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Resumé

The book [1] submitted as the dissertation thesis deals systematically with mo-
ments and moment invariants of 2D and 3D images and with their use in object
description, recognition, and in other applications. It introduces basic terms
and concepts of object recognition such as feature spaces and related norms,
equivalences, and space partitions. Invariant based approaches are introduced
together with normalization methods. Eight basic categories of invariants are
reviewed together with illustrative examples of their use. It also recalls main
supervised and unsupervised classifiers as well as related topics of classifier
fusion and reduction of the feature space dimensionality.

First, 2D moment invariants with respect to the simplest spatial transfor-
mations – translation, rotation, and scaling are derived. A general method
for constructing invariants of arbitrary orders by means of complex moments
is presented. We prove the existence of a relatively small basis of invariants
that is complete and independent. We also show an alternative approach –
constructing invariants via normalization. We discuss the difficulties with the
recognition of symmetric objects poses and present moment invariants suitable
for such cases.

3D moment invariants with respect to translation, rotation, and scaling
are introduced. We present the derivation of the invariants by means of three
approaches – the tensor method, the expansion into spherical harmonics, and
the object normalization. Similarly as in 2D, the symmetry issues are also
discussed there.

Four main approaches showing how to derive moment invariants to the
affine transformation of spatial coordinates in 2D are presented – the graph
method, the method of normalized moments, the transvectants, and the so-
lution of the Cayley-Aronhold equation. Relationships between the invariants
produced by different methods are mentioned, and the dependency among the
invariants is studied. We describe a technique used for elimination of reducible
and dependent invariants. Numerical experiments illustrating the performance
of the affine moment invariants are carried out, and a generalization to color
images, vector fields, and 3D images is proposed.

A completely different kind of moment invariants is invariants to image
blurring. We introduce the theory of projection operators, which allows us
to derive invariants with respect to image blur regardless of the particular
convolution kernel, provided it has a certain type of symmetry. We also derive
so-called combined invariants, which are invariant to composite geometric and
blur degradations. Knowing these features, we can recognize objects in the
degraded scene without any restoration/deblurring.

Various types of orthogonal moments are presented. The moments orthogo-
nal on a rectangle/cube as well as the moments orthogonal on a unit disk/sphere
are described. We review Legendre, Chebyshev, Gegenbauer, Jacobi, Laguerre,
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Gaussian-Hermite, Krawtchouk, dual Hahn, Racah, Zernike, pseudo-Zernike,
and Fourier-Mellin polynomials and moments. The use of the moments or-
thogonal on a disk in the capacity of rotation invariants is discussed. Image
reconstruction of an image from its moments is discussed. We explain, why
orthogonal moments are more suitable for reconstruction than geometric ones,
and a comparison of reconstructing power of different orthogonal moments is
presented.

Computational issues are studied. Since the computing complexity of all
moment invariants is determined by the computing complexity of the moments,
efficient algorithms for moment calculations are of prime importance. There
are basically two major groups of methods for moment computation. The
first one consists of methods that attempt to decompose the object into non-
overlapping regions of a simple shape, the moments of which can be computed
very fast. The moment of the object is then calculated as a sum of the moments
of all regions. The other group is based on Green’s theorem, which evaluates
the integral over the object by means of a less-dimensional integration over
the object boundary. We present efficient algorithms for binary and graylevel
objects and for geometric as well as for selected orthogonal moments.

Various applications of moments and moment invariants in image analy-
sis are mentioned. We demonstrate the use of the moments in image reg-
istration, object recognition, medical imaging, content-based image retrieval,
focus/defocus measurement, forensic applications, robot navigation, digital wa-
termarking, and others.
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1 Introduction

This thesis is brief guide to the book [1] submitted as the dissertation the-
sis. First, basic terms as “image analysis”, “invariants”, and “moments” are
introduced.

1.1 Image analysis by computers

Image analysis in a broad sense is a many-step process the input of which is
an image while the output is a final (usually symbolic) piece of information
or a decision. Typical examples are localization of human faces in the scene
and recognition (against a list or a database of persons) who is who, finding
and recognizing road signs in the visual field of the driver, and identification of
suspect tissues in a CT or MRI image. A general image analysis flowchart is
shown in Fig. 1 and an example what the respective steps look like in the car
licence plate recognition is shown in Fig. 2.

The first three steps of image analysis – image acquisition, preprocessing,
and object segmentation/detection – are comprehensively covered in classical
image processing textbooks [2–6], in recent specialized monographs [7–9] and
in thousands of research papers. This work is devoted to one particular family
of features which are based on image moments.

In image acquisition, the main theoretical questions are how to choose the
sampling scheme, the sampling frequency and the number of the quantization
levels such that the artifacts caused by aliasing, moire, and quantization noise
do not degrade the image much while keeping the image size reasonably low
(there are of course also many technical questions about the appropriate choice
of the camera and the spectral band, the objective, the memory card, the
transmission line, the storage format, and so forth, which we do not discuss
here).

Since real imaging systems as well as imaging conditions are usually im-
perfect, the acquired image represents only a degraded version of the original
scene. Various kinds of degradations (geometric as well as graylevel/color) are
introduced into the image during the acquisition process by such factors as
imaging geometry, lens aberration, wrong focus, motion of the scene, system-
atic and random sensor errors, noise, etc. (see Fig. 3 for the general scheme and
an illustrative example). Removal or at least suppression of these degradations
is a subject of image preprocessing. Historically, image preprocessing was one
of the first topics systematically studied in digital image processing (already
in the very first monograph [10] there was a chapter devoted to this topic)
because even simple preprocessing methods were able to enhance the visual
quality of the images and were feasible on old computers. The first two steps,
image acquisition and preprocessing, are in the literature often categorized into
low-level processing. The characteristic feature of the low-level methods is that
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Figure 1: General image analysis flowchart.

Figure 2: An example of the car licence plate recognition.
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Figure 3: Image acquisition process with degradations.
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both their input and output are digital images. On the contrary, in high-level
processing, the input is a digital image (often an output of some preprocess-
ing) while the output is a symbolic (i.e. high-level) information, such as the
coordinates of the detected objects, the list of boundary pixels, etc.

Object detection is a typical example of high-level processing. The goal is
to localize the objects of interest in the image and separate (segment) them
from the other objects and from the background. Hundreds of segmentation
methods have been described in the literature. Some of them are universal, but
most of them were designed for specific families of objects such as characters,
logos, cars, faces, human silhouettes, roads, etc. A good basic survey of object
detection and segmentation methods can be found in [6] and in the references
therein.

Feature definition and computing is probably the most challenging part of
image analysis. The features should provide an accurate and unambiguous
quantitative description of the objects. The feature values are elements of
the feature space which should be for the sake of efficient computation of low
dimensionality. The design of the features is highly dependent on the type of
objects, on the conditions under which the images have been acquired, on the
type and the quality of preprocessing, and on the application area. There is no
unique “optimal” solution.

Classification/recognition of the object is the last stage of the image analysis
pipeline. It is entirely performed in the feature space. Each unknown object,
now being represented by a point in the feature space, is classified as an element
of a certain class. The classes can be specified in advance by their representative
samples, which create a training set, in such a case we speak about supervised
classification. Alternatively, if no training set is available, the classes are formed
from the unknown objects based on their distribution in the feature space.
This case is called unsupervised classification or clustering, and in visual object
recognition this approach is rare. Unlike the feature design, the classification
algorithms are application independent – they consider neither the nature of the
original data nor the physical meaning of the features. Classification methods
are comprehensively reviewed in the famous Duda-Hart-Stork book [11] and in
the most recent monograph [12]. The use of the classification methods is not
restricted to image analysis. We can find numerous applications in artificial
intelligence, decision making, social sciences, statistical data analysis, and in
many other areas beyond the scope of this book.

1.2 Invariants

The differences among objects in one class can be described by some operator
D(f) of the image f . The invariant is a functional I(f), which depends on the
class of the object in f , but does not depend on particular appearance of f . It
means I(f) = I(D(f)) for any f and any instance of D.
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The operator D(f) can be geometric transformation. Simple examples of
the invariants under a similarity transformation are then angles and ratios,
the object size is invariant to rotation, and the property of two lines “to be
parallel” is invariant under affine transformation.

The invariant should also be discriminative, i.e. it should have distinct
values on objects that belong to distinct classes. The trivial feature I(f) = 0
is perfectly invariant, but completely useless.

Other important properties of the invariants are independency and com-
pleteness. The set of invariants should not include any invariant dependent on
others that does not bring any new information about the object. The system
of the invariants should be so extendable that if we theoretically know all their
values, we would be able to reconstruct the object (up to the operator D(f)).

1.3 Moments

The moment M
(f)
p of image f is defined as

M (f)
p =

∫

Ω

πp(x)f(x)dx, (1)

where {πp(x)} is a d-variable polynomial basis of the space of image functions
defined on Ω and p = (p1, · · · , pd) is a multi-index of non-negative integers,
which show the highest power of the respective variables in πp(x). The number

|p| = ∑d
k=1 pk is called the order of the moment. Depending on the polyno-

mial basis, we recognize various systems of moments. The standard power
basis πp(x) = xp leads to geometric moments. Other important types of the
moments are complex moments and various orthogonal moments.

Another way of obtaining features is integral transformation (e.g. Fourier
transformation, Laplace transformation, etc.). Its definition is formally similar
to (1), but the indices (parameters) pk are real values and {πp(x)} are some
general functions.

Between the moments and the integral transformations, there is a termi-
nological gap. The term for the case, when pk are integers and {πp(x)} are
not polynomials, is missing. Therefore some authors extend the definition to
various “moments in wider sense”. The basis functions then include various
scalar factors and weighting functions in the integrand or even completely non-
polynomial functions.
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2 2D Moment Invariants to Translation, Rota-

tion, and Scaling

The invariance with respect to translation, rotation, and scaling (TRS – some-
times called similarity transformation) is widely required in almost all practical
applications, because the object should be correctly recognized regardless of its
particular position and orientation in the scene and of the object-to-camera
distance. We can use both geometric moments and complex moments for the
construction of TRS invariants. The 2D geometric moments are defined

mpq =

∞
∫

−∞

∞
∫

−∞

xpyqf(x, y)dxdy. (2)

2.1 Invariants to translation and scaling

Invariance to translation can be achieved by shifting the coordinate origin into
the object centroid. Such moments are called central

µpq =

∞
∫

−∞

∞
∫

−∞

(x − xc)
p(y − yc)

qf(x, y)dxdy, (3)

where xc = m10/m00, yc = m01/m00 are the coordinates of the centroid.
Scaling invariance is obtained by a proper normalization of each moment,

we normalize most often by a proper power of µ00

νpq =
µpq

µw
00

, where w =
p+ q

2
+ 1. (4)

2.2 Invariants to rotation

The complex moment cpq is obtained, when we choose the polynomial basis of
complex monomials

cpq =

∞
∫

−∞

∞
∫

−∞

(x+ iy)p(x− iy)qf(x, y)dxdy =

∞
∫

0

2π
∫

0

rp+q+1ei(p−q)θf(r, θ)dθdr.

(5)
The rotation invariants can be constructed from them as an arbitrary product,
where the sum of first indices equals the sum of the second indices. The com-
plete and independent set (basis) of 2D rotation invariants can be constructed
as

Φ(p, q) = cpqc
p−q
q0p0

, (6)
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where p ≥ q, p + q ≤ r, p0 and q0 are arbitrary indices such that p0 + q0 ≤ r,
p0− q0 = 1 and cp0q0 6= 0 for all admissible images. Usually, we use p0 = 2 and
q0 = 1. An example of the set composed from the moments of the 2nd and 3rd
orders is

Φ(1, 1) = c11, Φ(2, 1) = c21c12, Φ(2, 0) = c20c
2
12, Φ(3, 0) = c30c

3
12. (7)

It contains six real-valued invariants, Φ(2, 0) and Φ(3, 0) are complex. There are
other possibilities, how to achieve the rotation invariance, e.g. tensor method
from geometric moments or normalization.

2.3 Moment invariants of vector fields

Some images have more than one value in each pixel, for example color images,
multispectral images, or vector fields. The vector fields are often used for
description of various flows, Fig. 4 is an example of wind. The vector fields are
specific by connection of the rotation in coordinates with the rotation of the
vectors (so called total rotation), we must then modify the construction of the
invariants. The complex moments are computed from the x and y components

Figure 4: The wind velocity forecast for the Czech Republic (courtesy of the
Czech Hydrometeorological Institute, the numerical model Aladin). The longer
dash is constant part of the wind, the shorter dash expresses perpendicular
squalls. The figure actually represents two vector fields.

of the vector field f(x) = (f1(x, y), f2(x, y))
T as

c(f)pq = c(f1)pq + ic(f2)pq .
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The sum of the second indices in the product must then be higher than the
sum of the first indices by the number of the moments, e.g. c12, c00c02, c10c

2
02

or c20c
3
02. The moment c00 is not invariant to the total rotation of the vector

field, it cannot be used as a sole normalization factor. Instead, we have to use
some rotation invariant for normalization, e.g. (c00c02)

(p+q+3)/8.

2.4 Rotation invariants of symmetric objects

In many applied tasks, we want to classify shapes having some kind of symme-
try. Different classes may or may not have the same symmetry, which makes
the task even more difficult. Moment-based classifiers suffer from the fact that
some moments of symmetric shapes are zero and corresponding invariants do
not provide any discrimination power. That is why it is necessary to design
special invariants for each type of symmetry [13].

If f(x, y) has an N–fold rotation symmetry (N finite), we obtain non-zero
cpq only when (p − q)/N is an integer. If f(x, y) has circular symmetry, then
only cpp are non-zero. We should only use the invariants that bring some
information; the invariants that are zero for all admissible objects should be
omitted.

3 3D Moment Invariants to Translation, Rota-

tion, and Scaling

Sensors of 3D images can be divided into two groups. Medical imaging devices
(MRI, CT) provide full 3D graylevel images of the object represented by a 3D
array of voxels. The rangefinders measure only the distance of each point on
the object surface from the sensor and cannot see inside the object. The result
is 3D binary image often represented as a triangulated surface.

While translation and scaling invariance of 3D moments can be achieved
by similar way as in 2D, i.e. by normalization to scaling by zeroth-order mo-
ment and by normalization to translation by first-order moments, achievement
of rotation invariance is more difficult. We can use either tensor method or
complex moments.

3.1 Tensor method

The tensor method [14] is based on moment tensor

M i1i2···ik =

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

xi1xi2 · · ·xikf(x1, x2, x3)dx1dx2dx3, (8)
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where x1 = x, x2 = y and x3 = z. If p indices equal 1, q indices equal 2 and r
indices equal 3, then M i1i2···ik = mpqr. The definition can be easily modified
to the different number of dimensions.

Generally, we can distinct two types of tensors, affine and Cartesian. The
affine tensors describe behavior under affine transformation. They have two
types of indices: covariant and contravariant. They are suitable for derivation
of affine invariants. The Cartesian tensors have one type of indices and they are
suitable for derivation of rotation invariants (generally invariants to orthogonal
transformation). The advantage of the tensor method is easy use in any number
of dimensions.

The moment tensor can be used both as affine (then it has all indices con-
travariant) and as Cartesian. Then each total contraction of a Cartesian tensor
or of a product of Cartesian tensors is rotation invariant. We can compute the
total contraction of the moment tensor product, when each index is included
just twice in it.

A simple example of such total contraction is Mii. The corresponding in-
variant is

Φ3D
1 = (µ200 + µ020 + µ002)/µ

5/3
000.

Each invariant has its 2D counterpart. Here it is

Φ2D
1 = (µ20 + µ02)/µ

2
00.

Another example is MijMij , which yields

Φ3D
2 = (µ2

200 + µ2
020 + µ2

002 + 2µ2
110 + 2µ2

101 + 2µ2
011)/µ

10/3
000 .

Its 2D counterpart is

Φ2D
2 = (µ2

20 + µ2
02 + 2µ2

11)/µ
4
00.

Each invariant generated by the tensor method can be represented by a
connected graph, where each moment tensor corresponds to a node and each
index corresponds to an edge of the graph. The graphs can include self-loops,
see Fig. 5a.

3.2 The number of the independent invariants

An intuitive rule suggests that the number ni of independent invariants created
from nm independent measurements (i.e. moments in our case) is

ni = nm − np, (9)

where np is the number of independent constraints that must be satisfied. In
most cases, we estimate np as the number of transformation parameters. In the
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(a) (b)

Figure 5: The generating graphs of (a) both Φ2D
1 and Φ3D

1 and (b) both Φ2D
2

and Φ3D
2 .

case of 2D TRS, np = 4 (scaling, two translations and rotation). In the case
of 3D, np = 7 (scaling, three translations and three rotations). The number of
moments of orders from 0 to r equals

nm =

(

r + d

d

)

, (10)

where d is the number of dimensions of the space, i.e. d = 2 in 2D and d = 3 in
3D. Ideally, we should only use just ni independent invariants, but sometimes,
it is difficult to prove their independence.

3.3 Rotation invariants from 3D complex moments

3D complex moments provide an alternative to the tensor method [15]. The def-
inition (5) of 2D complex moments in polar coordinates contains the harmonic
angular function ei(p−q)θ. In 3D, analogous functions are spherical harmonics.
They are defined as

Y m
ℓ (θ, ϕ) =

√

(2ℓ+ 1)

4π

(ℓ −m)!

(ℓ +m)!
Pm
ℓ (cos θ)eimϕ, (11)

where the degree ℓ = 0, 1, 2, . . . , the order m = −ℓ,−ℓ + 1, . . . , ℓ, and Pm
ℓ (x)

is an associated Legendre function. The first few spherical harmonics can be
seen in Fig. 6. The 3D complex moments are defined as

cmsℓ =

2π
∫

0

π
∫

0

∞
∫

0

̺s+2Y m
ℓ (θ, ϕ)f(̺, θ, ϕ) sin θd̺dθdϕ, (12)

where s is the order of the moment, ℓ is latitudinal repetition and m is longi-
tudinal repetition.
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(a)

(b)

(c)

(d)

Figure 6: The spherical harmonics. (a) ℓ = 0, m = 0, (b) ℓ = 1, m = −1, 0, 1,
(c) ℓ = 2, m = −2,−1, 0, 1, 2, (d) ℓ = 3, m = −3,−2,−1, 0, 1, 2, 3. Imaginary
parts are displayed for m < 0 and real parts for m ≥ 0.

The moment c0s0 itself is an invariant. For other invariants we have to
construct composite complex moment forms

cs(ℓ, ℓ
′)kj =

min(ℓ,k+ℓ′)
∑

m=max(−ℓ,k−ℓ′)

〈ℓ, ℓ′,m, k −m|j, k〉 cmsℓ ck−m
sℓ′ , (13)

where 〈ℓ, ℓ′,m, k −m|j, k〉 are Clebsch-Gordan coefficients. The form cs(ℓ, ℓ)
0
0

is then 3D rotation invariant. We can further combine the composite complex
moment forms and the complex moments

cs(ℓ, ℓ
′)jcs′ =

1√
2j + 1

j
∑

k=−j

(−1)j−kcs(ℓ, ℓ
′)kj c

−k
s′j (14)

or two composite complex moment forms

cs(ℓ, ℓ
′)jcs′(ℓ

′′, ℓ′′′)j =
1√

2j + 1

j
∑

k=−j

(−1)j−kcs(ℓ, ℓ
′)kj cs′(ℓ

′′, ℓ′′′)−k
j . (15)

An example of the feature set for the orders two and three is c020, c2(2, 2)
0
0,

c2(2, 2)2c2, c3(3, 3)
0
0, c3(1, 1)

0
0, c3(3, 3)2c2, c3(3, 1)2c2, c3(1, 1)2c2,

c3(3, 3)2c2(2, 2)2, c
2
3(3, 3)2, c3(3, 3)2c3(3, 1)2, c3(3, 3)2c3(1, 1)2, and

c3(3, 1)2c3(1, 1)2.
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3.4 Invariants of symmetric objects

Similarly as in 2D, the 3D objects having some kind of symmetry often cause
difficulties, because some of their moments are zero. While in 2D, we have
2 infinite sequences (rotational and dihedral) and the circular symmetry, in
3D, there are 7 infinite sequences (only some of them have special names as
prismatic or anti-prismatic), 7 separate groups of symmetries of polyhedra
(e.g. tetrahedral or octahedral) and 3 infinite symmetries (conic, cylindrical
and spherical). A detailed comprehensive study of this problem was published
in [16].

4 Affine moment invariants

The affine moment invariants are invariant with respect to affine transformation
of the spatial coordinates

x′ = Ax+ b. (16)

Most of the traditional photographs are central projections of 3D world onto a
plane, which is modeled by a perspective projection. The perspective projection
is hard to work with and the affine transformation often serves as a reasonably
accurate and simple approximation.

4.1 Affine moment invariants generated by graphs

The graph method [17] can be used for generation of the affine moment invari-
ants. It is based on integration of “cross-products”

C12 = x1y2 − x2y1

of pairs of points (x1, y1), (x2, y2) over an image. These integrals can be ex-
pressed in terms of moments and they yield affine invariants. Having r > 1
points (x1, y1), · · · , (xr , yr), we define functional I depending on r and on non-
negative integers nkj as

I(f) =

∞
∫

−∞

· · ·
∞
∫

−∞

r
∏

k,j=1

C
nkj

kj ·
r
∏

i=1

f(xi, yi)dxidyi. (17)

After scaling normalization, I(f) is the affine invariant.
Two examples: for r = 2 and n12 = 2

I(f) =

∞
∫

−∞

· · ·
∞
∫

−∞

(x1y2 − x2y1)
2f(x1, y1)f(x2, y2)dx1dy1dx2dy2 =

= 2(m20m02 −m2
11).

(18)
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(a) (b)

Figure 7: The graphs corresponding to the invariants (a) (18) and (b) (19).

The corresponding affine invariant is I1 = (µ20µ02−µ2
11)/µ

4
00. Second example:

for r = 3 and n12 = 2, n13 = 2, n23 = 0 we obtain

I(f) =

∞
∫

−∞

· · ·
∞
∫

−∞

(x1y2 − x2y1)
2(x1y3 − x3y1)

2

f(x1, y1)f(x2, y2)f(x3, y3)dx1dy1dx2dy2dx3dy3 =
= m2

20m04 − 4m20m11m13 + 2m20m02m22 + 4m2
11m22 − 4m11m02m31+

+m2
02m40.

(19)
The normalizing factor is in this case µ7

00.
The affine moment invariant generated by the formula (17) can be repre-

sented by a graph, where each point (xk, yk) corresponds to a node and each
cross-product Ckj corresponds to an edge of the graph. The graphs correspond-
ing to our examples are in Fig. 7. Unlike the 3D rotation invariants, this graph
representation cannot contain self-loops.

4.2 Derivation of the affine moment invariants from the

Cayley-Aronhold equation

There is another method for derivation of the affine moment invariants [18]. It
relies on a decomposition of the affine transformation into elementary transfor-
mations: horizontal and vertical translation, scaling, stretching, horizontal and
vertical skewing and possible mirror reflection. Each of these transformations
imposes one constraint on the invariants. The invariance to translation and
scaling can be achieved traditionally by centroid and m00. The invariance to
stretching is provided by the constraint that the sum of the first indices in each
term equals the sum of the second indices.

If a function I should be invariant to the horizontal skew, then its derivative
with respect to the skew parameter t must be zero. From this constraint, we
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can derive the Cayley-Aronhold differential equation

∑

p

∑

q

pµp−1,q+1
∂I

∂µpq
= 0. (20)

We can obtain the affine moment invariant as a solution of this equation.

5 Orthogonal Moments

Neither the geometric nor the complex moments are orthogonal, what leads to
high correlation between the moments of adjacent orders. The most significant
digits of the geometric and complex moments are highly correlated with the
moments of lower orders, while their information contribution is concentrated
in the less significant digits. If their computer representation is not sufficiently
precise, these digits are forgotten and their contribution is lost. The solution
in some applications can be use of orthogonal (OG) moments.

The OG moments use an orthogonal polynomials as the basis functions.
Polynomial basis {πp(x)} is orthogonal (possibly with weight function w(x)) if

∫

Ω

w(x)πp(x)πq(x)dx =

{

0 for p 6= q

ng(p) for p = q.
(21)

If ng(p) = 1 for any p, the polynomial basis is called orthonormal. The set
Ω ⊂ R

d is called the area of orthogonality. We can divide OG moments into
two basic groups. The polynomials orthogonal on a square/cube and the poly-
nomials orthogonal on a disk/sphere.

5.1 2D moments orthogonal on a square

These moments are based on products of 1D polynomials in x and y

Mpq = npnq

∫∫

Ω

πp(x)πq(y)f(x, y)dxdy. (22)

There is a group of polynomials orthogonal on a finite interval (usually 〈−1, 1〉):
Legendre polynomials (see Fig. 8a) with unit weight function w(x) = 1, Cheby-
shev polynomials of first (they have unit amplitudes, see Fig. 8b) and second
kinds with weight functions 1/

√
1− x2, respectively

√
1− x2. Their general-

ization is Gegenbauer polynomials with one parameter.The Jacobi polynomials
are further generalization with two parameters. Laguerre polynomials are spe-
cific by the area of orthogonality 〈0,∞〉. Hermite polynomials orthogonal on
〈−∞,∞〉 are more important in image processing.
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Figure 8: The graphs of the OG polynomials up to the 6th degree: (a) Legendre
polynomials, (b) Chebyshev polynomials of the first kind.

5.2 Orthogonal moments of a discrete variable

A special group of polynomials fulfill the condition of discrete orthogonality.
Given N points x1 < x2 < . . . < xN , the discrete orthogonality condition in
1D is

N
∑

ℓ=1

wℓ πm(xℓ)πn(xℓ) = 0 for m 6= n. (23)

The discrete moments are then defined as

Mp =

N
∑

ℓ=1

πp(xℓ)f(xℓ).

Since the points xℓ may stand for sampling grid nodes, the discrete orthog-
onality is particularly suitable in digital signal/image analysis applications.
The examples of the discrete OG moments used in image analysis are discrete
Chebyshev moments, Krawtchouk moments, Hahn moments, dual Hahn mo-
ments and Racah moments.

5.3 2D moments orthogonal on a disk

These moments are constructed as products of a radial and angular factor

vpq = npq

2π
∫

0

1
∫

0

Rpq(r)e
−iqθf(r, θ)rdrdθ p = 0, 1, 2, . . . , q = −p, . . . , p ,

(24)
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where npq is some normalizing factor, (r,θ) are polar coordinates, Rpq(r) is
a 1D radial polynomial and e−iqθ is an angular part of the respective basis
function. The area of orthogonality is usually a unit disk. To calculate the
moments, image f must be appropriately scaled and shifted such that it is
fully contained in Ω. The typical moments orthogonal on a disk are Zernike
moments, Fourier-Mellin moments, Chebyshev-Fourier moments and Jacobi-
Fourier moments.

5.4 Rotation invariants from OG moments

The moments orthogonal on a disk can be easily normalized to rotation. We
took some moment of low order vprqr (typically v31 for non-symmetric objects)
and compute the normalizing phase from it

θ =
1

qr
arctan

(Im(vprqr )

Re(vprqr )

)

. (25)

The normalized moments are then rotation invariants

v̂pq = vpqe
−iqθ. (26)

In the case of Hermite moments, we have another possibility. The 2D
Hermite polynomials Hpq(x, y) ≡ Hp(x)Hq(y) change under rotation by angle
α in the same way as the monomials xpyq. It implies that if we substitute
the geometric moments in a rotation invariant by the corresponding Hermite
moments, we obtain also a rotation invariant.

The Hermite moments partially normalized by the Gaussian function are
called Gaussian-Hermite (GH) moments. For the detailed discussion on high-
order GH invariants, their numerical properties and the reconstruction power
see [19, 20].

5.5 3D orthogonal moments

Similarly as in 2D, also in 3D OG polynomials and moments can be categorized
according to their area of orthogonality Ω. We recognize polynomials orthogo-
nal on a cube (see e.g. [21]), on a sphere, and on a cylinder. The polynomials
OG on a cube are very easy to construct and calculate, while the polynomials
OG on a sphere are generally more appropriate for construction of 3D rotation
invariants. The polynomials OG on a cylinder can be used for construction of
rotation invariants only when we know the axis of rotation.

6 Algorithms for Moment Computation

There is a number of algorithms that enable to accelerate or to improve accu-
racy of the moment computation for some types of images. Some approaches
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are based on better numerical methods of integration. The methods for fast
computation of the moments of binary images can be divided into two groups:
boundary-based methods and decomposition methods.

The boundary-based methods employ the property that the boundary of a
binary object contains a complete information about the object. Provided that
the boundary consists of far fewer pixels than the whole object, an algorithm
that calculates the moments from only the boundary pixels should be more
efficient than the direct calculation by definition.

The decomposition methods attempt to decompose a binary object into a set
of non-overlapping blocks. When the moment of each block can be calculated

in O(1) time, then the overall complexity of M
(Ω)
pq is O(K), where K is the

number of blocks. If it is much less than the number of pixels, the speed-up
comparing to the definition may be significant.

A comparison of the efficiency of various decomposition methods can be
found in [22]. The main decomposition methods are delta method that creates
one-pixel thin rectangles, generalized delta method that unifies the adjacent
thin rectangles into thicker ones, quadtree decomposition with regular partition
into squares until they are uniform, distance transformation decomposition (the
biggest square first) and graph-based decomposition that yields the optimal
number of blocks, see Fig. 9.

6.1 Computing binary OG moments by means of decom-

position methods

To calculate moments orthogonal on a rectangle we can, in principle, take any
decomposition scheme used previously and simply replace the monomials xpyq

by respective OG polynomials. Particularly attractive are Legendre moments,
because primitive functions of Legendre polynomials are again Legendre poly-
nomials.

For Zernike moments (and for other moments orthogonal on a disk) the
decomposition methods cannot be used in the Cartesian coordinates, but can be
employed in polar coordinates, where “rectangular blocks” are actually angular-
circular segments. Anyway, we can use the “polar delta method”.

6.2 Geometric moments of graylevel images

When calculating moments of a graylevel image, we cannot hope for a signifi-
cant speedup over the direct calculation without a loss of accuracy. Yet certain
fast algorithms do still exist. However, they are meaningful for specific images
only and/or do not yield exact results. There are two basic groups – graylevel
slicing and graylevel approximation. The graylevel slicing is further divided
into intensity slicing and bit slicing.
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(a) (b) (c)

(d) (e) (f)

Figure 9: Decomposition methods: (a) the original image (black=1) with
124 212 pixels, (b) the generalized delta method applied row-wise (395 blocks,
the basic delta method generated 1507 blocks) (c) the generalized delta method
applied column-wise (330 blocks), (d) quadtree (3843 blocks), (e) distance
transformation (421 blocks), (f) graph-based method (302 blocks).
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7 Applications

The moments have found numerous applications in practical image analysis
and object recognition tasks. They often serve as “gold standard” methods.

7.1 Image understanding

One category of applications can be called image understanding or object recog-
nition. Examples of such applications can be recognition of animals, fish, in-
sects, faces (see [23]) and other human parts. Special subcategories are charac-
ter recognition [24], logo recognition and recognition of vegetation, e.g. recog-
nition of tree leaves (see [25], Fig. 10) or weed visual recognition in [26].

Figure 10: Image retrieval: Suk and Novotný [25] proposed the system for
recognition of woody species in Central Europe, based on Chebyshev moments
and Fourier descriptors.

Another such subcategory is traffic-related recognition that includes recog-
nition of aircrafts, ships and vehicles, detection of an obstacle in traffic scene
situations and traffic sign recognition. There are also various industrial recog-
nition tasks.
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(a) (b)

Figure 11: Satellite images: (a) Landsat image – synthesis of its three principal
components, (b) SPOT image – synthesis of its three spectral bands.

7.2 Image registration

The image registration is a process of overlaying two or more images of the
same scene taken at different times, from different viewpoints, or by different
sensors. It aims at the geometrical alignment of the reference and the sensed
images. The image registration task appears for example in remote sensing, in
medicine, and in computer vision. An example of such a task can be registration
of satellite images by affine moment invariants of segmented closed boundary
regions in [27], see Figs. 11–13.

7.3 Other applications

Other application areas cover robot & autonomous vehicle navigation and vi-
sual servoing, focus and image quality measure, content-based image retrieval,
watermarking, medical imaging, forensic applications and astronomy. An ex-
ample from astronomy is description of solar flares (Fig. 14), where 1D moments
are used for description of the phenomenon in time (see [28], Fig. 15).

In the content-based image retrieval, the search engine looks for images,
which are the most similar (in a pre-defined metric) to the given query im-
age. In digital watermarking a chosen marker or a random signal is covertly
inserted into the image to be protected. Forensic applications include e.g. per-
son identification or photo forgery detection. The moments were also used for
e.g. gas-liquid flow categorization, 3D object visualization or object tracking.
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(a) (b)

Figure 12: segmented regions: (a) Landsat, (b) SPOT image. The regions
with a counterpart in the other image are numbered, the matched ones have
numbers in a circle.

Figure 13: The superimposed Landsat and the registered SPOT images.
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Figure 14: An example of the solar flare (the arrow-marked bright object).
Dark areas correspond to sunspots.
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Figure 15: Time curve of a solar flare – (a) skewness, (b) first principal com-
ponent. Data from Ondřejov observatory, the scanning began on the 18th
December 2003, at 12:25 (time 0 in the graphs).
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8 Contribution of the Thesis

The theory of moments and moment invariants has been covered step by step
in this book. Our aim was to address the main categories of 2D and 3D mo-
ments and moment invariants, the computational issues, and their applicability
in various domains. In this way, we hoped to provide both material for the-
oretical study and references for algorithm design. We also provided readers
with an introduction to a broader context – the shape feature design and the
classification algorithms for object recognition.

The individual classes of moments were introduced, comprising geometric
moments, complex moments, and a wide variety of orthogonal moments such as
Legendre, Zernike, Chebyshev, and many others. They were presented together
with the comments on their advantages and relevant weak points. Illustrative
examples accompany the theoretical parts. The core section of the book is
dedicated to the invariance of moments with respect to various geometric and
intensity degradations. We consider these moment properties the most inter-
esting ones from the image analysis point of view. In all cases, we presented
a consistent theory allowing a derivation of invariants of any orders; in some
cases we even demonstrated several alternative approaches. Certain properties
of the recently proposed features such as affine invariants and especially the
blur invariants have never been published prior to this book. To make the book
comprehensive, widely known invariants to translation, rotation, and scaling
are also described in detail.

The moments are valued for their representative object description. For
time-optimal applications of moments, methods and algorithms used for their
computation were reviewed to ensure the time efficiency of the solutions based
on moments. The mentioned application areas make use of the moment ability
to express the shape variations and at the same time to stay invariant under
common image deformations.

The specific contribution of Tomáš Suk is mainly in

− affine invariants and their derivation by the graph method

− 3D rotation invariants derived by tensors and by complex moments

− the study of the influence of object symmetries on the vanishing invariants

− decomposition-based algorithms for moment computation

− stable algorithms for moment-based image reconstruction

In all these areas, T. Suk introduced novel methods and designed original
algorithms.
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8.1 Outlook to the future

Regarding open problems and desirable future research directions, we foresee
several areas of rapid development in the near future.

We envisage breaking the limitations of fixed polynomial basis that have
been mostly used so far. The future “moments” should not be restricted on
the polynomials, and the basis functions should be dynamically adapted to
the given task and to particular datasets. The functional bases should be
designed in such a way that they optimize a criterion, which is important for
the given problem, such as minimum information loss, maximum separability
of the training sets, sparse object representation, and/or fast computability, to
name a few examples.

Since the importance and the availability of 3D imaging technologies has
been growing continually, the future development of moments should be more
focused on the 3D domain, especially in the aspects where the 2D experience
cannot be transferred into 3D in a straightforward manner.

The theory and applications of vector field invariants is a recently opened
area with a big application potential, particularly in fluid dynamics. Detection
of flow singularities such as vortices and sinks is of a great interest in many
branches of engineering. These tasks are intrinsically three-dimensional, but
3D vector field invariants have not been developed at a sufficient level.

Finally, in moment research, just as in most areas of computer science,
the development of theory and applications are intertwined issues. We can
imagine the appearance of completely new classes of moment invariants w.r.t.
the degradations, the models of which have not been described/utilized so far.
Such degradations may appear in new, unexplored application areas and/or in
connection with future advanced imaging devices and technologies. This may
stimulate theoretical research, which would again, if successful, contribute to
opening yet other application areas.
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