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Abstract. The uniqueness theorem is proved for the linearized problem describing radi-
ation and scattering of time-harmonic water waves by a vertical shell having an arbitrary
horizontal cross-section. The uniqueness holds for all frequencies, and various locations of
the shell are possible: surface-piercing, totally immersed and bottom-standing. A version
of integral equation technique is outlined for finding a solution.
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1. Introduction

In the present note we consider the linearized water-wave problem describing time-
harmonic waves on the free surface in the presence of a vertical cylindrical shell
having arbitrary horizontal cross-section. The water layer is assumed to have a

constant (possibly infinite) depth. We show that the uniqueness theorem for this
problem holds for all frequencies and for any location of the shell. Also, an integral

equation of the first kind is applied for solving the problem. This equation arises
when the solution is sought in the form of a double layer potential.

Vertical shells can be used in ocean engineering for different purposes. In particu-

lar, totally immersed and bottom-standing shells can serve as devices extracting wave
energy (see papers by Simon [14] and Thomas [17]) as was proposed by Lighthill who

investigated the corresponding two-dimensional model in [7]. Using surface-piercing
shells as bottomless harbours was suggested by Garrett [1].

It is well-known that in studies of time-harmonic water waves interacting with ob-
stacles the question of uniqueness in the linearized problem is not yet fully answered
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despite its importance (see Ursell [19], where this problem is placed first in the list

of unfinished problems). A substantial progress in this field has been achieved since
1950, when first uniqueness theorems were proved by John [3] for surface-piercing
bodies and by Ursell [18] for a submerged circular cylinder. In the 1970s, Vainberg

& Maz’ya [20] obtained some criteria of uniqueness for layers of variable depth, and
Maz’ya [8] proved uniqueness for a class of submerged bodies (see also Hulme [2]

where illustrations are given to Maz’ya’s theorem). Simon & Ursell [16] gave various
criteria of uniqueness in the two-dimensional problem involving surface-piercing as

well as submerged bodies.

During the last two decades several results concerning the uniqueness of solution,
and the existence of trapped modes (non-trivial solutions to the homogeneous bound-

ary value problem leading to non-uniqueness in the non-homogeneous problem) have
been obtained for obstacles separating a bounded portion of the free surface from
infinity. Thus Kuznetsov [4] considered the two-dimensional problem for a pair of

surface-piercing bodies, and under certain geometrical restrictions obtained a single
bounded interval of frequencies in which uniqueness holds. When McIver [12] had

constructed the first example of trapped mode for this problem, it became clear that
restrictions on geometry and/or frequency intervals are unavoidable when proving

uniqueness for such obstacles. In three dimensions, Simon & Kuznetsov [15] gen-
eralized the result in [4] for a surface-piercing toroidal body. Their theorem also

imposes restrictions on geometry, and provides uniqueness only in a finite frequency
interval. Examples of axisymmetric toroids trapping different azimuthal modes were

constructed by McIver & McIver [13] and Kuznetsov & McIver [6]. In the latter
paper, it is also shown that the so-called John’s condition (which requires lines ex-

tending vertically downwards from every point of the free surface not to intersect
the body transversally) provides an infinite sequence of frequency intervals for each

mode so that the solution is unique there. On the other hand, we demonstrate that
uniqueness holds for all frequencies in the case of vertical shells.

Section 2 contains the formulation of the problem and some known auxiliary re-
sults. We prove the uniqueness theorem in Section 3. In order to avoid superfluous

technical details we restrict ourselves to shells having horizontal edges in Sections 2
and 3. More general geometries for which our uniqueness theorem holds are listed in

Section 4. In the last Section 5, we outline a version of the integral equation method
for solving the problem.
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2. Statement of the water-wave problem and auxiliary assertions

The small-amplitude three-dimensional motion of an inviscid, incompressible fluid
under gravity (water, for example) is considered. We assume the motion to be time-

periodic (ω denotes the radian frequency), and irrotational. Thus it is described by
a velocity potential Re

{
u(x, y) e−iωt

}
, where x = (x1, x2), and (x, y) are Cartesian

coordinates with the origin in the mean free surface and the y-axis directed vertically
upwards.

Let the fluid occupy a layer L = {x ∈ �
2 , −d < y < 0} of constant depth d > 0,

outside a shell S which:

(i) is a vertical cylindrical surface, that is, has its generators parallel to the y-axis;
(ii) has a boundary ∂S consisting of two horizontal edges belonging to planes

{y = −a}, {y = −b} where 0 � a < b � d, and equalities a = 0, b = d

cannot hold simultaneously;

(iii) is assumed (for simplicity) to be smooth, that is, the projection of S onto the
x-plane is a simple closed C2-curve �, dividing �2 into a simply connected

bounded domain F0 and an infinite domain F∞.
So W = L \ S is the fluid domain; the free surface F coincides with {y = 0}

when a > 0, and F = F0 ∪ F∞ when a = 0; the bottom B coincides with
{y = −d} when b < d, and B = {x ∈ F0 ∪ F∞, y = −d} when b = d.

In the water-wave problem, u must satisfy the Laplace equation

(1) ∇2u ≡ ux1x1 + ux2x2 + uyy = 0 in W

and the following boundary conditions:

(2) uy − νu = 0 on F, uy = 0 on B

on the free surface and bottom; here ν = ω2/g and g is the acceleration due to

gravity. Neumann’s condition

(3) ∂u/∂n = f on intS = S \ ∂S

prescribes the normal velocity on the shell, and the unit normal n is directed to
infinity on intS. Also, (1)–(3) must be supplemented by two conditions. First, u

must belong to the Sobolev space H1
(
W (a)

)
for any finite a > 0, where W (a) =

W ∩ {|x| < a
}
and |x| = (

x21 + x22
)1/2
. Secondly, a radiation condition

(4) u|x| − ik0u = o
(|x|−1/2) as |x| → ∞

must hold uniformly in y and the polar angle in the x-plane. Thus (4) requires waves

to behave at infinity like outgoing cylindrical waves having a wavenumber k0 which
denotes the unique positive root of k0 tanh k0d = ν.
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It is well-known (see, for example, Maz’ya & Rossmann [11]) that if u ∈ H1
(
W (a)

)
for any a large enough (so that S ⊂ W (a−1)), then u is continuous throughout W ,
and near the immersed edge (where a 	= 0, b 	= d) we have

(5)
∣∣∇u(x, y)

∣∣ = O(�−1/2) as � → 0.

We denote by � the distance of a point (x, y) ∈ W from ∂S. When a = 0 or b = d,
one can replace (5) by

(6)
∣∣∇u(x, y)

∣∣ = O(1) as � → 0.

The question of uniqueness reduces to the demonstration that u vanishes when it

satisfies the homogeneous water-wave problem, that is, when f vanishes in (3). It is
known (see, for example, Vainberg & Maz’ya [20]) that in this case the total energy

of the corresponding waves is finite:

∫
W

|∇u|2 dxdy + ν

∫
F

|u|2 dx < ∞.

Then, the equipartition of the kinetic and potential energy

(7)
∫

W

|∇u|2 dxdy − ν

∫
F

|u|2 dx = 0

is a consequence of Green’s formula.

3. Uniqueness theorem

The aim of the present section is to prove the following result.

Theorem. Under assumptions (i)–(iii) the homogeneous water-wave problem has
only a trivial solution.

�����. As in [3] (see also [6]) we consider the simple wave component of order

zero

(8) w(x) =
∫ 0

−d

u(x, y) coshk0(y + d) dy

defined for x ∈ F0 ∪ F∞ under assumptions (i)–(iii). It is demonstrated in [3] that

(9) ∇2xw + k20w = 0, where ∇xw = (wx1 , wx2).
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The proof is based on integration by parts twice in

∇2xw = −
∫ 0

−d

uyy(x, y) coshk0(y + d) dy,

which is a consequence of (1). Also, (2) must be applied as well as the definition of k0.
Two other assertions proved in [3] will be used in what follows:

1) (9) and (4) provide that

(10) w = 0 in F∞,

2) (10) implies

(11) ν

∫
F∞

|u|2 dx � 1
2

∫
W∞

|uy|2 dxdy, W∞ = {x ∈ F∞, −d < y < 0}.

Attention is now turned to obtaining a similar inequality between the potential

and kinetic energy for the fluid region W0 = {x ∈ F0, −d < y < 0} bounded above
by F0. First, let us prove that ∂w/∂n0 is continuous across � (n0 is the unit normal

to �).

We note that by (5) and (6) the integrals defining ∇xw converge absolutely and
uniformly on either side of � (in F0 and F∞), as well as across �. Moreover, ∂u/∂n is

continuous across the vertical cylindrical surface having � as the director (of course,
only the part within W is considered, and edges of S should be excluded). On intS,

the homogeneous Neumann condition yields that ∂u/∂n is continuous. Outside S, it
is a consequence of the smoothness of solutions to (1). Then, ∂w/∂n0 is continuous

across �.

The last fact and (10) imply that

(12) ∂w/∂n0 = 0 on �,

where w is considered as a function in F0. This and (9) show that the homogeneous
water-wave problem can have a non-trivial solution only if ν = k0 tanh k0d, where k20
is an eigenvalue of (9) and (12) in F0. Then for a solution of this problem Green’s
formula gives

(13)
∫

F0

|∇xw|2 dx = k20

∫
F0

|w|2 dx,

which is the crucial point for deriving an inequality similar to (11).
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Integrating by parts in (8) we have for x ∈ F0:

u(x, 0) sinh k0d = k0w(x) +
∫ 0

−d

uy(x, y) sinh k0(y + d) dy.

Squaring this and using Cauchy’s inequality with ε (its value is to be chosen later

for convenience) and the Schwarz inequality one gets

∣∣u(x, 0) sinh k0d
∣∣2 � (1 + ε)k20

∣∣w(x)∣∣2
+

(
1 + ε−1

) (∫ 0

−d

∣∣uy(x, y)
∣∣2 dy

) (∫ 0

−d

sinh2 k0(y + d) dy

)
.

Let us calculate the last integral, integrate over F0, and take into account (13), thus
obtaining

(14) ν

∫
F0

|u|2 dx � ν(1+ε)
sinh2 k0d

∫
F0

∣∣∇xw
∣∣2 dx+ 1+ε−1

2

(
1− νd

sinh2 k0d

)∫
W0

|uy|2 dxdy.

On the other hand, (8) gives

∇xw(x) =
∫ 0

−d

∇xu(x, y) coshk0(y + d) dy.

Using the Schwarz inequality we have

∣∣∇xw
∣∣2 �

(∫ 0

−d

∣∣∇xu(x, y)
∣∣2 dy

) (∫ 0

−d

cosh2 k0(y + d) dy

)
.

After calculation of the last integral and integration over F0 this inequality takes the
form ∫

F0

∣∣∇xw
∣∣2 dx � sinh

2 k0d+ νd

2ν

∫
W0

∣∣∇xu(x, y)
∣∣2 dxdy.

This and (14) combine to give

ν

∫
F0

|u|2 dx � 1+ε
2

(
1 + νd

sinh2 k0d

)∫
W0

|∇xu|2 dxdy + 1+ε−1
2

(
1− νd

sinh2 k0d

)∫
W0

|uy|2 dxdy.

The choice

ε =
sinh2 k0d − νd

sinh2 k0d+ νd
,

which is positive by the definition of k0, simplifies the last inequality to

(15) ν

∫
F0

|u|2 dx �
∫

W0

|∇u|2 dxdy.
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Finally, combination of (15) with (11) produces

ν

∫
F

|u|2 dx �
∫

W0

|∇u|2 dxdy + 1
2

∫
W∞

|uy|2 dxdy.

Comparing this with (7) one immediately finds that ∇u = 0 in W∞, and as u

is analytic ∇u vanishes throughout W . Then (7) shows that u = 0 on F , which

substituted into the free surface boundary condition gives that uy = 0 on F . Now,
application of the uniqueness theorem for the Cauchy problem for the Laplace equa-

tion proves the theorem.
�

4. More geometries providing the uniqueness theorem

The proof in Section 3 provides uniqueness in the three-dimensional water-wave

problem for a vertical shell of arbitrary horizontal cross-section in the fluid of finite
depth. The uniqueness holds for all positions of the shell: surface-piercing, totally

immersed and bottom-standing. For a surface-piercing shell, Theorem 3.1 is the
first uniqueness theorem which is valid for all frequencies in the case when the free

surface consists of two components in the three-dimensional problem. In two other
cases mentioned above, Theorem 3.1 also extends the uniqueness results known up

to the present (cf Maz’ya [8] and Vainberg & Maz’ya [20] where uniqueness criteria
are given for cases of totally submerged bodies and curved bottom respectively, and

Kuznetsov [5] where extensions of these results are obtained using the technique of
the auxiliary integral identity proposed in [8]).

Let us discuss other geometries for which the method applied in Section 3 provides
the uniqueness theorem. First we note that in the case of infinite depth one has

simply to use

w(x) =
∫ 0

−∞
u(x, y) eνy dy

instead of (8).

Now we subject to further analysis the uniqueness conditions (i)–(iii). Condi-
tion (i) is crucial for defining w throughout �2 \ �, but it can be weakened in two

directions as follows. Consider a finite number of rigid vertical cylinders extending
throughout the depth, and having such smooth horizontal cross-sections that their

projections on the x-plane are contained within �. Then F0 becomes a smooth mul-
tiply connected domain, but (13) still holds, and hence, considerations in Section 3

remain valid. Also, a finite number of shells is admissible if projections of their
contours on the x-plane are disjoint, and each of them lies outside the others.
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Condition (ii) is not necessary, and any edge bounding the shell inside W might

be an arbitrary smooth curve because (5) remains true in this case (see Maz’ya &
Rossmann [11]). Even a shell extending throughout the depth is allowed, but such a
shell must have a hole so that W is a connected fluid domain. Also, condition (iii)

can be replaced by a requirement that � is a piecewise smooth curve without cusps,
but this involves more technical details.

5. On integral equation method

When the uniqueness theorem holds for the water-wave problem, the solvability
theorem in the Sobolev space H1

(
W (a)

)
with any a > 0 can be proved by means of a

functional analytic technique developed by Vainberg & Maz’ya [20]. Let us consider
how the integral equation method can be applied for finding the solution.

Green’s functionG(P, Q) (for the sake of brevity, we put P = (x, y) and Q = (ξ, η))

is well-known for the water-wave problem (see, for example, John [3]). This function
satisfies (1) with −4�δ(|P −Q|) instead of zero on the right-hand side, and (2), (4).
Seeking the solution in the form

(16) u(P ) =
∫

S

∂G

∂nq
(P, q)σ(q) dSq, P ∈ L,

and applying (3) we get the integro-differential equation of the first kind

(17)
∂

∂np

∫
S

∂G

∂nq
(p, q)σ(q) dSq = f(p), p ∈ intS.

Here and below we use p, q for points on S, and P , Q for points elsewhere. The oper-

ator in (17) is well-defined because the normal derivative of a double layer potential
does exist on a smooth surface (see, for example, Maz’ya [9]). Also, we need the well-

known relation between σ(p) and the limits u(+)(p) and u(−)(p) of (16) as P tends
to p ∈ intS from the side directed to infinity and the ‘interior’ side, respectively:

(18) u(+)(p)− u(−)(p) = −�
−1σ(p) p ∈ intS.

To study how the behaviour of a solution to (17) depends on the properties of f ,
we introduce several function spaces (cf [9], Ch. 5). By Cα

β (S) we denote the space

of functions given on S and such that

sup
p,q

∣∣�β
pf(p)− �β

q f(q)
∣∣

|p − q|α + sup
∣∣f(p)∣∣ < ∞, α ∈ (0, 1), β ∈ �

1 ,
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where �p denotes the distance of p from the edge (or edges when S is totally im-

mersed) of ∂S lying inside L. Similarly, C1,αβ (S) consists of functions for which

sup
p,q

∣∣�β
p∇τf(p)− �β

q∇τf(q)
∣∣

|p − q|α + sup
∣∣f(p)∣∣ < ∞,

where ∇τ denotes the tangential gradient on S. When β−α < 1, C1,αβ (S) consists of
functions which are continuous throughout S, and we can introduce the space C̊1,αβ (S)

including those functions which vanish on the edge (edges) mentioned above.
Let a be so large that S ⊂ W (a−1). We introduce the function space C1,αβ

(
W (a)

)
consisting of functions given in W (a) for which

sup
P,Q∈W (a)

∣∣�β
P∇f(P )− �β

Q∇f(Q)
∣∣

|P − Q|α + sup
P∈W (a)

∣∣f(P )∣∣ < ∞.

We note that functions in C1,αβ

(
W (a)

)
have their traces in C1,αβ (S).

Using a technique developed in Maz’ya & Plamenevskii [10] and Maz’ya & Ross-
mann [11] one can demonstrate that if the right-hand side term f in (3) belongs

to Cα
β (S), 1/2 < β − α < 1, then u ∈ H1(W (a)) for any a > 0, and solving the

water-wave problem is in C1,αβ

(
W (a)

)
for any finite a > 0. This fact and (18) imply

that σ ∈ C̊1,αβ (S). Thus we formulate

Proposition 1. If f ∈ Cα
β (S) and 1/2 < β − α < 1, then σ solving (17) belongs

to C̊1,αβ (S).

Another integral equation for the water-wave problem arises from Green’s repre-

sentation for u in W . This equation is as follows (cf Maz’ya [9], subsect. 4.1):

−2�u(p) +
∫

S

∂G

∂nq
(p, q)u(q) dSq =

∫
S

G(p, q) f(q) dSq, p ∈ intS,

and the trace on S of a solution to the water-wave problem is to be found. Using
again that u ∈ C1,αβ

(
W (a)

)
when f ∈ Cα

β (S), 1/2 < β − α < 1 we formulate

Proposition 2. If f ∈ Cα
β (S) and 1/2 < β − α < 1, then u(p) solving the last

equation belongs to C1,αβ (S).

Also, we note that the single layer potential in the last equation belongs to C1,αβ (S).
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