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Introduction

Characterization of real-world complex systems such as social networks,
Earth climate or brain connectivity networks increasingly involves the study
of their topological structure using graph theory [Boccaletti, Bullmore].
Among global network properties, small-world [Watts] property, consisting
in existence of relatively short paths together with high clustering of the
network, is one of the most discussed and studied [Bassett].
To establish so-called functional connectivity (FC) network of a system,
links among its regions are commonly quantified by correlation coefficient,
especially when the data are close to Gaussian. Approximately Gaussian
distribution has been recently shown both for brain activity data measured
by functional magnetic resonance imaging (fMRI) [Hlinka, 2011] and for
time series of mean monthly surface air temperatures (SAT) [Hlinka, 2013].
It has been recently shown that the functional connectivity matrices provide
upwardly biased estimates of small-world characteristics, including
small-world characteristics of connectivity graphs estimated from randomly
connected dynamical systems [Hlinka, 2012].

Figure 1: An example of binary functional connectivity matrix (right) generated from random
structural connectivity matrix (left) by thresholding the correlation matrix of AR-model
generated time series (center, light shades of gray indicate higher correlation values). Network
with N = 100 nodes shown. Note that the functional connectivity matrix shows a specific
structure although the entries of the generating structural connectivity matrix were chosen
randomly. See [Hlinka, 2012] for further details.

In this work we investigate the question to what extent may this bias
explain the observations of small-world property in Earth climate or brain
connectivity networks constructed by functional connectivity approach.

Data: Brain (fMRI)

I ∼ 9 minutes, 213 time points of whole brain resting state brain activity
I 26 (12 males, 19-54 years) healthy volunteers
I 3T Siemens Magnetom Trio MRI scanner (GE-EPI, TR/TE=2500/30 ms,

voxel size=3x3x3mm), a 3D high-resolution T1-weighted image was used
for anatomical reference, slice-timing correction, motion correction, spatial
normalization to MNI

I original data ∼ 20000 time series, dimensionality reduced to 90 time series
by averaging over regions from the Automated Anatomical Labeling atlas

I orthogonalized wrt motion parameters, white matter and CSF signal

Data: Earth Climate (SAT)

I 60 years, 720 time points (monthly averages) of Surface Air Temperature
I for purposes of analysis split into 6 decades
I NECP/NCAR reanalysis dataset [Kistler, 2001]
I original data dense resolution (2.5 ◦), i.e. over 10000 time series
I dimensionality reduced by VARIMAX-rotated Principal Component Analysis

to 67 time series containing altogether above 95% of the variability

Methods

I Correlation matrix of the time series was turned to an unweighted graph by
keeping a fixed proportion of the strongest links (20 percent).

I Small-world property was quantified by small-world index [Humphries]
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where ai ,j denotes the link between nodes i , j , ci the local clustering
coefficient and di ,j the length of shortest path among nodes i , j .

Methods II: comparison of data and randomly connected process

I Small-world indices were computed in the same way for data and a
’scrambled interaction’ time series. This was modeled by fitting an vector
autoregressive (VAR) process of order 1 to the BOLD time series:

Xt = c + AXt−1 + et, (1)

(where c is a N × 1 vector of constants, A is a N × N matrix and et is a
N × 1 vector of error terms) and subsequently randomly scrambling the
entries of the autocovariance matrix A.

I To control for the effects of approximation by a VAR process, a realization
of the fitted VAR model with scrambling omitted was also analyzed.

Results

I The FC for VAR-fitted/simulated data were similar to the real data FC,
unlike the FC patterns observed for the ’scrambled interaction’ data (Fig 2).

I In both brain and climate data, wee have observed small-world
indexes of FC robustly higher than 1, i.e. stronger characteristics
of small-world than in a corresponding random graph.

I However, this was also tru for FC of a realization of a randomly
connected vector autoregressive processes (’scrambled
interaction’).

I Brain: the mean small-world index was 2.50/2.43/2.22 (real
data/VAR-model data/’scrambled interaction’ data), see 3(a).

I Climate: the mean small-world index was 1.52/1.49/2.59 (real
data/VAR-model data/’scrambled interaction’ data), see 3(b).
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Figure 2: Example FC matrices. Left: raw. Right: thresholded to density 0.2
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Figure 3: Small-world index for each dataset, the corresponding VAR model realization and
realization of VAR model with randomized matrix A. Left: brain (fMRI). Right: climate (SAT)

Discussion and conclusions

I The small-world properties of brain fMRI FC graph are fairly well reproduced
by a matching randomly connected multivariate autoregressive process, and
therefore partially attributable to the standard FC construction method.

I The small-world properties of the climate SAT network constructed from
PCA component time series were even lower than for a randomised VAR
model. The role of the specific dimensionality reduction step in this
phenomena needs to be assessed.
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