}$. Since $w_{1} \notin W_{2}$, it also must contain multiples of basis elements of the form $x_{g+h, k}$, where $h \in G_{2} \backslash G_{0}$. These elements must cancel out in w_{2}. Thus it follows that also w_{2} is of the form $g \cdot w_{2}^{\prime}$, where $w_{2}^{\prime} \in W_{2}$. It follows that $\alpha_{1} w_{1}^{\prime}+\alpha_{2} w_{2}^{\prime}=-g \cdot x \in E_{0}$. Thus we have

$$
\begin{gathered}
\|x\|_{1}=\|-g \cdot x\|_{1}=\|-g \cdot x\|_{0}=\|-g \cdot x\|_{2} \leq\left|\alpha_{1}\right|\left\|w_{1}^{\prime}\right\|_{2}^{\prime}+\left|\alpha_{2}\right|\left\|w_{2}^{\prime}\right\|_{2}^{\prime} \leq \\
\left|\alpha_{1}\right|\left\|w_{1}^{\prime}\right\|^{\prime}+\left|\alpha_{2}\right|\left\|w_{2}^{\prime}\right\|^{\prime}=\left|\alpha_{1}\right|\left\|w_{1}\right\|^{\prime}+\left|\alpha_{2}\right|\left\|w_{2}\right\|^{\prime}<\|x\|_{1},
\end{gathered}
$$

a contradiction.
Suppose now that $n>2$ and that for every $x \in W_{1} \cup W_{2}$ and every non-zero $\left(\alpha_{i}\right) i \leq l \subseteq \mathbb{R},\left(w_{i}\right)_{i \leq l} \subseteq W$ such that $x=\sum_{i \leq l} \alpha_{i} w_{i}$ and $l<n$ we have that

$$
\|x\|_{j}^{\prime} \geq \sum_{i \leq l}\left|\alpha_{i}\right|\left\|w_{i}\right\|^{\prime}
$$

where $j=1,2$ depending on whether $x \in W_{1}$ or $x \in W_{2}$.
So fix $x \in W_{1}$ (the case for W_{2} being analogous), $w_{1}, \ldots, w_{n} \in W$ and non-zero $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$ such that $x=\sum_{i=1}^{n} \alpha_{i} w_{i}$ and $\sum_{i=1}^{n}\left|\alpha_{i}\right|\left\|w_{i}\right\|^{\prime}<$ $\|x\|_{1}^{\prime}$. Again we may suppose that for some $i \leq n$ we have $w_{i} \notin W_{1}$. We claim that we may moreover assume that the element w_{i} contains a scalar multiple of a basis element from E_{1}, i.e. some $x_{g, j}$, where $g \in G_{1}$ and $j \in I_{1}$. Indeed, otherwise we have that for every $j \leq n$ we have that either $w_{j} \in W_{1}$, or $w_{j} \in W_{2}$, or w_{j} does not contain scalar multiples of basis elements of E_{1}. Let $J_{1} \subseteq\{1, \ldots, n\}$ be the set of indices $j \leq n$ such that $w_{j} \in W_{1}, J_{2} \subseteq\{1, \ldots, n\}$ the set of indices $j \leq n$ such that $w_{j} \in W_{2}$ and $J_{3} \subseteq\{1, \ldots, n\}$ the set of indices $j \leq n$ such that w_{j} does not contain scalar multiples of basis elements of E_{1}. We have that $\{1, \ldots, n\}=J_{1} \cup J_{2} \cup J_{3}$. Then $\sum_{j \in J_{1}} \alpha_{j} w_{j} \in E_{1}$ and $\sum_{j \in J_{2} \cup J_{3}} \alpha_{j} w_{j} \in E_{0}$. If J_{1} is non-empty, then $\left|J_{2} \cup J_{3}\right|<n$ and we use the inductive hypothesis to reach the contradiction. Thus we
may suppose that $J_{1}=\emptyset$. Then $x \in E_{0} \subseteq E_{2}$ and we claim that necessarily there is $i \in J_{3}$ such that w_{i} contains a scalar multiple of a basis element from E_{2}, since otherwise $\sum_{j \in J_{3}} \alpha_{j} w_{j}=0$ and we may remove these elements from the decomposition of x. However, since the situation when $x \in E_{1}$ and some $w_{i} \notin W_{1} \cup W_{2}$ contains a scalar multiple of a basis element from E_{1}, and the situation $x \in E_{2}$ and some $w_{i} \notin W_{1} \cup W_{2}$ contains a scalar multiple of a basis element from E_{2} are symmetric, we shall treat only the former.

So to repeat, we are now left to the situation where

- $x \in W_{1}$;
- $x=\sum_{i=1}^{n} \alpha_{i} w_{i}$ and $\sum_{i=1}^{n}\left|\alpha_{i}\right|\left\|w_{i}\right\|^{\prime}<\|x\|_{1}^{\prime}$;
- there is some $i \leq n$ such that $w_{i} \notin W_{1} \cup W_{2}$ and w_{i} contains a scalar multiple of a basis element from E_{1}.

Next, since $x \in E_{1}$, there is a minimal subset, with respect to inclusion, $J \subseteq\{1, \ldots, n\}$ containing $\{i\}$ such that $\sum_{j \in J} \alpha_{j} w_{j} \in E_{1}$. Without loss of generality we may assume that $J=\{1, \ldots, n\}$. Now since $w_{i} \notin W_{1}$, however contains basis elements of E_{1}, we get that there exist $g \in G_{1}$ and $w^{\prime} \in W_{2}$ such that $w_{i}=g \cdot w^{\prime}$. In particular, every basis element $x_{g^{\prime}, l}$ from w_{i}, with a non-zero scalar, that belongs to E_{1} is of the form $x_{g+a, l}$, where $a \in G_{0}$ and $l \in I_{0}$. We claim that by the minimality of J, actually for every $j \in J(=\{1, \ldots, n\}$ by our assumption) there is some $w_{j}^{\prime} \in W_{2}$ such that $w_{j}=g \cdot w_{j}^{\prime}$. Let us prove it. For any $g \in G_{3}$ and $i \in I_{3}$ and any $x \in E_{3}$ let $p_{g, i}(x)$ be the scalar coefficient of $x_{g, i}$ in x, i.e. for any $x \in E_{3}$ we have

$$
x=\sum_{g \in G, i \in I_{3}} p_{g, i} x_{g, i} .
$$

Now since $w_{i} \notin W_{1}$ there is some $h \in G_{2} \backslash G_{0}$ and $k \in I_{2}$ such that $p_{g+h, k}\left(w_{i}\right) \neq 0$. There must exist some minimal subset $\{i\} \subseteq J_{0} \subseteq J$ such that for every $j \in J_{0}$ we have $p_{g+h, k}\left(w_{j}\right) \neq 0$ and

$$
\sum_{j \in J_{0}} \alpha_{j} p_{g+h, k}\left(w_{j}\right)=0
$$

It follows that for each $j \in J_{0}$ we also have that $-g \cdot w_{j} \in W_{2}$. If $x_{0}:=\sum_{j \in J_{0}} \alpha_{j} w_{j}=x$, then $J_{0}=J$ and we are done. Otherwise there is some $h^{\prime} \in G_{2} \backslash G_{0}$ and $k^{\prime} \in I_{2}$ such that $p_{g+h^{\prime}, k^{\prime}}\left(x_{0}\right) \neq 0$. Then there again must exist some minimal subset $J_{0} \subseteq J_{1} \subseteq J$ such that for every $j \in J_{1} \backslash J_{0}$ we have $p_{g+h^{\prime}, k^{\prime}}\left(w_{j}\right) \neq 0$ and

$$
\sum_{j \in J_{1}} \alpha_{j} p_{g+h, k}\left(w_{j}\right)=0
$$

It again follows that for each $j \in J_{1}$ we still have that $-g \cdot w_{j} \in W_{2}$. If $x_{1}:=\sum_{j \in J_{0}} \alpha_{j} w_{j}=x$, then $J_{1}=J$ and we are done. Otherwise we continue by the same procedure to obtain some J_{m} such that $J_{m}=J$ and proving that for every $j \in J_{m}=J$ we have that $-g \cdot w_{j} \in W_{2}$.

So now for every $j \leq n$ denote by w_{j}^{\prime} the element $-g \cdot w_{j}$. In particular, $w_{i}^{\prime}=w^{\prime} \in W_{2}$. By the argument above, since we have $x=\sum_{j \leq n} \alpha_{j} w_{j}$, we have $-g \cdot x=\sum_{j \leq n} \alpha_{j} w_{j}^{\prime} \in E_{0}$, thus $-g \cdot x \in W_{0}$. However, since $\|\cdot\|_{2}^{\prime}$ is a partial norm, we have

$$
\|x\|^{\prime}=\|x\|_{1}^{\prime}=\|x\|_{0}^{\prime}=\|x\|_{2}^{\prime} \leq \sum_{i \leq n}\left|\alpha_{i}\right|\left\|w_{i}^{\prime}\right\|_{2}^{\prime}=\sum_{i \leq n}\left|\alpha_{i}\right|\left\|w_{i}\right\|^{\prime},
$$

a contradiction.
It follows that the class of finitely presented rational actions has some Fraïssé limit which is an action of locally finite abelian group G on a normed vector space $E_{G, J}$ with the corresponding extension property. Let \mathbb{G} be the completion of $E_{G, J}$. The action of G by linear isometries extends to \mathbb{G}. We omit the proofs that $G=\bigoplus_{n \in \mathbb{N}} \mathbb{Q} / \mathbb{Z}$ and that \mathbb{G} is isometric to the Gurarij space.

Proof of Theorem 4.3. Let $\beta: H \curvearrowright Y$ be some action of a countable torsion group on a separable Banach space by linear isometries. Without loss of generality, we shall assume that H is infinite and Y is infinite-dimensional. Also, we claim that without loss of generality we may assume that there is a countably infinite linearly independent set $\left\{e_{n}: n \in \mathbb{N}\right\} \subseteq Y$ such that

- the linear span of $\left\{e_{n}: n \in \mathbb{N}\right\}$ is dense in Y,
- $\left\{e_{n}: n \in \mathbb{N}\right\}$ is closed under the action of H, i.e. for any $h \in H$ and n there is m such that $h \cdot e_{n}=e_{m}$.

In other words, we suppose that Y has a dense normed subspace on which H acts freely.

Indeed, fix some countably infinite linearly independent set $\left\{e_{n}: n \in\right.$ $\mathbb{N}\} \subseteq Y$ whose linear span is dense in Y. Consider the set $\left\{f_{i, j, h}: i, j \in\right.$ $\mathbb{N}, h \in H\}$ and let F be a vector space freely spanned by this countable set. There is a canonical action of H on F by linear isometries which is determined by $g \cdot f_{i, j, h}=f_{i, j, g+h}$. We define a norm on $Y \oplus F$ such that

- it extends the norm on Y,
- F is dense in Y,
- the derived action of H on $Y \oplus F$ is still by isometries.

Once that is done, the claim is proved. Let $V=\left\{h \cdot e_{i}-f_{i, j, h}: i, j \in\right.$ $\mathbb{N}, h \in H\}$ and define a function $\rho: Y \cup V \rightarrow \mathbb{R}_{0}^{+}$as follows. Set

$$
\rho(v)= \begin{cases}\|v\|_{Y} & v \in Y \\ 1 / 2^{j} & v \in V\end{cases}
$$

Now we define a norm $\|\|\cdot\| \mid$ on $Y \oplus F$ as follows. We set

$$
\left\||x \||=\inf \left\{\sum_{k=1}^{l}\left|\alpha_{j}\right| \rho\left(v_{k}\right): x=\sum_{k=1}^{l} \alpha_{k} v_{k},\left(v_{k}\right)_{k} \subseteq V \cup Y\right\} .\right.
$$

It is clearly a pseudonorm and clearly $\||x\|\|=\| \mid h \cdot x\| \|$ for every $x \in$ $Y \oplus F$ and $h \in H$. We show that it is a norm and that it extends the norm on Y. Then we will be done. Suppose first that for some $y \in Y$ we have $\|\mid y\|\|<\| y \|_{Y}$. Then there exists $\left(\alpha_{k}\right)_{k} \subseteq \mathbb{R}$ and $\left(v_{k}\right)_{k} \subseteq V \cup Y$ such that $y=\sum_{k=1}^{l} \alpha_{k} v_{k}$ and $\sum_{k=1}^{l}\left|\alpha_{k}\right| \rho\left(v_{k}\right)<\|y\|_{Y}$. It follows that there must be some v_{k} from V, i.e. of the form $h \cdot e_{i}-f_{i, j, h}$. Let $J \subseteq\{1, \ldots, l\}$ be the set of those indices such that $v_{k}=h \cdot e_{i}-f_{i, j, h}$ for all $k \in J$. It is non-empty and since $y \in Y$ we have $\sum_{k \in J} \alpha_{k}=0$. Thus we may remove the elements $\alpha_{k} v_{k}$, for $k \in J$, from the decomposition of y and decrease the sum. Continuing in this fashion we get rid of all v_{k} 's that belong to V while decreasing the sum, a contradiction.

Now fix some non-zero $w \in Y \oplus F$ and suppose that $\||w \||=0$. We have that $w=y+\sum_{i, j \in \mathbb{N}, h \in H} \alpha_{i, j, h} f_{i, j, h}$, where $y \in Y,\left(\alpha_{i, j, h}\right)_{i, j, h} \subseteq \mathbb{R}$ and all but finitely many of these coefficients are zero. However, at least one of them, say $\alpha_{i, j, h}$, for some i, j, h, is non-zero since otherwise $w=y \in Y$ and $\left\|\left|y\|\mid=\| y \|_{Y}>0\right.\right.$. Since $\|\mid w\| \|=0$ there exist $\left(\alpha_{k}\right)_{k} \subseteq$ \mathbb{R} and $\left(v_{k}\right)_{k} \subseteq V \cup Y$ such that $w=\sum_{k=1}^{l} \alpha_{k} v_{k}$ and $\sum_{k=1}^{l}\left|\alpha_{k}\right| \rho\left(v_{k}\right)<$ $\left|\alpha_{i, j, h}\right| / 2^{j}$. Let $J \subseteq\{1, \ldots, l\}$ be the set of those indices k such that $v_{k}=h \cdot e_{i}-f_{i, j, h}$. It is non-empty and we have $\sum_{k \in J} \alpha_{k}=\alpha_{i, j, h}$. Thus it follows that

$$
\sum_{k=1}^{l}\left|\alpha_{k}\right| \rho\left(v_{k}\right) \geq \sum_{k \in J}\left|\alpha_{k}\right| \rho\left(v_{k}\right) \geq\left|\alpha_{i, j, h}\right| / 2^{j},
$$

a contradiction.

So to repeat, we now may assume that we have an infinite set I and a linearly independent set $\left\{y_{h, i}: h \in H, i \in I\right\}$, on which H acts freely obviously and such that its linear span is dense in Y. We write H as an increasing union of finite abelian subgroups $\left(H_{n}\right)_{n}$ such that $H=\bigcup_{n} H_{n}$ and also we write I as an increasing union of finite subsets $\left(I_{n}\right)_{n}$ such that $I=\bigcup_{n} I_{n}$. In particular, we consider the increasing
sequence of finite dimensional subspaces $\left(Y_{n}\right)_{n}$, such that $Y=\overline{\bigcup_{n} Y_{n}}$, where Y_{n} is spanned by $\left\{y_{h, i}: h \in H_{n}, i \in I_{n}\right\}$.

Next we need to approximate the norm restricted to Y_{n} by the finitely presented rational ones.

Lemma 4.5. For every n and every $\varepsilon>0$ there exists a finitely presented rational norm $\|\cdot\|_{n}^{\varepsilon}$ on Y_{n} such that bot the identity map and its inverse from $\left(Y_{n},\|\cdot\|_{Y}\right)$ to $\left(Y_{n},\|\cdot\|_{n}^{\varepsilon}\right)$ has norm less than $1+\varepsilon$.

The proof is analogous to the proof of Lemma 2.10 and uses a standard argument from Banach space theory - using local compactness (or say total boundedness of the unit ball) of the finite-dimensional Y_{n}. Following the notation from the first section and the approximation there, when we have two norms $\|\cdot\|$ and $\|\cdot\|^{\prime}$ on some finite-dimensional space Z, we denote by $D\left(\|\cdot\|,\|\cdot\|^{\prime}\right)$ the maximum of the norms $\left.\| \operatorname{id}_{\|\cdot\|,\|\cdot\| \|^{\prime}}\right\}$ and $\left\|\operatorname{id}_{\|\cdot\|^{\prime},\|\cdot\|}\right\|$, where $\mathrm{id}_{\|\cdot\|,\|\cdot\| \|^{\prime}}$ is the identity map from $(Z,\|\cdot\|)$ to $\left(Z,\|\cdot\|^{\prime}\right)$ and vice versa.

The following is an exact analogue of Lemma 2.11 for Banach spaces.
Lemma 4.6. Let $H_{1} \leq H_{2}$ be finite abelian groups and $I \subseteq J$ finite sets. Suppose we have an H_{1}-finitely presented rational norm $\|\cdot\|_{1}$ on $E_{H_{1}, I}$ and an H_{2}-finitely presented rational norm $\|\cdot\|_{2}$ on $E_{H_{2}, J}$ such that $D\left(\|\cdot\|_{1},\|\cdot\|_{2} \upharpoonright E_{H_{1}, I}\right)<\varepsilon$. Then there exists an H_{2}-finitely presented rational norm $\|\cdot\|$ on $E_{H_{2}, I} \oplus E_{H_{2}, J}$ (which is isomorphic to $\left.E_{H_{2}, I} \amalg_{J}\right)$ with basis $\left\{x_{i, h}^{\prime}: i \in I, h \in H_{2}\right\} \cup\left\{x_{j, h}: j \in J, h \in H_{2}\right\}$ such that

- $\|\cdot\|$ restricted to the subspace $E_{H_{1}, I}$ of the first summand coincides with $\|\cdot\|_{1}$;
- $\|\cdot\|$ restricted on the second summand coincides with $\|\cdot\|_{2}$;
- for every $i \in I$ and $h \in H_{2}$ we have $\left\|x_{i, h}^{\prime}-x_{i, h}\right\| \leq \varepsilon$.

The proof is analogous to the proof of Lemma 2.11, so we only sketch it.

Sketch of the proof. Identify the first space $E_{H_{1}, I}$ with the subspace of the first summand, i.e. subspace spanned by $\left\{x_{i, h}^{\prime}: i \in I, h \in H_{1}\right\}$, and the second space $E_{H_{2}, J}$ with the second summand, i.e. subspace spanned by $\left\{x_{i, h}: i \in J, h \in H_{2}\right\}$. The norm $\|\cdot\|_{1}$ on the first space is determined by some partial norm $\|\cdot\|_{1}^{\prime}$ on some finite W_{1} and the norm $\|\cdot\|_{2}$ on the second space is determined by some partial norm $\|\cdot\|_{2}^{\prime}$ on some W_{2}. Extend W_{1} to W_{1}^{\prime} by closing it under the action of H_{2}, i.e. $W_{1}^{\prime}=H_{2} \cdot W_{1}$ and extends $\|\cdot\|_{1}^{\prime}$ on W_{1}^{\prime}. Then let $W=$ $W_{1}^{\prime} \cup W_{2} \cup\left\{ \pm\left(x_{i, h}^{\prime}-x_{i, h}\right): i \in I, h \in H_{2}\right\}$ and define $\|\cdot\|^{\prime}$ on W so that it extends $\|\cdot\|_{1}^{\prime}$ on W_{1}^{\prime}, it extends $\|\cdot\|_{2}^{\prime}$ on W_{2}^{\prime} and for every $i \in I$,
$h \in H_{2},\left\|x_{i, h}^{\prime}-x_{i, h}\right\|^{\prime}=\varepsilon$. The verification that it is a partial norm is straightforward, easier than in the case of metric spaces in Lemma 2.11. It follows that the norm $\|\cdot\|$ defined by $\|\cdot\|^{\prime}$ extends $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ and is as desired.

We now finish the proof of Theorem 4.3. By Lemma 4.5, for every n we can find an H_{n}-finitely presented rational norm $\|\cdot\|_{n}^{\prime}$ on $E_{H_{n}, I_{n}} \cong Y_{n}$, whose basis we shall denote by $\left\{x_{h, i}^{n}: h \in H_{n}, i \in I_{n}\right\}$, such that $D\left(\|\cdot\|_{n}^{\prime},\|\cdot\|_{Y} \upharpoonright Y_{n}\right)<1 / 2^{n}$. In particular, by triangle inequality, for every n we have $D\left(\|\cdot\|_{n}^{\prime},\|\cdot\|_{n+1}^{\prime} \upharpoonright Y_{n}\right)<1 / 2^{n+1}$. So by Lemma 4.6, for every n we may define an H_{n+1}-finitely presented rational norm $\|\cdot\|_{n}$ on $E_{H_{n+1}, I_{n}} \oplus E_{H_{n+1}, I_{n+1}}\left(\cong H_{n+1} \cdot Y_{n} \oplus Y_{n+1}\right)$ such that it extends the norms $\|\cdot\|_{n}^{\prime}$ and $\|\cdot\|_{n+1}^{\prime}$ respectively and for every $i \in I_{n}$ and $h \in H_{n+1}$, $\left\|x_{h, i}^{n}-x_{h, i}^{n+1}\right\| \leq 1 / 2^{n+1}$.

Now as in the proof of Theorem 2.7, by a successive application of the extension property of $\left(G \curvearrowright E_{G, J}\right)$ we obtain

- an increasing chain of finite subgroups $H_{1}^{\prime} \leq H_{2}^{\prime} \leq \ldots \leq G$ such that $H_{i}^{\prime} \cong H_{i}$ for $i \in \mathbb{N}$, and thus also $H^{\prime}=\bigcup_{n} H_{n}^{\prime} \cong H$;
- linear isometric embeddings $\phi_{n}:\left(E_{H_{n+1}, I_{n}} \oplus E_{H_{n+1}, I_{n+1}},\|\cdot\|_{n}\right) \hookrightarrow$ $E_{G, J}$ such that $\phi_{n} \upharpoonright\left(E_{H_{n+1}, I_{n+1}},\|\cdot\|_{n}\right)=\phi_{n+1} \upharpoonright\left(E_{H_{n+1}, I_{n+1}}, \| \cdot\right.$ $\left.\|_{n+1}\right)$, for every n;
- for every n, we have that the actions $H_{n} \curvearrowright E_{H_{n}, I_{n}}$ and $H_{n}^{\prime} \curvearrowright$ $\phi_{n}\left[E_{H-n, I_{n}}\right]$ are isometric.
Then since for every $i \in I$ and $h \in H$, the sequence $\left(x_{h, i}^{n}\right)$ is Cauchy in $\mathbb{G}=\overline{E_{G, J}}$, we may take the limit $z_{h, i} \in \mathbb{G}$. It is readily checked that after identifying the groups H and $H^{\prime} \leq G$, the linear operator from Y into \mathbb{G}, determined by sending $y_{h, i} \in Y$ to $z_{h, i} \in \mathbb{G}$, is an H-equivariant linear isometry.

Finally, let us note here that when one wants to have an action of a countable locally finite group on a universal Banach space by (general affine) isometries which is universal with respect to general actions of locally finite groups on general metric spaces, i.e. for any such an action we have a corresponding equivariant (not necessarily linear) isometric embedding, one can again use the Lipschitz-free Banach spaces.

Let F be the functor which sends a pointed metric space $(X, 0)$ to its Lipschitz-free Banach space $F(X)$. By functoriality, any autoisometry of X which preserves 0 extends to a linear autoisometry of $F(X)$. However, even every autoisometry of X extends to an affine autoisometry of $F(X)$. Indeed, let $\phi: X \rightarrow X$ be some autoisometry. In what follows, we view X as a metric subspace of $F(X)$, i.e. we view every point $x \in X$ as a point in $F(X)$ also. Then the map $x \rightarrow \phi(x)-\phi(0)$
from X to $F(X)$ is an isometric embedding of X into $F(X)$ which preserves 0 , thus extends to a linear isometric embedding from $F(X)$ into $F(X)$. It is easy to check that it is actually onto. Composing it with the translation ' $+\phi(0)$ ' gives the affine autoisometry that extends ϕ.

Moreover, it is easy to check that by the same method every action of a group G on a pointed metric space $(X, 0)$ by isometries extends to the action of G on $F(X)$ by affine isometries; i.e. the cocycle condition is satisfied. Thus from Theorem 2.7 we get the following corollary. We refer to Chapter 5 in [13] for information about the Holmes space.

Corollary 4.7. There exists a universal action of the Hall's group on the Holmes space $F(\mathbb{U})$, the Lipschitz-free Banach space over the Urysohn space, which is universal for general actions on general metric spaces.
4.1. Problems. Although the restriction to locally finite groups is necessary for our purposes there seems to be much more freedom in considering the class of metric spaces on which one wish to act. We considered general metric spaces and general Banach spaces. However, one may restrict the attention to some special subclasses.

Question 4.8. Does there exist a universal action of a universal locally finite group on the Hilbert space?

We expect the answer to be negative. On the other hand, the isometric universality for actions on the Hilbert space may not be the right problem and one could rather consider coarse universality in some sense.

Next, we assume that the answer to the next question is positive.
Question 4.9. Does there exists a universal action of a universal locally finite group on a universal Banach space?

Recall that in Theorem 4.3 we only proved the universality for abelian locally finite groups.

Acknowledgement. The author was supported by the GAČR project 16-34860L and RVO: 67985840.

References

[1] I. Ben Yaacov, Fraïssé limits of metric structures, arXiv:1203.4459 [math.LO] (2012)
[2] Y. Benyamini, J. Lindenstrauss, Geometric nonlinear functional analysis Vol. 1., American Mathematical Society Colloquium Publications, 48. American Mathematical Society, Providence, RI, 2000
[3] M. Doucha, Metrically universal abelian groups, accepted to Trans. Amer. Math. Soc., arXiv:1312.7683 [math.GN], 2014
[4] Y. Glasner, D. Kitroser, J. Melleray, From isolated subgroups to generic permutation representations, J. London Math. Soc. (2016) 94 (3): 688-708
[5] G. Godefroy and N. J. Kalton, Lipschitz-free Banach spaces, Studia Math., 159 (2003), pp. 121-141. Dedicated to Professor Aleksander Pełczyński on the occasion of his 70th birthday
[6] V.I. Gurarij, Spaces of universal placement, isotropic spaces and a problem of Mazur on rotations of Banach spaces, Sibirsk. Mat. Zh. 7 (1966) 1002-1013 (in Russian)
[7] P. Hall, Some constructions for locally finite groups, J. London Math. Soc. 34 1959, 305-319
[8] W. Hodges, Model theory. Encyclopedia of Mathematics and its Applications, 42, Cambridge University Press, Cambridge, 1993
[9] W. Kubiś, Fraïssé sequences: category-theoretic approach to universal homogeneous structures, Ann. Pure Appl. Logic 165 (2014), no. 11, 1755-1811
[10] R. C. Lyndon, P. E. Schupp, Combinatorial Group Theory, Springer-Verlag, Berlin-Heidleberg-New York, 1977
[11] B. H. Neumann, Permutational products of groups, J. Austral. Math. Soc. 1 1959/1960, 299-310
[12] P. Nowak, G. Yu, Large scale geometry, EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zrich, 2012
[13] V. Pestov, Dynamics of infinite-dimensional groups. The Ramsey-DvoretzkyMilman phenomenon. University Lecture Series, 40. American Mathematical Society, Providence, RI, 2006
[14] L. Ribes, P. A. Zalesskii, On the profinite topology on a free group, Bull. London Math. Soc., vol. 25 (1993), 37-43.
[15] C. Rosendal, Finitely approximable groups and actions part II: Generic representations, J. Symbolic Logic 76 (2011), no. 4, 1307-1321
[16] P. S. Urysohn, Sur un espace métrique universel, Bull. Sci. Math. 51 (1927), 43-64, 74-96
[17] N. Weaver, Lipschitz algebras, World Scientific Publishing Co., Inc., River Edge, NJ, 1999

Institute of Mathematics, Academy of Sciences, Prague, Czech rePUBLIC

E-mail address: doucha@math.cas.cz

[^0]: 2010 Mathematics Subject Classification. 20E06, 20F50, 20K10, 22F05, 54E50, 46B04.

 Key words and phrases. group actions, actions by isometries, universal action, amalgamation of actions, Hall's group, Urysohn space, Gurarij space, metric Fraïssé theory.

 The author was supported by the GAČR project 16-34860L and RVO: 67985840.

