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Abstract. A generalization of Nevanlinna’s First Fundamental Theorem to superharmonic
functions on Green balls is proved. This enables us to generalize many other theorems,
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1. Introduction

Nevanlinna’s First Fundamental Theorem is concerned with superharmonic func-

tions on balls, and has applications to superharmonic functions on � n and δ-

subharmonic functions on balls [5], [6]. Here we prove a generalization to superhar-

monic functions on Green balls, which are sets of the form

BD(x0, r) = {y ∈ D : GD(x0, y) > τ(r)},

where D is a Dirichlet regular Greenian open set, GD is its Green function, τ(r) =

− log r if n = 2, τ(r) = r2−n if n > 3, and 0 < r < 1 if n = 2, 0 < r < ∞ if n > 3. Any

Green ball BD(x0, r) is a bounded domain with its closure in D [11], and is Dirichlet

regular. Our result involves the mean values of superharmonic functions over Green

spheres, introduced in [11]. Easy corollaries generalize results of Armitage [2], Kuran

[7], and Parker [8].

The theorem leads to generalizations of several other results, including some on

the behaviour of quotients of differences of mean values of δ-subharmonic functions
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in [14], on the size of the sets where certain singularities occur in [13], on conditions

for a positive measure to be the Riesz measure for a superharmonic function with a

harmonic minorant in [6] p. 128, and on conditions for a δ-subharmonic function to

be expressible as a difference of two positive superharmonic functions in [5] p. 510.

Our results are analogues of theorems on supertemperatures given in [15].

We note that Armitage [1] has given a Nevanlinna theorem for superharmonic

functions on half-spaces, but his approach is not related to ours.

For all x, y ∈ � n , we put G(x, y) = τ(‖x − y‖) and

B(x, r) = {y : G(x, y) > τ(r)} = {y : ‖x − y‖ < r}

for all r > 0. We also put pn = max{1, n − 2}, and note that τ ′(r) = −pnr1−n for

all n > 2.

For almost every r such that τ(r) > 0, the set {y ∈ D : GD(x0, y) = τ(r)} is a
smooth regular (n−1)-dimensional manifold. Such a value of r is called regular. If r

is a regular value, then the set is the Green sphere ∂BD(x0, r), and the surface mean

value LD of a function u is defined by

LD(u, x0, r) =
1

pnσn

∫

∂BD(x0,r)

‖∇GD(x0, ·)‖u dσ

whenever the integral exists. Here σn denotes the surface area of the unit ball in � n ,
and σ denotes surface area measure. If GD is replaced by G, then the formula for

LD(u, x0, r) reduces to the standard formula for the mean value of u over the sphere

∂B(x0, r), which we denote by L(u, x0, r).

2. The generalization of Nevanlinna’s first fundamental theorem

In this section we present our generalization of formula (3.9.6) in [6]. We also

present some immediate consequences, which generalize, and to some extent unify,

results of Armitage [2], Kuran [7] and Parker [8].

Theorem 1. Let E be an open set, let D be a Dirichlet regular Greenian open

superset of E, let x0 ∈ E, and let r and s be regular values such that 0 < r < s and

BD(x0, s) ⊆ E. If u is superharmonic on E with Riesz measure µ, then

(1) LD(u, x0, r) = LD(u, x0, s) + pn

∫ s

r

t1−nµ(BD(x0, t)) dt

and

(2) u(x0) = LD(u, x0, s) + pn

∫ s

0

t1−nµ(BD(x0, t)) dt.
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���������
. Let V be a bounded open set such that BD(x0, s) ⊆ V and V ⊆ E.

Then there is a harmonic function h such that

u = GDµV + h

on V . Recall that, by [11] Theorem 1, the means LD are finite-valued and

LD(h, x0, r) = h(x0). It follows that

LD(u, x0, r) − LD(u, x0, s) = LD(GDµV , x0, r) − LD(GDµV , x0, s)

=

∫

V

(LD(GD(·, y), x0, r) − LD(GD(·, y), x0, s)) dµ(y)

=

∫

V

((GD(x0, y) ∧ τ(r)) − (GD(x0, y) ∧ τ(s))) dµ(y)

by [12] Theorem 2. By definition of BD(x0, r), we have GD(x0, y) ∧ τ(r) = τ(r) if

and only if y ∈ BD(x0, r). Therefore

(GD(x0, y) ∧ τ(r)) − (GD(x0, y) ∧ τ(s))

=











τ(r) − τ(s) if y ∈ BD(x0, r),

GD(x0, y) − τ(s) if y ∈ BD(x0, s) \ BD(x0, r),

0 if y /∈ BD(x0, s).

Hence

LD(u, x0, r) − LD(u, x0, s) =

∫

BD(x0,s)

((GD(x0, y) ∧ τ(r)) − τ(s)) dµ(y).

If we now put λ(t) = µ(BD(x0, t)) whenever 0 6 t 6 s, we obtain

LD(u, x0, r) − LD(u, x0, s) =

∫

[0,s]

((τ(t) ∧ τ(r)) − τ(s)) dλ(t)

= (τ(r) − τ(s))λ(0) + ((τ(t) ∧ τ(r)) − τ(s))λ(t)|s0+

−
∫ s

r

τ ′(t)λ(t) dt

= pn

∫ s

r

t1−nµ(BD(x0, t)) dt.

This proves (1). Making r → 0 in (1), we obtain (2). �

����� �!��"$#
. The formula (2) is a direct extension of Nevanlinna’s first fundamen-

tal theorem ([6] p. 127). If n = 2, consider the case E = D = B(0, r0) and x0 = 0.

Then, whenever 0 < r < 1, we have

BD(x0, r) = {x ∈ B(0, r0) : GB(0,r0)(0, x) > τ(r)} = B(0, rr0)
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and

LD(u, x0, r) = κ−1
2

∫

∂BD(0,r)

‖∇GB(0,r0)(0, ·)‖u dσ

= κ−1
2

∫

∂B(0,rr0)

1

‖x‖u dσ = L(u, 0, rr0),

so that (2) becomes

u(0) = L(u, 0, sr0)+pn

∫ s

0

t−1µ(B(0, tr0)) dt = L(u, 0, sr0)+pn

∫ sr0

0

t−1µ(B(0, t)) dt

for 0 < s < 1. On the other hand, if n > 3 we can take E = B(0, r0), x0 = 0, and

D = � n . Then, whenever 0 < r < ∞, we have BD(x0, r) = B(0, r) and

LD(u, x0, r) = κ−1
n

∫

∂B(0,r)

(2 − n)‖x‖1−nu dσ = L(u, 0, r),

so that we can obtain the classical formula from (2) by removing the subscripts D.

Similarly, formula (1) extends a variant of the classical result given, for example,

in [2] Lemma 3.

If we put

ND(x0, s) = pn

∫ s

0

t1−nµ(BD(x0, t)) dt,

then ND(x0, ·) is obviously increasing, and a standard argument ([6] p. 127) shows
that there is a convex function ϕ such that ND(x0, ·) = ϕ ◦ τ.

We now give three corollaries of Theorem 1, all of which are extensions of known

results. Theorem 3 (iv), (v) of [11] imply that the surface means can be replaced by

the corresponding volume means in the first two corollaries.

Corollary 1. Let E be an open set, let D be a Dirichlet regular Greenian open

superset of E, and let x0 ∈ E. If u is superharmonic on E with Riesz measure µ,

then as r → 0 through regular values

(3) lim
LD(u, x0, r)

τ(r)
= µ({x0}).

���������
. Given ε > 0, choose δ > 0 such that |µ(BD(x0, t)) − µ({x0})| < ε for

all t < δ. Fix a regular value of s < δ. Then, whenever r is a regular value and r < s,

we have

(4) LD(u, x0, r) = LD(u, x0, s) + pn

∫ s

r

t1−nµ(BD(x0, t)) dt
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by (1). Since s < δ, as r → 0 we have

pn

τ(r)

∫ s

r

t1−nµ(BD(x0, t)) dt <
(µ({x0}) + ε)(τ(r) − τ(s))

τ(r)
→ µ({x0}) + ε,

so that

lim sup
pn

τ(r)

∫ s

r

t1−nµ(BD(x0, t)) dt 6 µ({x0}) + ε.

Similarly

lim inf
pn

τ(r)

∫ s

r

t1−nµ(BD(x0, t)) dt > µ({x0}) − ε,

so that the corresponding limit exists and is µ({x0}). The result (3) now follows from
(4). �

The casesD = � n with n > 3, andD a ball centred at x0 with n = 2, of Corollary 1

were proved by Parker ([8] Lemma). Earlier, Armitage ([2] Lemma 3 Corollary 1)

had proved (for the same cases) that if either side of (3) is zero then so is the other,

and Kuran ([7] Theorem 2) had proved that if u(x0) = 0 then µ({x0}) = 0.

Corollary 2. Let D be a Dirichlet regular Greenian open set, let x0 ∈ D, and let

u be superharmonic with Riesz measure µ on D. If u > 0, then

(5) τ(r)µ(BD(x0, r)) 6 LD(u, x0, r)

for all regular values of r.

���������
. Let r and s be regular values such that r < s. Put R = 1 if n = 2, and

R = ∞ if n > 3. Then 0 < r < s < R, so that by (1)

LD(u, x0, r) > pn

∫ s

r

t1−nµ(BD(x0, t)) dt

> µ(BD(x0, r))pn

∫ R

r

t1−n dt = µ(BD(x0, r))τ(r).

�

����� �!��"$#
. The special case of Corollary 2 in which D = � n and n > 3, was

proved earlier by Kuran ([7] Theorem 4) and Armitage ([2] Lemma 3 Corollary 2).

The proof given above follows that of Armitage.
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The case where D = B(0, %0) and n = 2 of Corollary 2, implies the second in-

equality of [7] Theorem 4. For then, taking x0 = 0, we have BD(x0, r) = B(0, r%0),

and LD(u, x0, r) = L(u, 0, r%0), so that (5) becomes

(

log
1

r

)

µ(B(0, r%0)) 6 L(u, 0, r%0)

whenever 0 < r < 1. If we now put % = r%0, and confine r to ]0, θ[ for some θ < 1,

we get

µ(B(0, %)) 6

(

log
1

r

)

−1

L(u, 0, %) 6

(

log
1

θ

)

−1

L(u, 0, %),

which is (13) of [7].

Corollary 3. Let D be a Dirichlet regular Greenian open set, and let u be

superharmonic with Riesz measure µ on D. Put R = 1 if n = 2, and R = ∞ if

n > 3. If u > 0, then

lim
r→R

τ(r)µ(BD(x, r)) = 0

for all x ∈ D.

���������
. The greatest harmonic minorant h of u is given by

h(x) = lim
r→R

LD(u, x, r)

for all x ∈ D, in view of [11] Theorem 1 and [3] p. 123, (11.1). Since µ is the Riesz

measure for u − h, it therefore follows from Corollary 2 above and [11] Theorem 1

that

τ(r)µ(BD(x, r)) 6 LD(u − h, x, r) = LD(u, x, r) − h(x) → 0

as r → R through regular values. Therefore, given ε > 0 we can find K such that

µ(BD(x, r)) 6 ε/τ(r) for all regular values of r > K, and hence for every r > K

because 1/τ is continuous and µ(BD(x, ·)) is an increasing function. �

The case where D = � n and n > 3 of Corollary 3 was first proved by Kuran [7]

Theorem 1.
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3. The behaviour of the means for small regular values

Theorem 2 below generalizes part of [14] Theorem 2, which dealt only with the

classical spherical means.

We need some notation. Let E be an open set, and let D be a Dirichlet regular

Greenian open superset of E. If BD(x0, s) ⊆ E, ν is a positive measure on E, and

0 6 r < s, we put

Iν,D(x0; r, s) = pn

∫ s

r

t1−nν(BD(x0, t)) dt.

Theorem 2. Let E be an open set, let D be a Dirichlet regular Greenian open

superset of E, let u be δ-subharmonic on E with Riesz measure µ, and let ν be a

positive measure on E. Then

lim sup
0<r<s→0

LD(u, x, r) − LD(u, x, s)

Iν,D(x; r, s)
6 lim sup

t→0

µ(BD(x, t))

ν(BD(x, t))

whenever the latter exists. Furthermore, if u(x) is defined and finite, and Iν,D(x;

0, s) < ∞ for all sufficiently small values of s, then

lim sup
s→0

u(x) − LD(u, x, s)

Iν,D(x; 0, s)
6 lim sup

t→0

µ(BD(x, t))

ν(BD(x, t))
.

���������
. The proof of the first inequality is similar to the proof of the first part

of [14] Theorem 2. The proof of the second part is similar again, using (2) instead

of (1). �

Theorem 2 can easily be rewritten in a form that generalizes [14] Theorem 6.

Theorem 3. Let E be an open set, and let D be a Dirichlet regular Greenian

open superset of E. Let u be δ-subharmonic with Riesz measure µ, and let v be

superharmonic with Riesz measure ν, on E. Then

lim sup
0<r<s→0

LD(u, x, r) − LD(u, x, s)

LD(v, x, r) − LD(v, x, s)
6 lim sup

t→0

µ(BD(x, t))

ν(BD(x, t))

whenever the latter exists. Furthermore, if u(x) is defined and finite, and v(x) < ∞,
then

lim sup
s→0

u(x) − LD(u, x, s)

v(x) − LD(v, x, s)
6 lim sup

t→0

µ(BD(x, t))

ν(BD(x, t))
.

���������
. In view of Theorem 1 and the finiteness of the means ([11] Theorem 1),

the result follows from Theorem 2. �

We can also generalize [14] Theorem 5, as follows.
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Theorem 4. Let E be an open set, let D be a Dirichlet regular Greenian open

superset of E, and let u be δ-subharmonic with Riesz measure µ on E. Let α > 0,

let f be a positive, increasing, absolutely continuous function on [0, α], and let

f̂(r, s) = pn

∫ s

r

t1−nf(t) dt

whenever 0 6 r < s 6 α. Then

lim sup
0<r<s→0

LD(u, x, r) − LD(u, x, s)

f̂(r, s)
6 lim sup

t→0

µ(BD(x, t))

f(t)

for all x in E. Furthermore, if u(x) is defined and finite, and f̂(0, s) < ∞ for all

sufficiently small values of s, then

lim sup
s→0

u(x) − LD(u, x, s)

f̂(0, s)
6 lim sup

t→0

µ(BD(x, t))

f(t)
.

���������
. Given x, we choose % 6 α such that BD(x, %) ⊆ E, and define a positive

measure ν on E by putting

dν = −κ−1
n ‖∇GD(x, ·)‖2

(f ′

τ ′

)

(τ−1(GD(x, ·)))χBD (x,%) dλ + f(0) dδx,

where τ−1 denotes the inverse function of τ, χA denotes the characteristic function

of a set A, λ denotes n-dimensional Lebesgue measure, and δx denotes the unit mass

at x. If 0 < t < %, it follows from results in [11] pp. 309–310 that

ν(BD(x, t)) = −κ−1
n

∫

BD(x,t)

‖∇GD(x, ·)‖2
(f ′

τ ′

)

(τ−1(GD(x, ·))) dλ + f(0)

= κ−1
n

∫ t

0

(
∫

∂BD(x,r)

‖∇GD(x, ·)‖f ′(r) dσ

)

dr + f(0)

=

∫ t

0

LD(1, x, r)f ′(r) dr + f(0) =

∫ t

0

f ′(r) dr + f(0) = f(t).

Therefore, whenever 0 6 r < s 6 %,

Iν,D(x; r, s) = pn

∫ s

r

t1−nf(t) dt = f̂(r, s).

The results now follow from Theorem 2. �

The corollaries of [14] Theorem 5 can now easily be generalized. We leave this to

the reader.
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4. The Hausdorff measure of certain sets

We use Theorem 4 to study the size of the set of points x where

lim sup
0<r<s→0

LD(u, x, r) − LD(u, x, s)

f̂(r, s)

is unbounded, or is positive, for a given function f and superharmonic function u.

The size is estimated in terms of Hausdorff measures [9]. Our results generalize

theorems of Armitage [2] and Watson [13] in two directions, namely the mean values

considered and the Hausdorff measures used.

Theorem 5. Let n > 3, let E be an open set, letD be a Dirichlet regular Greenian

open superset of E, and let u be superharmonic on E. Let h be an increasing,

absolutely continuous function on [0,∞[ such that h(0) = 0 and h(2s) 6 Kh(s) for

all s > 0, where K is a constant. Put

ĥ(r, s) = pn

∫ s

r

t1−nh(t) dt.

Then the set

(6)
{

x ∈ E : lim sup
0<r<s→0

LD(u, x, r) − LD(u, x, s)

ĥ(r, s)
= ∞

}

has h-measure zero, and

(7)
{

x ∈ E : lim sup
0<r<s→0

LD(u, x, r) − LD(u, x, s)

ĥ(r, s)
> 0

}

is σ-finite with respect to h-measure.

���������
. Let µ denote the Riesz measure for u. It suffices to prove the results lo-

cally, and we may therefore suppose that E is bounded and µ is finite. By Theorem 4,

the set (6) is a subset of

(8)
{

x ∈ E : lim sup
t→0

µ(BD(x, t))

h(t)
= ∞

}

,

and the set (7) is contained in

(9)
{

x ∈ E : lim sup
t→0

µ(BD(x, t))

h(t)
> 0

}

.
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Since n > 3, GD(x, y) 6 ‖x − y‖2−n for all x, y ∈ D, so that BD(x, t) ⊆ B(x, t) for

all t > 0. Therefore BD(x, t) is contained in a closed interval I(x, s) of centre x and

edge length s = 2r, which is contained in E if r is sufficiently small. It follows that

the set (8) is a subset of

(10)
{

x ∈ E : lim sup
s→0

µ(I(x, s))

h(s/2)
= ∞

}

,

and that the set (9) is a subset of

(11)
{

x ∈ E : lim sup
s→0

µ(I(x, s))

h(s/2)
> 0

}

.

If i is chosen so that 2i−1 >
√

n, then

h(s/2) > K−ih(2i−1s) > K−ih(s
√

n) = K−ih(diam I(x, s)).

Therefore the sets (10) and (11) are contained in the sets

S =
{

x ∈ E : lim sup
s→0

µ(I(x, s))

h(s
√

n)
= ∞

}

and

T =
{

x ∈ E : lim sup
s→0

µ(I(x, s))

h(s
√

n)
> 0

}

respectively. By a result of Rogers and Taylor ([10], Lemma 2), for each k > 0 the

set

Sk =
{

x ∈ E : lim sup
s→0

µ(I(x, s))

h(s
√

n)
> k

}

has h-measure h − m(Sk) 6 Mµ(E)/k for some constant M. It follows that

h − m(S) = 0, and that T is σ-finite with respect to h-measure. This implies

the results of the theorem. �

Corollary 1. Let n > 3, and let E, D, h and ĥ be as in Theorem 5. If u is

δ-subharmonic on E, and ĥ(0, α) = ∞ for some α, then the set

{

x ∈ E : lim sup
s→0

LD(u, x, s)

ĥ(s, α)
= ∞

}

has h-measure zero, and

{

x ∈ E : lim sup
s→0

LD(u, x, s)

ĥ(s, α)
> 0

}

is σ-finite with respect to h-measure.
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���������
. Let µ denote the Riesz measure of u. It is enough to prove the result

locally, and so we may suppose that E is bounded (and hence Greenian) and that

µ has finite total variation. Since GEµ 6 GE |µ|, we may also suppose that µ is

positive (so that u is superharmonic). Using the method of proof of [14] Theorem 5

Corollary 1, we can now show that

lim sup
s→0

LD(u, x, s)

ĥ(s, α)
6 lim sup

0<r<s→0

LD(u, x, r) − LD(u, x, s),

ĥ(r, s)

and so the result follows from Theorem 5. �

In the next result, we denote by mβ the h-measure constructed from the function

h(s) = sβ , where β > 0.

Corollary 2. Let n > 3, and let E, D and u be as in Corollary 1. Then the set

Sβ , defined by

Sβ =
{

x ∈ E : lim sup
s→0

sn−β−2LD(u, x, s) = ∞
}

if 0 < β < n − 2, and by

Sβ =
{

x ∈ E : lim sup
s→0

(

log
1

s

)

−1

LD(u, x, s) = ∞
}

if β = n − 2, has mβ-measure zero. Furthermore, the set Tβ given by

Tβ =
{

x ∈ E : lim sup
s→0

sn−β−2LD(u, x, s) > 0
}

if 0 < β < n − 2, and by

Tβ =
{

x ∈ E : lim sup
s→0

(

log
1

s

)

−1

LD(u, x, s) > 0
}

if β = n − 2, is σ-finite with respect to mβ .

���������
. If we take h(s) = sβ, 0 < β 6 n − 2, in Corollary 1, then ĥ(0, α) = ∞

so that the corollary is applicable. Furthermore,

ĥ(s, α) =







pn

n − β − 2
(sβ+2−n − αβ+2−n) if 0 < β < n − 2,

pn log(α/s) if β = n − 2.

The result follows. �

11



The case of Corollary 2 in which D = � n , u is superharmonic, and 0 < β < n− 2,

was proved by Armitage in [2] Theorem 3. The caseD = � n was subsequently proved

byWatson in [13] Theorem 16 (in the statement of which |u| should be replaced by u).

In Theorem 5 Corollary 1, the condition on ĥ ensures that LD(u, x, s) → ∞ as

s → 0, for every x in either of the sets in question. Therefore the sets are polar. In

the theorem itself, polarity is not so readily determined, and in fact depends on h.

We demonstrate this in the context of the next corollary.

Corollary 3. Let n > 3, and let E, D and u be as in Theorem 5.

(i) If 0 < β < n − 2, then the set

{

x ∈ E : lim sup
0<r<s→0

LD(u, x, r) − LD(u, x, s)

r−(n−2−β) − s−(n−2−β)
= ∞

}

has mβ-measure zero, and

{

x ∈ E : lim sup
0<r<s→0

LD(u, x, r) − LD(u, x, s)

r−(n−2−β) − s−(n−2−β)
> 0

}

is σ-finite with respect to mβ.

(ii) The set

{

x ∈ E : lim sup
0<r<s→0

LD(u, x, r) − LD(u, x, s)

log(s/r)
= ∞

}

has mn−2-measure zero, and

{

x ∈ E : lim sup
0<r<s→0

LD(u, x, r) − LD(u, x, s)

log(s/r)
> 0

}

is σ-finite with respect to mn−2.

(iii) If n − 2 < β 6 n, then the set

{

x ∈ E : lim sup
0<r<s→0

LD(u, x, r) − LD(u, x, s)

sβ+2−n − rβ+2−n
= ∞

}

has mβ-measure zero, and

{

x ∈ E : lim sup
0<r<s→0

LD(u, x, r) − LD(u, x, s)

sβ+2−n − rβ+2−n
> 0

}

is σ-finite with respect to mβ.

���������
. Take h(s) = sβ, 0 < β 6 n, in Theorem 5. �
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Sets of finite mn−2-measure are polar ([4] p. 78, or [6] p. 228). Therefore the sets in

Corollary 3 (i) and (ii) are all polar. The sets in (iii), however, need not be. Given β

such that n−2 < β 6 n, choose γ such that n−2 < γ < β. If S is an mγ-measurable

set for which 0 < mγ(S) < ∞, and µ is the restriction to S of mγ , then by [4] p. 25

we have

lim sup
t→0

µ(B(x, t))

tγ
> 1

µ-a.e. on S. Therefore

lim sup
t→0

µ(B(x, t))

tβ
= ∞

for all x ∈ S0, say, where µ(S \ S0) = 0. It follows from Theorem 4 that

lim sup
0<r<s→0

L(u, x, r) − L(u, x, s)

sβ+2−n − rβ+2−n
= ∞

for all x ∈ S0. Since mγ(S0) > 0 and γ > n − 2, the set S0 is not polar ([4] p. 78, or

[6] p. 225), and so the sets in Corollary 3 (iii) are not polar.

5. The Riesz measures of superharmonic functions on

Dirichlet regular Greenian sets

In this section we generalize [6] Theorem 3.20 from the case where D = � n for

some n > 3, to that where D is an arbitrary Dirichlet regular Greenian domain in

� n for any n > 2.

Theorem 6. Let D be a Dirichlet regular Greenian domain, and let µ be a

positive measure on D. Put R = 1 if n = 2, and R = ∞ if n > 3.

(i) If µ is the Riesz measure of a superharmonic function that has a harmonic

minorant on D, then

(12)

∫ R

1

2

t1−nµ(BD(x, t)) dt < ∞

for all x ∈ D.

(ii) Conversely, if there is a point x ∈ D such that (12) holds, then GDµ is

superharmonic on D. If, in addition, µ({x}) = 0 and

∫ 1

2

0

t1−nµ(BD(x, t)) dt < ∞,

then GDµ(x) < ∞.

13



���������
. (i) Let w be a superharmonic function which has a harmonic minorant

u on D, and whose Riesz measure is µ. Then µ is also the Riesz measure for w − u.

Therefore, if x ∈ D and r, s are regular values such that r < s, Theorem 1 shows

that

LD(w − u, x, r) = LD(w − u, x, s) + pn

∫ s

r

t1−nµ(BD(x, t)) dt

> pn

∫ s

r

t1−nµ(BD(x, t)) dt.

Since LD(w−u, x, r) < ∞ by [11] Theorem 1, if we fix r and make s → R we obtain

(12).

(ii) Now suppose that (12) holds for some x = x0 ∈ D. Let {kj} be an increasing
sequence of regular values such that kj → R as j → ∞, and put

AD(x0; k1, R) = D \ BD(x0, k1),

AD(x0; k1, kj) = BD(x0, kj) \ BD(x0, k1) for all j > 1.

If u = GDµ, then for all x ∈ D we put

u(x) =

∫

BD(x0,k1)

GD(x, y) dµ(y) +

∫

AD(x0;k1,R)

GD(x, y) dµ(y) = v1(x) + v2(x),

say, and

uj(x) =

∫

AD(x0;k1,kj)

GD(x, y) dµ(y)

for all j > 1. Since µ is locally finite, v1 and every uj is superharmonic on D. Since

{uj} is increasing to the limit v2, if v2(x0) < ∞ then v2 will be superharmonic on D.

Writing λ(t) = µ(BD(x0, t)) for all t > 0, we have

uj(x0) =

∫ kj

k1

τ(t) dλ(t) = [τ(t)λ(t)]
kj

k1
−

∫ kj

k1

τ ′(t)λ(t) dt.

Since (12) holds when x = x0, we have

λ(s)τ(s) = λ(s)

∫ R

s

−τ ′(t) dt 6 −
∫ R

s

τ ′(t)λ(t) dt → 0

as s → R. Therefore

v2(x0) = lim
j→∞

uj(x0) = −τ(k1)λ(k1) −
∫ R

k1

τ ′(t)λ(t) dt < ∞,

so that v2, and hence u, is superharmonic on D.
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For the last part, let {rj} be a decreasing null sequence of regular values (relative
to x0). Then, if µ({x0}) = 0,

u(x0) = lim
j→∞

∫ R

rj

τ(t) dλ(t) = lim
j→∞

(

−τ (rj)λ(rj ) −
∫ R

rj

τ ′(t)λ(t) dt

)

6 −
∫ R

0

τ ′(t)λ(t) dt < ∞.

�

6. Differences of positive superharmonic functions

Let D be a Dirichlet regular, Greenian open set, and let u be δ-subharmonic on D.

If µ is the Riesz measure for u, then µ can be written minimally as a difference µ+−µ−

of two positive measures on D. For all r ∈ ]0, R[ (where R = 1 if n = 2, R = ∞ if
n > 3), we put

λ+
D(x, r) = µ+(BD(x, r)), N+

D(x, r) = pn

∫ r

0

t1−nλ+
D(x, t) dt,

and similarly for µ−. We say that u(x0) is finite if N
+
D (x0, ·) and N−

D (x0, ·) are both
finite-valued, in which case it follows from (2) that u is the difference of two superhar-

monic functions which are finite at x0. If u(x0) is finite, we define the characteristic

TD of u at x0 by

TD(u, x0, r) = LD(u+, x0, r) + N+
D (x0, r) − u(x0)

for each regular value of r.

We use TD to characterize those δ-subharmonic functions on D that can be writ-

ten as a difference of two positive superharmonic functions, and thus generalize [5]

Theorem 7.42, which deals with the case where D is a ball.

Theorem 7. Let D be a Dirichlet regular Greenian domain, and let u be δ-

subharmonic on D.

(i) If u = u1 − u2 is the difference of two positive superharmonic functions on

D, and u(x0) is finite, then TD(u, x0, ·) is an increasing function such that 0 6

TD(u, x0, r) 6 u2(x0) for all regular values of r, and there is a convex function ϕ

such that TD(u, x0, ·) = ϕ ◦ τ.

(ii) Conversely, if u(x0) is finite and TD(u, x0, ·) is bounded above, then u is the

difference of two positive superharmonic functions on D.

15



���������
. (i) For i ∈ {1, 2}, let µi be the Riesz measure for ui, and put

λi
D(x0, r) = µi(BD(x0, r)), N i

D(x0, r) = pn

∫ r

0

t1−nλi
D(x0, t) dt

for all r ∈ ]0, R[. Since u1 > 0, it follows from (2) that

0 = LD(u1, x0, r) + N1
D(x0, r) − u1(x0).

Since µ1 and µ2 are positive and µ = µ1 − µ2, we have µ+ 6 µ1 and µ− 6 µ2, so

that

N+
D (x0, r) 6 N1

D(x0, r) = u1(x0) − LD(u1, x0, r).

Furthermore u1 > u+, so that LD(u+, x0, r) 6 LD(u1, x0, r). Hence

TD(u, x0, r) 6 LD(u1, x0, r) + (u1(x0) − LD(u1, x0, r)) − u(x0) = u2(x0),

which establishes the upper bound for TD(u, x0, r).

Now put v2 = GDµ− and v1 = u + v2. Then both v1 and v2 are superharmonic,

so that we can apply (2) to both of them and subtract. Thus we obtain

u(x0) = LD(u, x0, r) + N+
D(x0, r) − N−

D (x0, r).

It follows that

TD(u, x0, r) = LD(u+, x0, r) + N−

D (x0, r) − LD(u, x0, r) = LD(u−, x0, r) + N−

D (x0, r)

= LD(u−, x0, r) + v2(x0) − LD(v2, x0, r) = v2(x0) − LD(v2 − u−, x0, r).

Let x ∈ D. If u(x) > 0, then v1(x) > v2(x) and v2(x)−u−(x) = v2(x) = (v1∧v2)(x).

On the other hand, if u(x) 6 0 then v1(x) 6 v2(x) and v2(x) − u−(x) = v1(x) =

(v1 ∧ v2)(x). Hence

TD(u, x0, r) = v2(x0) − LD(v1 ∧ v2, x0, r).

Since v1 ∧ v2 is superharmonic, the characteristic TD(u, x0, ·) is increasing on the
set of all regular values (by [11] Theorem 1), there is a convex function ϕ such that

TD(u, x0, ·) = ϕ◦τ (by [11] Theorem 2), and TD(u, x0, r) > v2(x0)−(v1∧v2)(x0) > 0

(by [11] Theorem 1).

(ii) Let w1, w2 be superharmonic functions such that u = w1 −w2 on D. Applying

(2) to each wj and subtracting, we obtain

(13) TD(u, x0, r) = LD(u−, x0, r) + N−

D (x0, r)
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for all regular values of r. Therefore N−

D (x0, ·) 6 TD(u, x0, ·), and so N−

D (x0, ·) is
bounded. Hence

∫ R

0

t1−nλ−

D(x0, t) dt < ∞,

so that the function v2 = GDµ− is superharmonic onD, by Theorem 6. Furthermore,

N+
D (x0, r) = TD(u, x0, r) − LD(u+, x0, r) + u(x0) 6 TD(u, x0, r) + u(x0)

for all regular values of r, so that N+
D (x0, ·) is bounded, and hence the function

v1 = GDµ+ is superharmonic on D. It follows that the function h, defined q.e. on D

by h = u + v2 − v1, can be extended to a harmonic function h on D. Furthermore,

because v1 and v2 are positive,

LD(h−, x0, ·) 6 LD(u−, x0, ·)+LD(v1, x0, ·) = TD(u, x0, ·)−N−

D (x0, ·)+LD(v1, x0, ·)

by (13), so that

LD(h−, x0, ·) 6 TD(u, x0, ·) + v1(x0)

by [11] Theorem 1. Therefore LD(h−, x0, ·) is bounded, so that h− has a harmonic

majorant v on D, by [11] Theorem 1. Hence h = (h + v) − v is a difference of two

positive harmonic functions on D, so that

u = h + v1 − v2 = (h + v + v1) − (v + v2)

is a difference of two positive superharmonic functions on D.

����� �!��"
. A representation formula for the difference of two positive superhar-

monic functions on D, follows from the Riesz decomposition theorem and the Martin

representation theorem for differences of positive harmonic functions on Greenian do-

mains given in [3] p. 204.
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