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Dynamics of real fluids

No fluid is perfect Real fluids are:

three dimensional

viscous

heat conductive

compressible

obeying the basic laws of
thermodynamics
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Long time behavior of energetically closed systems

Die Energie der Welt ist constant;
Die Entropie der Welt

strebt einem Maximum zu

Rudolph Clausius, 1822-1888
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Mathematical model

State variables

Mass density

% = %(t, x)

Absolute temperature

ϑ = ϑ(t, x)

Velocity field

u = u(t, x)

Thermodynamic functions

Pressure

p = p(%, ϑ)

Internal energy

e = e(%, ϑ)

Entropy

s = s(%, ϑ)

Transport

Viscous stress

S = S(ϑ,∇xu)

Heat flux

q = q(ϑ,∇xϑ)
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Field equations

Claude Louis
Marie Henri
Navier
[1785-1836]

Equation of continuity

∂t% + divx(%u) = 0

Momentum balance

∂t(%u) + divx(%u⊗ u) +∇xp(%, ϑ) = divxS + %f

George
Gabriel
Stokes
[1819-1903]

Entropy production

∂t(%s(%, ϑ)) + divx(%s(%, ϑ)u) + divx

(q

ϑ

)
= σ

σ = (≥)
1

ϑ

(
S : ∇xu−

q · ∇xϑ

ϑ

)



Constitutive relations

Joseph Fourier [1768-1830]

Fourier’s law

q = −κ(ϑ)∇xϑ

Isaac Newton
[1643-1727]

Newton’s rheological law

S = µ(ϑ)

(
∇xu +∇t

xu−
2

3
divxu

)
+ η(ϑ)divxuI
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Gibbs’ relation

Willard Gibbs
[1839-1903]

Gibbs’ relation:

ϑDs(%, ϑ) = De(%, ϑ) + p(%, ϑ)D

(
1

%

)

Thermodynamics stability:

∂p(%, ϑ)

∂%
> 0,

∂e(%, ϑ)

∂ϑ
> 0
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Boundary conditions

Impermeability

u · n|∂Ω = 0

No-slip

utan|∂Ω = 0

No-stick

[Sn]× n|∂Ω = 0

Thermal insulation

q · n|∂Ω = 0
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Weak solutions to the complete system

Equation of continuity holds in the sense of distributions
(renormalized equation also satisfied)

Momentum balance holds in the sense of distributions

Entropy production equation holds in the sense of distributions,
entropy production rate satisfies the inequality

The system is augmented by

Total energy balance

d
dt

∫
Ω

[
1

2
%|u|2 + %e(%, ϑ)

]
dx =

∫
Ω

%f · u dx∫
Ω

%f · u dx =
d
dt

∫
Ω

%F dx if f = ∇xF (x)
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Technical hypotheses

Pressure

p(%, ϑ) = ϑ5/2P
( %

ϑ3/2

)
+

a

3
ϑ4

P(0) = 0, P ′(Z ) > 0, P(Z )/Z 5/3 → p∞ > 0 as Z →∞

Internal energy

e(%, ϑ) =
3

2
ϑ

ϑ3/2

%
P

( %

ϑ3/2

)
+

a

%
ϑ4

Transport coefficients

µ(ϑ) ≈ (1 + ϑα), α ∈ [1/2, 1], κ(ϑ) ≈ (1 + ϑ3)
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Weak vs. strong solutions

Local existence of strong solutions

Strong (classical) solutions exist on a (possibly) short time interval
for general data and globally for “small” data [Matsumura and
Nishida, Valli and Zajaczkowski]

Global existence of weak solutions

Weak (distributional) solutions exist globally in time [EF and
A.Novotný]

Weak strong uniqueness

A weak solution coincides with the strong solution emanating from
the same initial data as long as the latter exists [EF and A.Novotný]
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Conservative vs. dissipative system

Conservative character

total mass

∫
Ω

%(t, ·) dx = M0,

total energy

∫
Ω

(
1

2
%|u|2 + %e(%, ϑ)− %F

)
(t, ·) dx = E0

Dissipative character

total entropy

∫
Ω

%s(%, ϑ) dx = S(t) ↗ S∞

Eduard Feireisl Weak vs. strong



Equilibrium solutions

Conservative driving force

f = ∇xF , F = F (x)

Total energy conservation

d
dt

∫
Ω

(
1

2
%|u|2 + %e(%, ϑ)− %F

)
dx = 0

Static solutions

∇xp(%̃, ϑ) = %̃∇xF , ϑ > 0 constant

Total mass and energy∫
Ω

%̃ dx = M0,

∫
Ω

(
%̃e(%̃, ϑ)− %̃F

)
dx = E0
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Total dissipation balance

Ballistic free energy

HΘ(%, ϑ) = %
(
e(%, ϑ)−Θs(%, ϑ)

)
Relative entropy

E(%, ϑ,u|%̃, ϑ)

=

∫
Ω

(
1

2
%|u|2 + Hϑ(%, ϑ)− ∂%Hϑ(%̃, ϑ)(%− %̃)− Hϑ(%̃, ϑ)

)
dx

Total dissipation balance

d
dt
E(%, ϑ,u|%̃, ϑ) +

∫
Ω

σ dx = 0

%̃, ϑ − equilibrium state
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Thermodynamic stability

Positive compressibility and specific heat

∂p(%, ϑ)

∂%
> 0,

∂e(%, ϑ)

∂ϑ
> 0

Coercivity of the ballistic free energy

% 7→ HΘ(%,Θ) strictly convex

ϑ 7→ HΘ(%, ϑ) decreasing for ϑ < Θ and increasing for ϑ > Θ
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Long-time behavior for conservative driving forces

f = ∇xF , F = F (x)

%(t, ·) → %̃ in L5/3(Ω) as t →∞

ϑ(t, ·) → ϑ in L4(Ω) as t →∞

(%u)(t, ·) → 0 in L1(Ω;R3) as t →∞
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Attractors

Hypotheses ∫
Ω

%(t, ·) dx > M0, t > 0∫
Ω

(
1

2
%|u|2 + %e(%, ϑ)− %F

)
(t, ·) dx < E0, t > 0∫

Ω

%s(%, ϑ)(t, ·) dx > S0, t > 0

Conclusion

‖%(t, ·)− %̃‖L5/3(Ω) < ε, ‖ϑ(t, ·)− ϑ‖L4(Ω) < ε for t > T (ε)

‖%u(t, ·)‖L1(Ω;R3) < ε for t > T (ε)
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Uniform decay of density oscillations

∂t%ε + uε · ∇x%ε = −divxuε %ε

%ε → %, %ε log(%ε) → % log(%) weakly in L1

d(t) =

∫
Ω

(
% log(%)− % log(%)

)
(t, ·) dx

Density oscillations decay

∂td(t) + Ψ(d(t)) ≤ 0

Ψ(0) = 0, Ψ(d) > 0 for d > 0.
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General time-dependent driving forces

f = f(t, x), |f(t, x)| ≤ F

EITHER

E (t) ≡
∫

Ω

(
1

2
%|u|2 + %e(%, ϑ)

)
(t, ·) dx →∞ as t →∞

OR

|E (t)| ≤ E for a.a. t > 0
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In the case E (t) ≤ E , each sequence of times τn →∞ contains a
subsequence such that

f(τn + ·, ·) → ∇xF weakly-(*) in L∞((0, 1)× Ω),

where F = F (x) may depend on {τn}
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STEP 1:

Assume that E (τn) < E for certain τn →∞ ⇒ total entropy
remains bounded ⇒ integral of entropy production bounded

STEP 2:

For τn →∞ we have ∇xp(%, ϑ) ≈ %f, ϑ ≈ ϑ, meaning, f ≈ ∇xF

STEP 3:

The energy cannot “oscillate” since bounded entropy static solutions
have bounded total energy
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Corollaries

f = f(x) 6= ∇xF

⇒

E (t) →∞

f = f(t, x) (almost) periodic in time, f 6= ∇xF , F = F (x)

⇒

E (t) →∞
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Rapidly oscillating driving forces

Hypotheses:

f = ω(tβ)w(x),w ∈ W 1,∞(Ω; R3), β > 2

ω ∈ L∞(R), sup
τ>0

∣∣∣∣∫ τ

0

ω(t) dt

∣∣∣∣ < ∞

Conclusion:

(%u)(t, ·) → 0 in L1(Ω;R3) as t →∞

%(t, ·) → % in L5/3(Ω) as t →∞

ϑ(t, ·) → ϑ in L4(Ω) as t →∞
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Rapidly oscillating growing driving forces

Hypotheses:

f = tδω(tβ)w(x),w ∈ W 1,∞(Ω; R3)

δ > 0, β − 2δ > 2 or δ ≤ 0, β − δ > 2

ω ∈ L∞(R), sup
τ>0

∣∣∣∣∫ τ

0

ω(t) dt

∣∣∣∣ < ∞

Conclusion:

(%u)(t, ·) → 0 in L1(Ω;R3) as t →∞

%(t, ·) → % in L5/3(Ω) as t →∞

ϑ(t, ·) → ϑ in L4(Ω) as t →∞
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Time-periodic solutions and boundary dissipation

Dissipative boundary conditions

u|∂Ω = 0, q · n = d(x)(ϑ− ϑ̃)

Time periodic forcing

f(t + ω, ·) = f(t, ·)

Time periodic solutions

%(t + ω, ·) = %(t, ·), ϑ(t + ω, ·) = ϑ(t, ·), u(t + ω, ·) = u(t, ·)
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