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Cantor-Bendixson Derivative

Let X be a topological space, and let A ⊆ X .

The Cantor-Bendixson derivative of A is the set

A′ = {x ∈ A : x is a limit point of A}

The iterated Cantor-Bendixson derivatives Aγ , γ ∈ ORD, are
defined by

A0 = A
Aγ+1 = (Aγ)′

Aγ =
⋂
α<γ

Aα, if γ is limit
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Cantor-Bendixson Rank

Let X be a topological space, and let A ⊆ X .

The Cantor-Bendixson rank of A (denoted by rank(A)) is the
least γ ∈ ORD such that Aγ = ∅.
If such γ does not exist then the Cantor-Bendixson rank of A
is +∞.

Observation 1
rank(A) = +∞ ⇐⇒ A contains a dense in itself subset

Observation 2
X second countable and rank(A) < ω1 =⇒ A is at most
countable
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Perfect Cliques

Let X be a topological space, and let R ⊆ X n be a relation on
X .

A set S ⊆ X is called an R-clique if (s1, . . . , sn) ∈ R whenever
s1, . . . , sn ∈ S are pairwise distinct.

If R is a family of relations on X then a set S ⊆ X is called an
R-clique if it is an R-clique for every R ∈ R.

A perfect R-clique is an R-clique which is a perfect set (i.e.
completely metrizable without isolated points).
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The Existence of Perfect Cliques

Question
Let X be a topological space, and let R be a family of relations
on X. When does there exist a perfect R-clique?

Similar questions were already studied by J. Mycielski (for
comeager relations), Q. Feng (for one binary relation), W. Kubiś
(for one symmetric relation)...

Our main theorem is a variant of the previous results.
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Main Result

Theorem
Let X be a completely metrizable space of weight κ ≥ ω0, and
let R be a countable family of Gδ relations on X. Then exactly
one of the following two statements holds:
(S) There exists an ordinal γ < κ+ such that every R-clique

has Cantor-Bendixson rank < γ.
(P) There exists a perfect R-clique.

Note: This theorem fails if we replace ‘Gδ relations’ by
‘Fσ relations’ (even for one Fσ relation).
This was proved by S. Shelah, and a concrete example was
found by W. Kubiś and B. Vejnar.
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found by W. Kubiś and B. Vejnar.

Martin Doležal Perfect cliques with respect to infinitely many relations



Corollary

Corollary
Let X be an analytic space, and let R be a countable family of
Gδ relations on X. If there exists an uncountable R-clique then
there exists a perfect R-clique.

Proof: There is a continuous surjection f : Y → X where Y is
a completely metrizable space of weight ω0.
For R ∈ R, let R̃ = {(y1, . . . , yn) ∈ Y n : (f (y1), . . . , f (yn)) ∈ R}.
Let R̃ = {R̃ : R ∈ R}.
Then exactly one holds:
(S) There exists an ordinal γ < ω1 such that every R̃-clique

has rank < γ =⇒ all R-cliques are at most countable.
(P) There exists a perfect R̃-clique =⇒ there exists a perfect
R-clique.
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Applications

Theorem (Souslin)
Let X be an analytic space. Then either X is at most countable,
or else X contains a perfect subset.

Proof:

Let R = X 2, and let R = {R}.
Then every subset of X is an R-clique.
So if X has an uncountable subset then X has a perfect subset.

(This proof was already known earlier, using a theorem by
Q. Feng instead of our result.)
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Applications

S. Głąb, F. Strobin (2015):
Let Gn, n ∈ N, be countable groups, and let G = Πn∈NGn.
Then either all free subgroups of G are countable, or else G
contains a free subgroup generated by a set of cardinality c.

Question:
Does this hold for other groups G as well?

Answer:
Yes, it holds for every Polish group!
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Applications

Theorem
Let G be a Polish group. Then either all free subgroups of G are
countable, or else G contains a free subgroup generated by a
perfect set.

Proof:

For each nonempty word w(x1, . . . , xn) on G, let
Rw = {(x1, . . . , xn) ∈ Gn : w(x1, . . . , xn) 6= 0}.
Let R = {Rw : w is a nonempty word on G}.
Then a subset of G generates a free group ⇐⇒ it is an
R-clique.
So if G has an uncountably generated free subgroup then it has
a perfectly generated free subgroup.
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Applications

Theorem
Let G be a Polish group. Then either all free subgroups of G are
countable, or else G contains a free subgroups generated by a
perfect set.

Other variants of the previous theorem:

Theorem
Let G be a Polish group. Then either all free abelian subgroups
of G are countable, or else G contains a free abelian subgroup
generated by a perfect set.

Theorem
Let G be a Polish group. Then either all torsion-free subgroups
of G are countable, or else G contains a torsion-free subgroup
generated by a perfect set.
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Thank you for your attention!
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