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1 INTRODUCTION

The dissertation falls within the theory of dynamical system. Recall that this theory
is currently one of the important areas of mathematics, born with H. Poincaré’s
“Les méthodes nouvelles de la mécanique céleste” at the end of XIX century. Since
2000 it is given a separate heading in the Mathematical Reviews. Owing to its
universal character, the theory uses methods from various branches of mathematical
science (analysis, topology, algebra, geometry, ...). It has arisen from an attempt
at an adequate description of phenomena in the surrounding world. Therefore it
traditionally plays the role of the theoretical basis for various models in physics,
biology, economics, etc. Nevertheless, at present also conversely, problems posed
in the theory of dynamical systems penetrate other mathematical theories, giving
them a fresh impulse, serving as a tool for solving complex problems within these
theories and also opening completely new problems.

1.1 Structure of the dissertation

The dissertation consists of the following six papers and a commentary showing
what is their role in the development of the theory of dynamical systems:

[1] L’. Snoha, Characterization of potentially minimal periodic orbits of continuous
mappings of an interval, Acta Math. Univ. Comenianae LII-LIII (1987), 111-
124.

[2] V. Jiménez López, L’. Snoha, There are no piecewise linear maps of type 2∞,
Trans. Amer. Math. Soc. 49 (1997), 1377-1387.

[3] V. Jiménez López, L’. Snoha, All maps of type 2∞ are boundary maps, Proc.
Amer. Math. Soc. 125 (1997), 1667-1673.

[4] L’. Snoha, Generic chaos, Comment. Math. Univ. Carolinae 31 (1990), 793 –
810.

[5] S. Kolyada, L’. Snoha, Topological entropy of nonautonomous dynamical sys-
tems, Random Comput. Dynamics 4(2 & 3) (1996), 205–233.

[6] S. Kolyada, L’. Snoha, S. Trofimchuk, Noninvertible minimal maps, Fund. Math.
168 (2001), 141–163.

The criteria for the choice of the papers were twofold. On one hand, the papers
have been chosen to cover the main present or past topics of interest of the author.
On the other hand, the papers have been chosen either because of its influence on
further development of the theory (papers [5], [6] and in an indirect way also [1]) or
because, according to the author’s opinion, they belong to his best papers ([1], [2],
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[4], [6]). The paper [3] is an exception — it does not have many citations but has
been chosen because it is very closely related to [2] and presents the solution of one
of very few open problems formulated in the influential monograph L. S. Block, W.
A. Coppel, Dynamics in one dimension, LNM 1513, Springer-Verlag 1992.

The four main sections of the dissertation (with those of the above papers which
are covered by them) are: ‘Cycles’ ([1], [2], [3]), ‘Chaos’ ([4]), ‘Topological entropy’
([5]) and ‘Minimality’ ([6]).

The number of papers is restricted to six in order not to exceed a reasonable
length of the dissertation.

1.2 The aim of the dissertation and methods used in it

The dissertation covers some topics from combinatorial dynamics and some topics
from topological dynamics. Its aim is twofold:

1. To solve some concrete problems which naturally appeared (or were even ex-
plicitely formulated by other authors) in the theory of dynamical systems, for
instance to characterize all objects with a property explicitly or implicitly in-
troduced by other authors or to answer questions posed by other authors. Of
this type are all main problems solved in sections ‘Cycles’ and ‘Chaos’.

2. To enrich the theory of dynamical systems by developing a new part of the
theory (see the theory of topological entropy of nonautonomous dynamical sys-
tems in section ‘Topological entropy’) or by studying new properties of old
objects (in section ‘Minimality’ we study for instance the topological properties
of noninvertible minimal maps — the topic completely ignored before but quite
popular and useful afterwards).

The methods we use are therefore combinatorial and topological, very often they
are ad hoc methods. The dissertation is a mixture of theoretical results and construc-
tions of examples and counterexamples, what is in fact quite typical for dynamical
systems theory.
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2 CYCLES

2.1 Starting point of the research

The notion of a cycle (periodic orbit) is basic in combinatorial dynamics. This
part of the theory of dynamical systems has its roots in the Sharkovskĭı Theorem
describing possible sets of periods of periodic orbits of continuous selfmaps of an
interval.

Consider the Sharkovskĭı ordering of the set N ∪ {2∞}:
3 Â 5 Â 7 Â · · · Â 2 · 3 Â 2 · 5 Â 2 · 7 Â · · · Â 4 · 3 Â 4 · 5 Â 4 · 7 Â · · · Â · · ·
Â 2n · 3 Â 2n · 5 Â 2n · 7 Â · · · Â · · · Â 2∞ Â · · · Â 2n Â · · · Â 4 Â 2 Â 1.

We will also use the symbol º in the natural way. For t ∈ N ∪ {2∞} we denote by
S(t) the set {k ∈ N : t º k} (S(2∞) stands for the set {1, 2, 4, . . . , 2k, . . . }). Let
C(I) be the set of all continuous selfmaps of a real compact interval I. Let Per(f)
be the set of periods of all periodic points of a map f .

Theorem 1 (Sharkovskĭı Theorem [81], [82]). For every f ∈ C(I) there exists
a t ∈ N∪{2∞} with Per(f) = S(t). On the other hand, for every t ∈ N∪{2∞} there
exists an f ∈ C(I) with Per(f) = S(t).

If Per(f) = S(t), then f is called to be of type t. When speaking of types we
consider them to be ordered by the Sharkovskĭı ordering. So if a map f is of type 2∞

or greater than 2∞ or less than 2∞ then, respectively, Per(f) = {1, 2, . . . , 2k, . . . } or
f has a periodic point with period not a power of 2 or Per(f) = {1, 2, . . . , 2n} for
some n ∈ N ∪ {0}.

Thus, if f has a cycle P of period n then it has also cycles of all periods k ∈ N
with n Â k and it may or may not have a cycle with period m Â n. Usually f does
have also a cycle with such a period m. In fact, if n > 3 then most of the cyclic
permutations describing how f may work on P are such that if f on P works in
accordance with such a permutation then f necessarily has also a cycle with some
period m Â n.

In what follows we use the terminology from [87].

Definition 2. A periodic orbit P of f of period n is said to be a potentially minimal
periodic orbit (shortly PMPO), if there exists a function F ∈ C(I) such that f |P =
F |P and F has no periodic orbit of period m Â n.

In 1980’s there was an open problem of characterizing potentially minimal pe-
riodic orbits. Of course, all periodic orbits of periods 1, 2 and 3 are potentially
minimal. Štefan [94] characterized PMPO of odd periods:

Theorem 3 (Štefan [94]). Let P be a periodic orbit of f ∈ C(I) of period 2p + 1,
p ∈ N. Then P is potentially minimal if and only if there is a point b1 ∈ P such
that

b2p+1 < b2p−1 < · · · < b3 < b1 < b2 < · · · < b2p−2 < b2p
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or
b2p < b2p−2 < · · · < b2 < b1 < b3 < · · · < b2p−1 < b2p+1 ,

where, for every 1 ≤ i ≤ 2p, f(bi) = bi+1 and f(b2p+1) = b1.

Another result on PMPO was implicitly contained in [20]: If P is a PMPO of
f ∈ C(I) whose period is a power of two then P is simple. For further use in
this dissertation, let us give the definition of a simple orbit generalized to any even
period.

Definition 4 (for p = 0 see [20]). Let P be a periodic orbit of f ∈ C(I) of period
2k · (2p + 1), k ∈ N, p ∈ {0} ∪ N. Then P is said to be simple if for every positive
integers n, r with 2k · (2p + 1) = n · r and r = 2s for some s ∈ {0, 1, 2, . . . , k − 1},
and for every periodic orbit {q1 < q2 < · · · < qn} ⊂ P of f r it holds

f r({q1, . . . , qn/2}) = {qn/2+1, . . . , qn} .

In this situation, the problem of characterizing PMPO of even periods called for
a solution.

The importance of cycles is not restricted to combinatorial dynamics. They play
an important role also in topological dynamics. For instance, on the interval it turns
out that the Sharkovskĭı theorem allows us to organize a classification of the maps
from C(I) in terms of their dynamical complexity. Maps of type 2n, n = 0, 1, 2, . . . ,
are simple: all their points are asymptotically periodic. On the other hand, maps
of type greater than 2∞ have a very complicated dynamics. For instance, they have
positive topological entropy and are chaotic in the sense of Li and Yorke. Maps of
type 2∞ are located somewhere between these two groups. They always have zero
topological entropy but there are examples of maps F , G of type 2∞ respectively
having only asymptotically periodic points [33] and chaotic in the sense of Li and
Yorke [84], [72].

Let R be the real line and J ⊂ R a (not necessarily compact) interval. We say that
a continuous map f : J → R is piecewise monotone (resp. piecewise linear) if there
are points inf I = a0 < a1 < · · · < an = sup I such that for every k ∈ {1, 2, . . . , n},
the restriction of f to the interval (ak−1, ak) is (not necessarily strictly) monotone
(resp. linear and non-constant). Note that, according to the definitions, piecewise
monotone maps can have constant pieces, while piecewise linear maps cannot. In
the case of piecewise linear maps, notice also that the consecutive linear pieces need
not be alternatively increasing and decreasing.

One could wonder whether the converse of the Sharkovskĭı theorem holds for
piecewise monotone (or even polynomial) maps from C(I). It is well known that the
answer is affirmative. For instance, the classical logistic family {Fλ}λ∈[0,4] defined
by Fλ(x) = λx(1 − x) contains examples of maps of all types in the Sharkovskĭı
ordering (see [44]). On the other hand, compare this with the family of “tent” maps
{Gµ}µ∈[0,1] defined by Gµ(x) = µ(1 − |2x − 1|). The map Gµ is of type greater
than 2∞ if µ > 1/2 but Gµ is of type 1 for any µ 6 1/2 (see, e.g., [33]). So, a
question remains: does the converse of the Sharkovskĭı theorem hold for piecewise
linear maps? Examples of piecewise linear maps of all types except of type 2∞
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are well known (see e.g. Corollary 2.2.9 in [7]) and the map F from [33] of type
2∞ mentioned earlier consists of an infinite number of non-constant linear pieces.
Further, the map H ∈ C([0, 1]) defined by H(x) = min{κ,G1(x)}, κ ≈ 0.8249... is
of type 2∞ (see [72]) but it has a constant piece and so it is not piecewise linear. No
examples of piecewise linear maps of type 2∞ were known.

So, in the described situation it was a challenging question whether piecewise
linear maps of type 2∞ exist at all. (The question is closely related to the problem
of the existence of so called solenoids for piecewise linear maps, see below.)

Very often, maps of type 2∞ are most difficult to handle with. In many aspects,
they have a special position in C(I). Recall that it is very easy to see that any
neighborhood of any map f contains maps of types greater than 2∞ (even maps of
type 3). Contrary to the maps of types greater than 2∞, the maps of types less than
2∞ do not form a dense set in the space C(I) endowed with the supremum metric.
In fact, this set is nowhere dense in C(I). To see this use the following

Theorem 5 (Block’s Theorem on stability [21]). Let f ∈ C(I) and let n ∈
Per(f). Then there exists a neighborhood U(f, n) of f such that for all g ∈ U(f, n)
we have Per(g) ⊃ S(n) \ {n}.

So, if f is of type greater than 2∞, there is a neighbourhood of f containing no
map of type less than (or equal to) 2∞. L. S. Block and W. A. Coppel (see [22],
the end of chapter II.4) posed a question whether any neighbourhood of any map of
type 2∞ contains a map of type less than 2∞.

2.2 Main results of the dissertation ([87], [53], [54])

In [87], we have solved the problem of characterizing potentially minimal periodic
orbits (PMPO) of even periods in the following three theorems.

Theorem 6 ([87]). Let P be a periodic orbit of f ∈ C(I) of period 2k, k ∈ N. Then
P is potentially minimal if and only if P is simple.

Theorem 7 ([87]). Let P be a periodic orbit of f ∈ C(I) of period 3 · 2k, k ∈ N.
Then P is potentially minimal if and only if P is simple.

Let P = {a1 < a2 < · · · < am} be a periodic orbit of f of period m. Let n divides
m. For k = 1, 2, . . . , m

n
write

P (n, k) = {ai : i = (k − 1)n + 1, (k − 1)n + 2, . . . , kn} .

Now let a, b be real numbers. Instead of f(a) = b we will also use the notation

a
f−→ b . Let E = {e1, e2, . . . , er} ⊂ R. We will write f l E if there is a permutation

(α(1), α(2), . . . , α(r)) of the set {1, 2, . . . , r} such that

eα(1)
f−→ eα(2)

f−→ . . .
f−→ eα(r) .
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Theorem 8 ([87]). Let P be a periodic orbit of f ∈ C(I) of period 2k · (2p + 1),
where k ∈ N, p ∈ N and p ≥ 2. Let

E =
2k⋃

j=1

{min P (2p + 1, j), max P (2p + 1, j)} .

Consider the following four conditions:

(C1) P is simple,

(C2) the sets P (2p + 1, j), j = 1, 2, 3, . . . , 2k are potentially minimal periodic orbits
of the function f 2k

(see Theorem 3),

(C3-a) f l E,

(C3-b) f is monotone on each of the sets P (2p+ 1, j), j = 1, 2, 3, . . . , 2k, except of one
of them.

Then the following three conditions are equivalent:

(i) P is potentially minimal,

(ii) (C1) and (C2) and (C3-a),

(iii) (C-1) and (C-2) and (C3-b).

In the condition (C3-b) it is not important whether we understand it in the sense
that f is monotone on exactly 2k − 1 of the mentioned sets or in the sense that it
is monotone on at least 2k − 1 of them. Due to the fact that P is a cycle, the set E
cannot be f -invariant and so both the formulations are equivalent.

The problem of (non)existence of piecewise linear maps of type 2∞ was solved in
[53].

Given a map f ∈ C(I), we say that a sequence (Ii)
k−1
i=0 of closed subintervals

of I is periodic of period k for f if the intervals Ii have pairwise disjoint interiors,
f(Ii) ⊂ Ii+1 for any i = 0, 1, . . . , k − 2 and f(Ik−1) ⊂ I0. We say that A ⊂ I is a
solenoid of f if there exist a strictly increasing sequence (kn)∞n=1 of positive integers
and periodic sequences Cn = (In

i )kn−1
i=0 of period kn of closed intervals such that⋃kn−1

i=0 In
i ⊃

⋃kn+1−1
i=0 In+1

i for any n and A =
⋂∞

n=1

⋃kn−1
i=0 In

i . The sequence (Cn)∞n=1
will be called a covering of A of type (kn)∞n=1.

It is not difficult to show that for any J ∈ Cn+1 there is K ∈ Cn such that J ⊂ K.
Moreover, kn+1 divides kn for any n and each interval from Cn contains exactly kn+1

kn

intervals from Cn+1. If a solenoid A admits a covering of type (kn)∞n=1 with kn+1

kn
= 2

for any n large enough then we call A a doubling period solenoid.
The following proposition is a part of folklore knowledge. Its short elementary

proof can be found in [53].

Proposition 9. If f ∈ C(I) is a piecewise monotone map of type 2∞ then it has a
doubling period solenoid.
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The following theorem is the key result which enabled to prove the nonexistence
of piecewise linear maps of type 2∞.

Theorem 10 ([53]). If f ∈ C(I) is piecewise linear then it has no doubling period
solenoids.

From this theorem and the previous proposition we immediately get the desired
result:

Corollary 11 ([53]). There are no piecewise linear maps of type 2∞ in C(I).

The Block’s and Coppel’s problem mentioned in Subsection 2.1 was answered in
the affirmative in [54]:

Theorem 12 ([54]). Let f ∈ C(I) be of type 2∞. Then every neighbourhood of the
map f contains a piecewise monotone map of type less than 2∞.

2.3 Remarks and possibilities for further research

The author presented the characterization of potentially minimal periodic orbits of
continuous mappings of an interval (see Theorems 6,7,8) at the 1st Czechoslovak
Summer School on Dynamical Systems held at Račková Dolina, Czechoslovakia,
in June 1984 (partial results even sooner, at the International Conference on Real
Functions held in Bydgoszcz, Poland, in August 1983 (see [88])). A. N. Sharkovskĭı,
one of the participants, confirmed that the results were new. Later it turned out
that some other mathematicians also were working on the problem. The problem
was independently solved in [46] and [8] and a similar problem was solved in [34].
Some six years later, the characterization was refound by R. G. Rakhmankulov
(unpublished (?)). I guess that today, rather paradoxically (?), the paper [8] has
dozens of citations, while the other papers where the problem was solved have hardly
any of them.

Let us also remark that the conditions (C3-a) and (ii) from Theorem 8 were
overlooked in [8].

These results belong to the core of combinatorial dynamics. In fact, in 1993 the
first and in 2000 the second edition of the book [7] appeared. One of the central
topics treated in the book is the characterization of so called primary cycles and
one can easily show that for cycles whose period is not of the form 3× 2m for some
m > 0, to be primary is the same as to be potentially minimal (see also the small
print after Corollary 2.11.2 in [7]).

In [89], it is studied the problem of finding possible types of maps having a cycle
of a given period that is not potentially minimal.

Since 1980’s, the combinatorial dynamics has developed very much. Many papers
appeared where the authors study the forcing relation between cycles, the entropy
of cycles etc. (and not only on the interval). In Czech Republic J. Bobok has
achieved deep results in this area. We refer the reader to [7, 2nd. edition] as a
general reference.

There are attempts to extend results from the interval to graphs. Results for the
circle can be found for instance in [7]. The case of general graphs is very difficult.
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On one hand, Sharkovskĭı-type theorem strongly depends on how the graph looks
like and, on the other hand, it is difficult to carry over even the notion of a pattern
from the interval to a graph. For more details, see [7, 2nd. edition] and [2].

Solenoids are important in one-dimensional discrete dynamical systems because
they play a key role in the description of the asymptotic behaviour of a large class
of continuous selfmaps of a real compact interval. Namely, if f ∈ C(I) is piecewise
strictly monotone and smooth enough then there is a residual set R such that for
any x ∈ R the set of limit points of the sequence (fn(x))∞n=0 is either a periodic
orbit, a finite union of closed intervals or a solenoid. Regarding to this, the reader
may for example wish to see [77], [70].

Thus, it is important to know whether a considered class of maps admits solenoids
at all. In the particular case of piecewise linear maps the nonexistence of period
doubling solenoids was proved in Theorem 10. Later this result was strengthened to
all solenoids [69], [3]. Finally it was proved in [3] that piecewise smooth maps (with
a finite number of pieces of monotonicity) whose derivative is Lipschitz continuous
and nowhere vanishing may have only solenoids which are doubling period. On the
other hand, there exist examples of such maps having doubling period solenoids and,
moreover, with the corresponding smooth pieces in the class C∞ (see [53]). Such a
map may be of type 2∞.

One would expect that our result on the nonexistence of maps of type 2∞ in the
class of piecewise linear maps could be extended to larger classes of maps. However,
in view of the examples from the previous paragraph, it is difficult to find such a class
of maps. In particular, it is not clear whether the existence of piecewise analytic
maps (with non-vanishing derivatives) of type 2∞ should be reasonably expected or
not.

In connection with solenoids, examples by Bobok and Kuchta [25] of an expanding
countably piecewise linear map with a doubling period solenoid and by Misiurewicz
[71] of a countably piecewise linear map with a doubling period solenoid of positive
Lebesgue measure are also worth noticing.

Kolyada in [57] proved that if f ∈ C(I) is such that for some c ∈ I, f(x) = a1x+b1
c1x+d1

for any x ≤ c and f(x) = a2x+b2
c2x+d2

for any x ≥ c with aidi − bici 6= 0 for i = 1, 2, then
it has no doubling period solenoids. Denote the set of all such maps by K2(I) (the
index 2 indicates that these maps consist of two pieces). Since K2(I) is included
in the class of piecewise smooth maps with nowhere vanishing Lipschitz continuous
derivative, the maps in K2(I) have no solenoids. We conjecture that this result
can be extended to similar maps with an arbitrary (finite) number of pieces of
monotonicity. This is an open problem.

Notice that the fact that piecewise smooth maps with nowhere vanishing Lipschitz
continuous derivative have no solenoids implies that for any positive integer l the
family of l-modal maps from the mentioned class cannot be full. In [41] it is shown
that somewhat different but related families of piecewise smooth maps cannot be
full either.

Concerning other papers of the author of the disseration, let us mention that
[52] is closely related to [53] and [54]. Also [43] has a close connection with [54].
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Nevertheless, at present the author is not active in combinatorial dynamics since he
prefers the study of chaos, entropy and minimality.

3 CHAOS

3.1 Starting point of the research

The notion of chaos in connection with a map was first used by Li and Yorke [66]
in 1975 although without giving any formal definition. Nevertheless, the following
definition was implicitly contained in their paper: A map f ∈ C(I) is chaotic in
the sense of Li and Yorke if there exists an uncountable set S such that for every
x, y ∈ S, x 6= y, and every periodic point p of f we have

(i) lim supn→∞ |fn(x)− fn(y)| > 0,

(ii) lim infn→∞ |fn(x)− fn(y)| = 0,

(iii) lim supn→∞ |fn(x)− fn(p)| > 0.

Since the set S cannot contain more than one asymptotically periodic point, i.e., a
point for which (iii) is not satisfied, the condition (iii) is redundant in the definition.
Any set satisfying (i) and (ii) is called a scrambled set. Thus, f is chaotic in the sense
of Li and Yorke if it has an uncountable scrambled set. A pair of points satisfying
(i) and (ii) is called a Li-Yorke pair.

Several equivalent conditions with the chaos in the sense of Li and Yorke on the
interval were found in [49]. The notion of Li-Yorke chaos fits well with Sharkovskĭı’s
ordering. All maps of type greater than 2∞ are chaotic, all maps of type smaller
than 2∞ are non-chaotic and in the family of maps of type 2∞ there are chaotic as
well as non-chaotic maps (see [86] and [72]).

The notion of a Li-Yorke chaos, implicitly contained in [66] in the setting of
interval dynamical systems, may seem to be strange and in fact it was an object of
a serious criticism. Two problems are here. The first objection is that chaos in this
sense may not be ‘physically’ observable. Still, the Li and Yorke’s idea of defining
chaos has a good sense at least on the interval because it turns out to be the minimal
requirement for a continuous selfmap of an interval to be ‘complex’. This was shown
by Smı́tal who proved in [86] that any interval map satisfies one of the following two
mutually exclusive properties:

(i) f is Li-Yorke chaotic;

(ii) all trajectories of f are approximable by cycles, that is, for any x and any ε > 0
there is a periodic point p such that lim supn→∞ |fn(x)− fn(p)| < ε.

The second, more formal, objection against the definition of Li-Yorke chaos is:
‘why uncountable?’ and not, say, ‘infinite’ or ‘topologically large’ or something else?
Later Kuchta and Smı́tal [65] proved that if an interval map has a scrambled set with
two points then it has also an uncountable, in fact Cantor, scrambled set. Though
this result is not true for general systems, it is a good reason for studying the size
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of scrambled sets (see [84], [85] and [29]) and for modifications of the definition of
chaos with the notion of Li-Yorke pairs kept in mind.

One of such definitions, much stronger but rather similar to that of Li and Yorke
was proposed by A. Lasota (see [75]). Again, similarly as the Li-Yorke chaos, origi-
nally it was introduced for interval maps. A map f ∈ C(I) is generically chaotic if
the set of Li-Yorke pairs for f is residual in I2 (i.e., its complement is a first category
set in I2). J. Piórek [75] in 1985 found examples of generically chaotic interval maps,
so it became clear that maps satisfying such a strong definition of chaoticity exist.

Of course, it was natural to ask whether it is possible to find a reasonable cha-
racterization of generically chaotic maps on the interval.

3.2 Main results of the dissertation ([90])

In this subsection, a function will always be a function belonging to the space C(I)
of all continuous maps of a real compact interval I into itself, endowed with the
topology of uniform convergence. For a function f and ε > 0 define the following
planar sets:

C1(f) =
{

[x, y] ∈ I2 : lim inf
n→∞

|fnx− fny| = 0
}

,

C2(f) =
{

[x, y] ∈ I2 : lim sup
n→∞

|fnx− fny| > 0
}

,

C2(f, ε) =
{

[x, y] ∈ I2 : lim sup
n→∞

|fnx− fny| > ε
}

,

C(f) = C1(f) ∩ C2(f),

C(f, ε) = C1(f) ∩ C2(f, ε) .

We say that f is generically or densely chaotic if the set C(f) is residual or dense
in I2, respectively. Similarly, f is generically or densely ε-chaotic if the set C(f, ε)
is residual or dense in I2, respectively. (The definition of generic chaos, due to A.
Lasota, appeared for the first time in [75], the others in our paper [90]).

A function f ∈ C(I) is topologically transitive if for any nonempty open sets
U, V ⊂ I there is a nonnegative integer n with fn(U) ∩ V 6= ∅. In the rest of this
subsection, an interval will always be a nondegenerate interval lying in I. It will not
necessarily be compact. If J is an interval then diam J is its length. If A,B ⊂ I then
dist(A,B) = inf{|x−y| : x ∈ A, y ∈ B}. We write dist(A, b) instead of dist(A, {b}).
A compact interval J will be called an invariant transitive interval of f if it is f -
invariant (i.e., f(J) ⊂ J) and the restriction of f to the interval J is topologically
transitive. For any set A ⊂ I, int A is the interior of A and Orb(f, A) =

⋃∞
n=0 fn(A).

In [90] we have characterized generically chaotic maps on the interval in terms
of behaviour of subintervals of I under iterates of f and also in terms of topological
transitivity:

Theorem 13 ([90]). Let f ∈ C(I). The following conditions are equivalent:

(a) f is generically chaotic,
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(b) for some ε > 0, f is generically ε-chaotic,

(c) for some ε > 0, f is densely ε-chaotic,

(d) C1(f) is dense in I2 and C2(f) is a second Baire category set in any interval
J2 ⊂ I2,

(e) C1(f) is dense in I2 and for some ε > 0, C2(f, ε) is dense in I2,

(f) the following two conditions are fulfilled simultaneously:

(f-1) for every two intervals J1, J2, lim inf
n→∞

dist(fn(J1), fn(J2)) = 0,

(f-2) there exists an a > 0 such that for every interval J ,
lim sup

n→∞
diam fn(J) > a,

(g) the following two conditions are fulfilled simultaneously:

(g-1) there exists a fixed point x0 of f such that for every interval J ,
lim

n→∞
dist(fn(J), x0) = 0,

(g-2) there exists a b > 0 such that for every interval J ,
lim inf
n→∞

diam fn(J) > b,

(h) the following two conditions are fulfilled simultaneously:

(h-1) f is not constant in any subinterval of I 1, and has a unique invariant
transitive interval or two invariant transitive intervals having one point in
common,

(h-2) for every interval J there is an invariant transitive interval T of f such
that Orb(f, J) ∩ int T 6= ∅.

Moreover, the equivalences (b) ⇔ (c) ⇔ (e) ⇔ (f) hold with the same ε and with
a = ε in (f-2).

Using this characterization, it is easy to prove the following three theorems:

Theorem 14 ([90]). In the space C(I), for every 0 < ε < diam I the number
(1/2) log 2 is the minimum of the topologicaly entropies of all generically (or, equi-
valently, densely) ε-chaotic functions (and hence also of all generically chaotic func-
tions).

Theorem 15 ([90]). Let f ∈ C(I) be generically chaotic. Then f has a periodic
orbit of period 2× 3 and may or may not have periodic orbits of odd periods greater
than 1.

Theorem 16 ([90]). The set of all generically chaotic functions is dense in itself
but is nowhere dense in C(I). The same is true for densely chaotic functions and
also for generically (or, equivalently, densely) ε-chaotic functions.

1there is a misprint in [90] — these words are missing there, see also the footnote in [74].
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3.3 Remarks and possibilities for further research

In [91], we have found also a full characterization of densely chaotic interval maps
and proved that in the class of piecewise monotone maps with finite number of pieces
of monotonicity (in fact, in a bit larger class) the notion of generic chaos and that
of dense chaos coincide. Recently, in [78], S. Ruette showed that the same is true
if we replace piecewise monotonicity by continuous differentiability. Moreover, also
some open problems posed in [90] and [91] were solved in [78] and [79].

In [92] we have generalized some results from [90] to what we call two-parameter
chaos (still in the interval case).

The definitions of generic and dense chaos (ε-chaos) can be carried over in an
obvious way to metric spaces. A possibility to extend some results from [90] to metric
spaces was indicated in a concluding remark in [91]. Recently E. Murinová [74]
showed that the characterization of generically ε-chaotic maps given in Theorem 13
for interval maps can be carried over to continuous selfmaps of a large class of metric
spaces. While on the interval generic chaos implies generic ε-chaos for some ε > 0,
in [74] an example of a convex continuum in the plane is given on which generic
chaos does not imply generic ε-chaos for any ε > 0. Still, it would be interesting to
try to extend the result ‘generic chaos implies generic ε-chaos for some ε > 0’ to as
large class of spaces as possible (E. Murinová works on this problem).

Though the paper [90] (together with a personal discussion) was an inspiration
for [74], [51] and partially also for [50] and [78], we dare to say that the paper is
perhaps less known than it deserves in our opinion. For instance, in spite of a close
connection with [47], it is not quoted there. Further, in [18] the authors give, on
a disconnected space (symbolic dynamics is used), an example of a topologically
transitive, generically chaotic system which is not weakly mixing. In our paper
[90] they could find much simpler example and even on the interval (a piecewise
linear map f on [0, 1] with three pieces of linearity such that f(0) = f(1/2) = 1/2,
f(1/4) = 1, f(1) = 0, f linear in between; see Example 3.7 in [90]).

Finally, recall that today there are various definitions of what it means for a
map to be chaotic, some of them working reasonably only in special phase spaces.
Though one could say that ‘as many authors, as many definitions of chaos’ (but
also: ‘chaos is what everybody speaks about but nobody knows what it is’), behind
these definitions there is very often the same idea of unpredictability of behaviour of
all trajectories or ‘many’ trajectories or at least one trajectory when the position of
the point whose trajectory is considered is given with an error (instability of points
or sensitive dependence to initial conditions are terms usually used to describe this
phenomenon). Generic chaos we discussed here is just one of these definitions. We
are not going to list these definitions here. Let us only say that most of them are
surveyed in [62], [80], [59], [78]. In Czech Republic, J. Smı́tal achieved deep results on
scrambled sets and Li-Yorke chaos and is a coauthor of the theory of distributional
chaos.

Further research in order to understand better various forms of ‘chaotic’ be-
haviour is very desirable. In the literature there are formulated also many open
problems.
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The author of the dissertation continues his research of chaos and, more generally,
the complexity in dynamical systems. From the recent papers let us mention at least
[55] and [17]. At present he investigates for instance the possible size of scrambled
sets, see [19].

4 TOPOLOGICAL ENTROPY

4.1 Starting point of the research

The notion of topological entropy was introduced by Adler, Konheim and McAn-
drew [1] as an invariant of topological conjugacy and as an analogue of measure
theoretic entropy. Topological entropy provides a numerical measure for the com-
plexity of an endomorphism of a compact topological space. Later Bowen [26] and
Dinaburg [37] gave a new, but equivalent, definition in the case when the space under
consideration is metrizable. This definition led to proofs of the results connecting
topological and measure-theoretic entropies. Bowen [28] also defined the entropy of
a uniformly continuous map of a (not necessarily compact) metric space.

In the theory of dynamical systems on compact spaces in dimensions ≥ 2, usu-
ally homeomorphisms (diffeomorphisms) satisfying certain conditions are considered
(see, e.g., [56]). The non-invertible dynamics in higher dimensions is much less un-
derstood. In order to understand it better it is natural to start with investigation
of systems of such a special form which would enable us to apply the knowledge
of the well understood non-invertible one-dimensional dynamics (see [7], [22], [56],
[70], [76], [77], [83]). Good candidates for such systems are skew products of one-
dimensional dynamical systems, i.e., dynamical systems given by so called triangular
maps on cartesian products of several one-dimensional spaces. Triangularity means
that the i-th coordinate of the image of a point depends only on the first i coordi-
nates of the point. So, triangular maps of the cube In, n > 1 are continuous maps
of the form:

F : (x1, x2, ..., xn) 7→ (F1(x1), F2(x1, x2), ..., Fn(x1, x2, ..., xn)).

In a more general setting, if (X, ρX) and (Y, ρY ) are compact metric spaces and
the space X × Y is endowed with the usual metric given by ρ([x1, y1], [x2, y2]) =
max{ρX(x1, x2), ρY (y1, y2)} then the space C4(X × Y ) of triangular maps from
X × Y into itself consists of all continuous maps of the form

F (x, y) = (f(x), gx(y))

where f : X → X is continuous and gx, x ∈ X is a family of continuous maps
Y → Y depending continuously on x. Notice that the system (X × Y ; F ) is an
extension of (X; f).

The topological entropy of triangular maps was studied in [58], [4], [5], [39]. In
general it is difficult to compute the entropy of a triangular map F = (f, gx) ∈
C4(X × Y ). To estimate it, one can use the Bowen’s formula (see [26] or [70]).
Let hf (F ) := supx∈X h(F ; Yx), where h(F ; Yx) is the entropy of F on the fibre
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Yx := {x} × Y . Then, from the mentioned formula one gets

max{h(f), hf (F )} ≤ h(F ) ≤ h(f) + hf (F )

where h(f) or h(F ) is the topological entropy of f or F , respectively. So, without
any doubt, when computing h(F ) it is useful to compute h(F ; Yx) for x ∈ X. The
problem is that in general Yx is not F -invariant, so h(F ; Yx) is not the ‘usual’ entropy
of an autonomous dynamical system. To compute h(F ; Yx), it is not sufficient to
know the fibre map gx. In fact, we need to know all the maps from the sequence
gx, gf(x), gf2(x), . . . . This sequence of maps defines a nonautonomous dynamical
system on Y .

Thus, to understand better the entropy of triangular maps, it was desirable to
develop a theory of the entropy for nonautonomous dynamical systems. Besides
this main motivation, one can also notice that the notion of sequence topological
entropy (with respect to an increasing sequence n1, n2, n3, . . . of positive integers)
of an autonomous dynamical system (X; f) which was introduced in [42] and stud-
ied by several authors (see, e.g., [40] and [39]) is nothing else than the topological
entropy of the nonautonomous dynamical system given on X by a sequence of maps
fn1 , fn2−n1 , fn3−n2 , . . . . So the investigation of the topological entropy of nonau-
tonomous dynamical systems could be potentially useful also for further develop-
ment of the theory of sequence topological entropy.

4.2 Main results of the dissertation ([61])

If f1,∞ = {fn}∞n=1 is a sequence of continuous selfmaps of a compact topological space
X, we will denote by (X; f1,∞) or (X; f1, f2, ...) or (X; {fn}∞n=1) the nonautonomous
discrete dynamical system in which the trajectory of a point x ∈ X is defined to be
the sequence

x, f1(x), f2(f1(x)), ... , fn(fn−1 ... (f2(f1(x)))...), ... .

In [61] we define the topological entropy h(f1,∞) of such a system both using
open covers of X and, if X is metrizable, using separated and spanning sets. The
definitions are equivalent, similarly as in the autonomous case. (Of course, for f1 =
f2 = ... = f we get the classical definitions.) We also extend the definition of h(f1,∞)
by defining the entropy h(f1,∞; Y ) with respect to any (not necessarily compact and
not necessarily invariant) subset Y of the space X (the extended definition is used
in [61, Theorem H]).

We prove some basic properties of the entropy and we also introduce the notion
of the asymptotical topological entropy h∗(f1,∞) of the considered system as the
limit limn→∞ h(fn,∞) where fn,∞ is the tail fn, fn+1, . . . of the sequence f1,∞ (the
limit exists by [61, Lemma 4.5]). Further, in the case when f1,∞ is a sequence of
equicontinuous selfmaps of X and Y ⊂ X we define a new quantity H(f1,∞; Y ). We
call it topological sup-entropy of the sequence f1,∞ on the set Y . It is used in [61,
Theorem C].

Rather surprisingly, in [61, Theorem A], as a by-product of our investigation
of nonautonomous dynamical systems we obtain a new property of the topological

18



entropy of autonomous dynamical systems, the commutativity of the entropy. More
precisely, the entropy of the composition of two continuous selfmaps of a compact
topological space does not depend on the order in which we compose, i.e., h(f ◦g) =
h(g ◦ f).

Then we study the topological conjugacy of nonautonomous dynamical systems.
We introduce the notions of equisemiconjugacy and equiconjugacy, the separate con-
jugacy between fi and gi, i = 1, 2, . . . , being not sufficient to give h(f1,∞) = h(g1,∞).
A corollary of [61, Theorem B] shows that the topological entropy of nonautonomous
dynamical systems is an invariant of topological equiconjugacy (consequently, the
same is true for the asymptotical topological entropy). [61, Theorem C] is an ana-
logue of the Bowen’s theorem for the entropy of an extension of a system.

In [61, Theorem D] we prove that any sequence of monotone continuous interval
or circle maps has zero entropy.

Then we answer the question whether there is a relation between the entropy of a
sequence of maps and the entropy of its uniform limit. In [61, Theorem E] it is shown
that either they are the same or the entropy of the limit map is larger, both cases
being possible. Then we study the lower semi-continuity of the topological entropy
on the space of all sequences of continuous selfmaps of a compact metric space
(X, ρ) with the metric D(f1,∞, g1,∞) = supi≥1 maxx∈X ρ(fi(x), gi(x)). The result
is that at some points it is lower semi-continuous but in general it is not. Again
we get consequences also for autonomous dynamical systems (see [61, Corollary 5.7,
Corollary 5.8]).

Finally, we generalize to the case of nonautonomous dynamical systems the clas-
sical Bowen’s result [27] saying that the topological entropy is concentrated on the
set of nonwandering points (see [61, Theorem H]).

4.3 Remarks and possibilities for further research

Our theory of topological entropy of nonautonomous systems proved to be useful
in [60] where we construct a large class of smooth triangular maps of the square
of type 2∞ and positive topological entropy. In fact, to show that the entropy is
positive, we use results from [61], some of them slightly generalized to the case when
not only maps but also spaces are different, i.e., the nonautonomous system is given
by a sequence of compact metric spaces (Xi)∞i=1 and a sequence of continuous maps
(fi)∞i=1, fi : Xi → Xi+1. Let us also remark that in [60] we also further developed
the theory of topological entropy of nonautonomous systems by proving that if all
the spaces are compact real intervals and all the maps are piecewise monotone then,
under some additional assumptions, a formula for the entropy of the system exists
in terms of the number of pieces of monotonicity of fn ◦ · · · ◦f2 ◦f1 (a generalization
of Misiurewicz-Szlenk theorem [73]).

The commutativity of the entropy, the amazing by-product obtained in [61],
turned out to be very surprising even for several experts in the theory of entropy.
The first reaction usually was: “Is it really true?” Of course, people usually soon
realized that in the special case when f and g are surjective, the result follows from
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the fact that f ◦ g is semiconjugate to g ◦ f and g ◦ f is semiconjugate to f ◦ g and
so they started to believe that it was true also in general case. It seems that from
the psychological point of view it is difficult to admit that such a nice property of
the entropy could be overlooked in the past if it were true. But it really seems that
in the mathematical literature this result did not appear before. Nevertheless, some
5 years later J. Canovas found that the commutativity of the entropy appeared in
[35].

The paper [61], namely the commutativity of the entropy, was an inspiration for
the papers [14], [15] where the commutativity was proved or disproved for other
kinds of entropies.

The entropy of an interval map f is positive if and only if some iterate of f
has a horseshoe. For a nonautonomous system given by a sequence of selfmaps
of an interval it is unclear how to define a ‘horseshoe’. There is no problem with
the implication ‘horseshoe implies entropy’ but there are nonautonomous systems
of positive entropy without having any reasonable kind of a horseshoe. We find
the problem ‘if a nonautonomous system on an interval has positive entropy then
what ?’ to be very challenging but very difficult.

The author of the dissertation continues his research of topological entropy, see
e.g. the recent papers [6], [17], [11] and [93]. To compute the entropy of a map in
[93], our theory from [61] and [60] has successfully been used.

5 MINIMALITY

5.1 Starting point of the research

The most fundamental dynamical systems are the minimal ones, see [9], [95]. These
are systems which have no nontrivial subsystems. An equivalent condition is that
the orbit of every point is dense.

In many important examples of minimal maps, these are homeomorphisms. In
the sixties J. Auslander [10, p. 514] formulated the problem whether a continuous
map of a compact metric space onto itself which is not one-to-one can be minimal.
The answer, owing also to J. Auslander himself, is known — a class of examples of
noninvertible minimal maps on some compact metric spaces can be found in [12, p.
186].

Interesting examples of noninvertible minimal maps are known in interval dynam-
ics when a suitable interval map is restricted to an invariant Cantor set. In fact, it
was proved in [30] that unimodal Fibonacci maps have a wild attractor (which is a
Cantor set) provided that the order of the critical point is sufficiently high. By [23],
the restriction of such a map to this Cantor set is minimal and by [68] the preimage
of any point from this Cantor set is a singleton except of the critical point of the
map whose preimage consists of two points. More generally, there are unimodal
maps whose restriction to a Cantor set (the ω-limit set ω(c) of the critical point
c) is minimal and fails to be invertible only at k points, each of them lying in the
backward orbit of c (one of them is c itself) and having two preimages in ω(c) (all
other points in ω(c) have only one preimage in ω(c)), see [31].
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Symbolic dynamics provides many examples of minimal noninvertible maps. Con-
sider AN endowed with the shift. One can show by a compactness argument that
any infinite subshift (i.e., closed shift-invariant subset of AN) contains two different
points with the same image. Thus, also any minimal subshift different from a peri-
odic orbit is noninvertible. For instance, one-sided Sturmian and Toeplitz systems
are minimal noninvertible subshifts.

None of the above mentioned examples of noninvertible minimal maps is on a
manifold. On the interval there is no minimal map at all and it is well known that
the circle admits a minimal homeomorphism but does not admit any noninvertible
minimal map. Thus, a natural question is, whether for instance the two-dimensional
torus admits a minimal noninvertible map. Further, we saw that a noninvertibility
of a minimal map may be very small — there is a minimal map which is invertible
except of one pair of points with the same image. So, another interesting question
is, how ‘large’ the noninvertibility of a minimal map can be.

5.2 Main results of the dissertation ([63])

In [63] we studied, for a discrete dynamical system given by a compact Hausdorff
space X and a continuous selfmap f of X (we write f ∈ C(X)), the connection
between minimality, invertibility and openness of f .

Recall that a map is called open if it sends open sets to open sets and is called
feebly open if it sends open sets to sets with nonempty interior.

Theorem 17 ([63]). Let X be a compact Hausdorff space and f ∈ C(X).

(1) If f is minimal then it is feebly open.

(2) If f is minimal and open then it is a homeomorphism.

If f is minimal and A ⊆ X then both f(A) and f−1(A) share some topological
properties with the set A — namely the ones which describe how large a set is. For
completeness, the next theorem contains also some known results.

Theorem 18 ([63]). Let X be a compact Hausdorff space and let f ∈ C(X) be a
minimal map. Let A ⊆ X.

(1) If A is dense then both f(A) and f−1(A) are dense.

(2) If A is nowhere dense then both f(A) and f−1(A) are nowhere dense.

(3) If A is a 1st category set then both f(A) and f−1(A) are 1st category sets.

(4) If A is a 2nd category set then both f(A) and f−1(A) are 2nd category sets.

(5) If A has the Baire property then both f(A) and f−1(A) have the Baire property.

(6) If A is residual then both f(A) and f−1(A) are residual.

(7) If A has nonempty interior then both f(A) and f−1(A) have nonempty interiors.
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(8) If A is open then there is a positive integer r with the property
⋃r

k=0 f−k(A) =⋃r
k=0 fk(A) = X.

(9) If A is open then there is an open set B ⊆ X such that B ⊆ f(A) ⊆ B (here
B may not be unique; the largest of such sets is always B = int f(A)).

A map is called almost one-to-one if generically the preimage of a point is a
singleton. Using the above results one can prove that any minimal map in a compact
metric space is almost one-to-one.

Theorem 19 ([63]). Let (X, %) be a compact metric space and f ∈ C(X) be mini-
mal. Then the set A = {x ∈ X : card f−1(x) = 1} is a Gδ-dense set in X. Hence,
f is almost one-to-one.

This theorem enables to show that a ‘substantial’ part of a minimal map is a
minimal homeomorphism.

Theorem 20 ([63]). Let (X, %) be a compact metric space and f ∈ C(X) be min-
imal. Then there exists a residual set Y ⊆ X such that f(Y ) = Y and f |Y is
a minimal homeomorphism. Moreover, (f |Y )−1 is also a minimal homeomorphism
and while f |Y is uniformly continuous, (f |Y )−1 is uniformly continuous only in the
case when f is a homeomorphism (then one can take Y = X).

Finally, we solve in [63] our main problem: we show that the torus admits
minimal noninvertible maps. In fact, two kinds of examples of noninvertible
minimal maps on the torus are given — these are obtained either as a factor or as
an extension of an appropriate minimal homeomorphism of the torus.

5.3 Remarks and possibilities for further research

A map f : X → Y is called irreducible if the only closed set A ⊆ X for which
f(A) = Y is A = X. In [63] we show that if f is minimal then it is irreducible.
Therefore one can shorten some of the proofs in [63] by using some properties of
irreducible maps from [96]. Still, there is a place for further study of properties of
minimal maps. For instance we conjectured that minimal maps on two-dimensional
(and perhaps all) manifolds are monotone. Recently we learned about the paper [24]
which was inspired by our papers [63] and [32] and where this (and even a stronger
result) is proved for compact 2-manifolds.

While we have proved that minimal maps in compact spaces are almost one to
one, i.e., the set B0 := {x ∈ X : #f−1(x) > 1} of points with more than one
preimage is of first category, this set may not be negligible from a measure-theoretic
point of view. In fact, in [38] we have showed that µ(B0) may be positive for an
f -invariant Borel probability measure µ. We have found a Toeplitz flow with such
a property. We give also an example of a minimal selfmap of a continuum such
that the set B0 has positive measure for every invariant measure. Such a system
is constructed as a semicocycle minimal almost 1-1 extension of an irrational circle
rotation. Finally we show that there are even systems with µ(B0) = 1 for every
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invariant measure, and there are systems with µ(B0) = 1 for some ergodic measures
and µ(B0) = 0 for some other ergodic measures.

There are compact spaces that do not admit any minimal map (say, the spaces
with fixed point property), there are spaces that admit minimal homeomorphisms
but do not admit any minimal noninvertible map (circle) and there are spaces that
admit both minimal homeomorphisms and minimal noninvertible maps (Cantor set,
torus). In [32] we show that there are also spaces that admit minimal noninvertible
maps but do not admit any minimal homeomorphism.

One of the open questions is whether the circle is the only (infinite) continuum
that admits a minimal homeomorphism but no minimal noninvertible map. The
pseudo-circle is possibly a candidate for a counterexample. Further, we conjectured
that none of the two-dimensional (and perhaps all) manifolds with boundary admits
a minimal map (see also [32] for related problems). In the already mentioned recent
preprint [24] it is proved that in fact the only 2-manifolds (compact or not, with or
without boundary) which admit minimal maps are finite unions of tori and finite
unions of Klein bottles (the fact that both admit minimal maps was known; they
proved that no other 2-manifold admits a minimal map).

The basic fact discovered by G. D. Birkhoff is that any compact system (X; f)
has minimal subsystems (M, f |M). Such sets M are called minimal sets of (X; f).
The fundamental question is to describe (or even characterize) topological structure
of minimal sets in a given space. This is an easy task in the case of the interval –
every minimal set of a continuous selfmap of the interval is either finite or a Cantor
set and, conversely, for any finite set as well as for any Cantor set in the interval
there is a continuous selfmap of that interval such that the considered set is minimal
for that map. While it is not difficult to generalize the result to the graphs (also
the circles appear on the scene as minimal sets, see [13]), in the case of dendrites
the problem is highly nontrivial and only very recently in [16] we have completely
solved it (in fact we obtained even some more general results)

In higher dimensions there are few results about the topological structure of min-
imal sets of continuous maps. For some special classes of maps we have shown that
all their minimal sets are nowhere dense (see [64] and [67]). We have used a nonho-
mogeneous minimal system of Floyd-Auslander type to construct a counterexample
in triangular dynamics in [48]. Then in [93] we have found a new example of a
nonhomogeneous minimal system with positive entropy which has successfully been
used to solve so called Kolyada’s problem.

On the other hand, still it is not known whether continuous maps on the torus
(more generally, on two-dimensional and perhaps on all connected manifolds) have
only minimal sets which are nowhere dense or coincide with the whole space. We
conjecture that the answer is positive and we have been working on the problem.

23



6 BIBLIOGRAPHY

[1] R. Adler, A. Konheim and J. McAndrew, Topological entropy, Trans. Amer.
Math. Soc. 114 (1965), 309–319.
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[8] Ll. Alsedà, J. Llibre, R. Serra, Minimal periodic orbits for continuous maps of
the interval, Trans. Amer. Math. Soc. 286 (1984), 595-627.

[9] J. Auslander, Minimal Flows and their Extensions, North-Holland Mathematics
Studies, vol. 153, Elsevier Science Publishers B.V., Amsterdam, 1988.

[10] J. Auslander, W. H. Gottschalk (eds.), Topological Dynamics, An International
Symposium, W. A. Benjamin, Inc. New York, Amsterdam, 1968.

[11] J. Auslander, S. Kolyada, L’. Snoha, Functional envelope of a dynamical system,
Max-Planck Institut für Mathematik Preprint Series 2004(131), Bonn.

[12] J. Auslander, J. A. Yorke, Interval maps, factors of maps, and chaos, Tôhoku
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7 SUMMARY

The dissertation deals with discrete dynamical systems given by a continuous self-
map of a compact metric space. Three problems on periodic points on the interval
are solved: Minimal periodic orbits are characterized, the nonexistence of piecewise
linear maps of type 2∞ is proved and the existence of maps of type less than 2∞

in any neighbourhood of any map of type 2∞ is proved. Then generically chaotic
interval maps on the interval are characterized. Further, the topological entropy
for nonautonomous dynamical systems on a compact metric space is defined and
its properties are studied. Finally, minimal maps are studied. Among others, it is
shown that any minimal map on a compact metric space is almost one-to-one and
that the torus admits noninvertible minimal maps.

8 RESUMEN

La disertación versa sobre sistemas dinámicos discretos generados por aplicaciones
de un espacio métrico compacto en śı mismo. En el intervalo se resuelven tres
problemas sobre puntos periódicos: se caracterizan las órbitas periódicas minimales,
se prueba la no existencia de aplicaciones lineales a trozos de tipo 2∞, y se prueba
la existencia de aplicaciones de tipo menor que 2∞ en cualquier entorno de toda
aplicación de tipo 2∞. A continuación se caracterizan las aplicaciones del intervalo
que son genéricamente caóticas. Además, se define la entroṕıa topológica de los
sistemas dinámicos no autónomos en espacios métricos compactos y se estudian
sus propiedades. Por último se estudian las aplicaciones minimales. Entre otros
resultados, se demuestra que cualquier aplicación minimal en un espacio métrico
compacto es casi inyectiva y que el toro admite aplicaciones minimales no invertibles.
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