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Abstract: The protective role of nutrition factors such as calcium, vitamin D and vitamin K for 

the integrity of the skeleton is well understood. In addition, integrity of the skeleton is 

positively influenced by certain trace elements (e.g. zinc, copper,  manganese, magnesium, 

iron, selenium, boron and fluoride) and negatively by others (lead, cadmium, cobalt). 

Deficiency or excess of these elements influence bone mass and bone quality in adulthood as 

well as in childhood and adolescence. However, some protective elements may become toxic 

under certain conditions, depending on dosage (serum concentration), duration of treatment  

and interactions among individual elements. We review the beneficial and toxic effects of key 

elements on bone homeostasis .  

Keywords: bone mineral density; bone quality; boron; cadmium; copper; iron; fluoride; lead; 

magnesium; manganese; selenium; zinc.  

 

 

 

Introduction  

Bone metabolism is defined by the interaction between osteoclasts, which determine bone 

resorption, and osteoblasts, which ensure bone formation. Predominance of osteoclastic 

activity evoked by endocrine, systemic diseases, as well as nutrition state, accelerates bone 

loss and increases fracture risk. Further key cell activatig bone formation is osteocyte, 

working first of all via mechanoreceptors.  

         The importance of trace elements in bone regulation is well established. Whereas 

copper, boron, zinc, selenium, manganese, or magnesium have osteo-protective effects, 

cadmium, cobalt and lead are toxic. However, the effect of high concentrations of certain 

bone protective elements (e.g. fluoride) is questionable. A deficit of protective elements, most 

frequently due to low intake in food, as well as high exposure to toxic elements (e.g. in highly 
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industrial areas) can lead to serious diseases including osteoporosis. This review summarizes 

contemporary knowledge concerning knowledge concerning  the positive and/or detrimental 

effects of trace elements on bone homeostasis. Trace elements are listed in alphabetical order 

in respective chapter. 

 

Trace elements with prevailing positive effect on the skeleton 

Boron  

      Boron stabilizes cell membranes and modulates membrane transport mechnisms. It has 

anti-inflammatory, antineoplastic and hypolipidemic effects. It also stimulates bone growth 

and bone metabolism (Hunt 2012). Boron activates 1,25(OH)2 D3 production and thus 

increases bone mineralisation (Hakki et al. 2013). Adequate boron intake is beneficial for 

trabecular bone microarchitecture and cortical bone strength (Nielsen and Stoecker 2009). 

Boron is ubiquitously present in water, soil and plants (the latter including vegetables, fruits 

and nuts). It is well tolerated when administered orally and measurable in all tissues. Daily 

boron intake in adults is usually around 1-2 mg/day. The recommended daily dose to support 

good bone health is 3 mg (reviewed by Zofkova et al. 2013).  

 

Copper  

Copper is  a general catalytic cofactor, which, both in oxidized and reduced form, affects the 

redox state in the body. Its deficiency can result in impaired glucose and cholesterol 

metabolism, energy production, blood and immune cells and altered myocardial contractility 

(Hordyjewska et al. 2014).  Copper deficiency leads to idiopathic myelopathy in adults 

(Kumar et al. 2004; Page et al. 2015) or progressive peripheral neuropathy (Coyle et al. 2015). 

On the other hand, increased copper levels have been detected in relation to some diseases, 
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such as Menke’s disease and Wilson’s disease and have some role in formation of plaques in 

Alzheimer’s disease (Brewer 2003). 

      Copper plays an important role in regulation of bone growth and development of the 

skeleton. The element induces the formation of lysine crosslinks in collagen and elastin via 

lysyl oxidase activation.  As a cofactor of antioxidant enzymes, it removes bone free radicals 

that cause the osteoclast activation (Kubiak et al. 2010). In addition, copper inhibits 

osteoclastic bone resorption directly (Li and Yu 2007). Alltogeter, copper increases bone 

strength and  helps to maintain the optimal state of bone quality.  

     In premature infants between 5 and 6 months of age, copper deficiency was linked to 

radiographic findings of metabolic bone disease, including osteoporosis, metaphyseal 

changes, and physeal disruptions (Marquardt et al. 2012). In consensus with the later 

observation, is a study performed on osteoporotic post-menopausal women, who had 

significantly lower serum copper as compared to controls (Midhavi-Roshan et al. 2015). 

Importance of copper in bone regulation also supports the observation of low content of the 

element in enamel in adult patients with markedly reduced lumbar spine BMD accompanied 

by severe tooth wear. This phenomenon has been independent of serum 25(OH)D vitamin, 

PTH, or osteocalcin levels (Sierpinska et al. 2014). 

     In the elderly, physiological decline in the gastrointestinal absorption may induce copper 

deficiency. Thus, balanced copper homeostasis is undoubtedly of primary importance for 

skeletal growth during childhood, as well as for bone health in adult age.  

     The recommended daily intake of copper for adequate bone quality in adults is 0.9 mg/day 

(Price et al. 2012). Additional clinical studies in larger groups are needed to find conclusive 

data. 

 

Fluoride 
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      The role of fluoride in the maintainance of bone health is full of controversy. Its positive 

effect is documented by some in vitro studies. Osteoblastic MG-63 cells culture, exposed to 

fluoride for one week, increased migration of these cells, promoted osteogenic cell 

differentiation and stimulated ALP concentration in the medium (Ohno et al. 2013). In rats, 

fluoride administration increased expression of mRNA of COL1A1, ALP and Runx2, which 

could be blocked by DKK-2, an inhibitor of the Wnt/-catenin receptor. Thus fluoride 

stimulates osteoblastogenesis by the canonical (Wnt) pathway (Pan et al. 2014). In vivo, the 

direct effect of fluoride on bone formation is intensified by overproduction of somatomedin. 

Nevertheless, fluoride treatment did not influence bone strength, although it increased bone 

mass (Turner et al. 1997). The clinical significance of fluoride‘s bone anabolic effect in vivo 

was questioned, when no association was found between daily intake of fluoride and BMD at 

lumbar spine and at the hip in a group of adolescents (Levy et al. 2014). Similarly, low-dose 

fluoride had no effect on bone mass and bone metabolic turnover in a relatively large group of 

post-menopausal women with osteopenia (Grey et al. 2013). At excessive exposure levels, 

intake of fluoride causes skeletal (and dental) fluorosis together with manifestations of 

gastrointestinal and neurological complications (Jha et al. 2011). Some authors explain the 

detrimental effect of fluoride on the skeleton by an overproduction of parathormone and 

activated bone resorption (Puranic et al. 2015; Koroglu et al. 2011).  

    The sources of fluoride in the environment are fluorite, fluoroapatite and cryolite, as well as 

compounds of anthropogenic origin, such as coal burning or brick-making industries. Fluoride 

in food is soluble, 90% of it is absorbed in the gastrointestinal tract and sequestred mainly in 

bone and teeth (Jha et al. 2011). The variability of fluoride intake in heterogenous populations 

is high, ranging from low to toxic values (Chachra et al. 2010). Exposure to fluoride could be 

quantified using urinary and serum fluoride, ALP, bALP and BGP, as demostrated in animals 

(Song et al. 2011).  
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Iron  

    As an enzymatic cofactor, iron stimulates synthesis of bone matrix via activation of lysyl 

hydroxylase. Iron also activates 25-hydroxycholecalciferol hydroxylase and supports 

mineralisation of bone matrix through vitamin D. Rats suffering from a severe iron deficiency 

had poorly mineralised skeleton (Parelman et al. 2006) together with lower cortical width in 

femur and tibia, pathological changes in the microarchitecture of the vertebral trabecular bone 

and decreased bone strength (Madeiros et al. 2004). In addition, severe iron deficiency in rats 

was associated with a decline in biochemical markers of bone formation, such as procollagen 

type I N-terminal propeptide, which was normalised after a diet with adequate iron content  

(Diaz-Castro et al. 2012). Thus, iron appears to be a key nutrient necessary for integrity of the 

skeleton of adult animals. Besides, low iron status activates gene expression of FGF23, the 

molecule with a more common pathogenetic role in living organisms. 

         The bone-protective effect of iron has also been shown in a clinical study of patients 

with iron-deficiency anaemia. Pre-menopausal women with non-recovered anaemia had, after 

adjusting for age and BMI, significantly higher levels of bone resorption marker (NTx) and 

slightly lower bone formation marker (P1NP) compared to treated women (Wright et al. 

2013). Therefore, bone resorption dominates over bone formation in pre-menopausal women 

with iron deficiency. However, osteopenia was also observed in patients with extremely high 

iron concentrations in tissues, e.g. due to genetically determined hemochromatosis 

(Guggenbuhl et al. 2005). In excess, ferric ion activates osteoclastic differentiation, most 

probably through activation of marrow-derived macrophages. Oxidative stress (e.g. induced 

by hypoestrinism) may play a supporting role in this process (Xiao et al. 2015). In summary, 

the protective or destructive effects of iron on bone is a matter of tissue concentration. This 
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phenomenon was also observed in some other trace elements. An adequate intake of iron has 

not been established with respect to bone mineral density.  

 

 

Magnesium  

      About 60% of total magnesium is stored in the skeleton. Magnesium is an integral part of 

the apatite crystals, from which it is released in the course of bone resorption. It is a cofactor 

of a number of enzymes that are important for energy (ATP synthesis), lipid, protein and 

nucleic acid, as well as calcium metabolism (reviewed by Castiglioni et al. 2013). Magnesium 

deficiency is associted with gastrointestinal or renal diseases, sickle cell anaemia and diabetes 

and it is also known to impede long-term antineoplastic and diuretic treatment. Low 

magnesium level alters cardiac excitability and neuromuscular function. Magnesium 

deficiency is often found in alcoholics and patients with Alzheimer disease, and elderly 

people with hypertension and cerebrovascular accidents (Volpe 2013). Hypomagnesemia is 

often found in patients after kidney transplantation due to increased renal magnesium wasting. 

It can increase mortality in patients with cardiovascular disease and/or cause graft dysfunction 

and disturbance of imunity. (Van Laceke and Van Biesen 2015). 

         In the skeleton, magnesium supports production of hydroxyapatite (Aina et al. 2013) and 

bone marrow stromal cells mineralisation (Yoshizawa et al. 2014). Magnesium also supports 

1,25(OH)2D vitamin synthesis. Thus, magnesium deficiency via hypokalcaemia elevates 

parathormone synthesis and subsquently osteoclast activity. A stimulated release of 

inflammatory cytokines, such as tumor necrosis factor (TNF) - alpha and interleukin-1 (Rude 

et al. 2009), may also play a potential role in this process. On the other hand, osteoblastic 

number and activity declines during magnesium deficiency (Kanazawa et al. 2007). All 

together, the consequence of magnesium deficiency is accelerated bone loss, which, together 
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with decline in bone formation, leads to decreased trabecular volume and alteration of bone 

microarchitecture in  a way similar to osteomalacia.  

     Clinical studies indicate that sufficient magnesium intake increases bone density in young 

adults (Matias et al. 2012). The protective effect of high magnesium intake on bone quality 

was documented in healthy women, using ultrasound measurement of the calcaneus (BUA) 

(Kim et al. 2011). An extensive analysis by Hayhoe et al. (2015) in a large group of adult 

subjects of both genders showed that dietary magnesium and serum magnesium were 

positively associated with calcaneal bone ultrasound analysis in women and negatively 

associated with fracture risk in both women and men. Furthermore, magnesium supported 

facilitated postoperative healing in orthopaedic patients, in whom degradable fixation 

magnesium devices were used (Chaya et al. 2015). Thus, magnesium appears to be an 

important element for development of peak bone mass, as well as for integrity of the adult 

skeleton (Nieves 2013). 

      Nevertheless, some alarming data exist on negative effects of elevated serum magnesium 

on the skeleton. Hypermagnesemia (e.g. in chronic renal failure) disturbs calcium/magnesium 

ratio, which may lead to a defect in mineralisation and osteoblast differentiation (Leidi et al. 

2011). Warning results were also revealed by the Women’s Health Initiative Study, where in a 

group of more than 89,000 postmenopausal women, subjects with the highest quintile of 

magnesium intake also had the highest incidence of wrist fractures. This phenomenon may be, 

in fact, caused by deterioration of bone quality in subjects exposed to high magnesium 

concentration.  

     Apart from nutrition, genetics is also likely to be responsible for magnesium balance. This 

hypothesis stems from results of some association studies. Runnels (2011) found association 

between magnesium status and polymorphism TRPM6 in humans. A meta-analysis of 

genome-wide association studies (GWAS) showed an association between serum magnesium 
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levels and variants at six genomic loci: MUC1, ATP2B1, DCDC5, TRPM6, SHROOM3 and 

MDS1. In addition, some of these genes were also associated with bone mineral density 

(Meyer et al. 2010). These obervations may provide some new insights into the role of 

endogenous magnesium in the regulation of bone mass. 

      Subclinical magnesium deficiency has been found in most populations of Europe and 

North America due to relatively low intake of micronutrients concentrated in green 

vegetables, nuts or grains. Besides, magnesium absorption also varies with other dietary 

elements, such as phosphate, which forms insoluble complexes with magnesium. The 

recommended daily intake of magnesium necessary for bone health in young people under 30 

years of age is 400 mg,  in older subjects it is 320 mg and 420 mg for females and males, 

respectively. In practice, magnesium supplementation is required in all subjects with low 

magnesium levels (Nieves 2013).     

 

Manganese  

     Manganese is an essential trace element, which plays a role in lipid and carbohydrate 

metabolism. In the skeleton, manganese positively modulates RANKL/OPG ratio in the 

process of bone formation, determining thickness of trabecular bone area and increasing 

trabecular number (Liu et al. 2015). Local delivery of manganese chloride (MnCl2) increased 

significantly the maximum torsion rigidity and blood vessel density in the subperiosteal 

region in rats at day 10 post fracture (Hrdna et al. 2015). From this perspective, local MnCl2 is 

a pharmaceutical with a potential to support fracture healing. 

         Like zinc, manganese accelerates growth (at least partly) via activation of somatomedin 

synthesis (reviewed by Zofkova et al. 2013). In oophorectomized rats, those supplemented 

with manganese had slower bone loss than rats without supplementation (Rico et al. 2000). 

The amount of manganese in bones of rats decreased after oophorectomy and normalized 
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during estradiol treatment (Rahnama et al. 2003). The direct bone-protective effect of 

oestrogen on bone metabolism is, therefore, intensified by manganese deposition. 

     Using an absorption spectrophotometric method, we found a positive association between 

serum manganese levels and bone mineral density, and a negative correlation between serum 

manganese and the number of fractures in a group of 40 post-menopausal women (Nemcikova 

et al. 2009). These results might suggest that manganese has some protective effect on bone 

health in hypoestrogenic women. These results were obtained in a small sample size, 

however, and should be confirmed by further investigations. 

      Nevertheless, manganese can also be toxic to humans. With its half-life of about 8-9 

years, manganese accumulates substantially in bones. Long-term overexposure to manganese, 

with subsequent increase in manganese blood levels, may lead to dopaminergic dysfunction, 

which manifests as Parkinson’s disease (O´Neal and Zheng 2015; Sánchez-González et al. 

2015).   

       Finally, in physiological concentrations, manganese has a significant bone protective 

effect. The monitoring of manganese homeostasis is recommended in patients with a high risk 

of osteoporosis, although the toxic effect of supraphysiological concentrations should not be 

underestimated. The recommended daily intake of manganese is 1.8 – 2.3 mg (Devrian and 

Volpe 2003).  

      

Selenium  

       Selenium is an essential nutrient necessary for human and animal health due to a strong 

antioxidant action, which protects cells (including those in the skeleton) from oxidative 

damage. It is known that selenium deficiency activates bone resorption. Detrimental effects 

on bone microarchitecture were documented in mice (Cao et al. 2012) and on bone mineral 

density and growth in rats (Moreno-Reyes et al. 2001). In healthy humans, selenium status 
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was negatively correlated with bone metabolic turnover and positively with bone density 

(Hoeg et al. 2012; reviwed by Zeng et al. 2013).  A large study in a group of 2374 euthyroid 

post-menopausal women showed that selenium levels positively correlated with hip and/or 

lumbar spine BMD and negatively with bone remodelling (Hoeg et al. 2012).  Moreover, 

disabled elderly patients had low selenium and zinc levels, together with impaired total 

antioxidant score and low BMD (Younesi et al. 2015).  

      As mentioned above, skeletal effect of selenium is explainable by its antioxidative 

mechanism. In low antioxidative status, osteoclasts produce high amount of ROS, which is 

accompanied by activated bone resorption. Selenium substitution restores antioxidant capacity 

in bone cells and inhibits NF-B - RANKL axis and osteoclast differentiation. In high doses, 

selenium induces apoptosis of mature osteoclasts. In addition, selenium strengthens osteoblast 

antioxidative defense. Through these mechanisms, selenium modulates bone metabolic 

turnover in favour of bone formation (reviewed by Zeng et al. 2013).  

     In summary, selenium appears to be a potent antioxidant element with a protective effect 

on the skeleton by maintaining cell redox balance. Nevertheless, a study by Arikan et al. 

(2011) failed to confirm any correlation between serum selenium and bone mass. A further, 

large investigation is, therefore, necessary to confirm possible use of selenoproteins in 

treatment of osteoporosis. The recommended daily dose of selenium is 55 μg/day. An 

alarming fact is that in Europe, Africa and Asia the usual selenium intake is only around 25 

μg/day (Price et al. 2012). 

 

Zinc  

         Zinc is known to regulate growth, neuronal development and immunity (Plum et al. 

2010). Zinc positively infuences the strength, flexibility and architecture of the skeleton in 

animals. The bone anabolic effect of the element was documented by an increase in 
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osteocalcin and COL1A1 expression and serum alcaline phosphatase activity. Recently, zinc 

has also been shown to have beneficial effect on biomechanical parameters in rats (Bortolin et 

al. 2015). Osteoporotic post-menopausal women had significantly lower serum zinc levels 

than healthy controls (Midhavi-Roshan et al. 2015). Similarly, disabled elderly patients had 

significantly lower circulating zinc together with an impaired antioxidant score and lower 

bone mineral density, as compared to age-gender-matched controls (Younesi et al. 2015). 

        The bone protective effect of zinc is complex. The element is a growth-stimulator 

through activation of enzymes, which, support synthesis of DNA, RNA and proteins. Zinc 

increases osteoblastic activity and promotes synthesis of collagen. On the other hand, zinc 

inhibits osteoclastic bone resorption and thus disconnects bone remodelling in favour of bone 

formation (Lowe et al. 2002;  reviewed by Zofkova et al. 2013). A study in adolescent rats 

suggested that severe zinc deficiency could have negative implications for future bone health  

(Ryz et al. 2009).  

     In addition, in zinc deficient rats serum PTH levels increased as a consequence of 

inhibition of calcium absorption in the intestine (Suzuki et al., 2015). Furthermore, zinc 

stabilizes the membrane of mast cells. Atik et al. (2006), on the basis of in vitro studies and 

observation in patients with senile osteoporosis, outlined the hypothesis on the role of 

hyperparathyroidism evoked by zinc deficiency, degranulation of mast cells, heparin release 

and increase in activity of prostaglandin E2. Heparin, together with prostaglandin E2, are the 

cofactors of parathormone, which intensifies the direct effect of zinc deficiency on bone 

resorption.  

      The favourable effect of zinc intake on bone remodelling, bone matrix formation and 

mineralisation was demonstrated in growing rats (Headley et al. 2010). A study in humans 

showed positive correlation between serum zinc and osteocalcin and negative correlation 
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between zinc and bone resorption markers (Hill et al. 2005). Similarly, zinc supplementation 

increased bone formation in premenarcheal girls (Berger et al., 2015). 

       Zinc has a beneficial effect on bone integrity throughout life. Newborn animals that were 

exposed to zinc deficiency had reduced production of somatomedin (IGF-I), the parameter 

important for initiating a growth spurt. However, decline in somatomedin synthesis also 

deteriorates bones in elderly people and contributes to the development of osteopenia and 

alteration of bone microarchitecture (reviewed by Zofkova et al. 2013). Therefore, zinc 

supplementation appears to have an important role in treatment and prevention of senile 

osteoporosis.  

     Zinc also protects the skeleton of alcoholics, which comes mainly from activation of 

anabolic processes in bone (Yamauchi et al. 2006). The administration of zinc to rats that 

were exposed to alcohol increased bone formation and the volume of trabecular bone 

(Gonzalez-Reimers et al. 2005). Zinc also reduces negative effects of toxic elements, such as 

lead or cadmium on osteoblasts (Jamieson et al. 2006; Brzóska et al. 2007). 

       The human body contains 2 – 3 g of zinc, and its average daily loss (approx. 0.1%) would 

be normally covered by dietary intake. However, this is not always the case, and 

approximately 25% of the world’s population is at risk of zinc deficiency, especially 

adolescents and postmenopausal women (Meunier et al. 2005). Zinc deficiency was 

associated with greater impairment in bone development than proteincaloric restriction, and it 

limited bone recovery during repletion in growing rats (Hosea et al. 2004). While the 

recommended daily minimum intake of zinc is 12 mg, 15 mg is necessary to increase bone 

density (Maret and Sanstead 2006). However, it should be noted that long-term administration 

of very high doses of zinc, particularly if the patient also has an existing copper deficiency, 

can lead to chronic zinc toxicity (Palacios 2006). Considering the above, zinc in physiological 



 14 

concentrations has an important bone-protective effect. Its deficiency leads not only to 

deterioration of growth, but also alters integrity of adult skeletons in humans and animals. 

 

Trace elements extremely detrimental to the skeleton  

Cadmium     

     Cadmium (Cd) is soft, extremely toxic element found in high concentrations in industrial 

areas. It is mostly a by-product of mining and metal processing. The progress of 

industrialisation leads to an increased risk of cadmium pollution as cadmium cannot be 

destroyed in nature. In high concentations, cadmium induces oxidative stress, which causes 

aberrant DNA methylation, alters cell proliferation and differentiation, inhibits DNA damage 

repair and destabilises the genome (Bishak et al. 2015). In other words, cadmium is a strong 

carcinogenic element. Moreover, when administered for a long time via inhalation, the 

element leads to pulmonary fibrosis and renal disorder. 

      Cadmium also seriously damages bone mass and bone quality. Its toxic effect on the 

skeleton has been demonstrated in a correlation study in a group of 850 postmenopausal 

women, in whom the bone density value negatively correlated with cadmium concentration in 

urine (Akeson et al. 2006). Engström et al. (2012) studied a group of nearly 3000 

postmenopausal women and found a negative association between cadmium intake and BMD 

at the total body and the lumbar spine, and a positive relationship with fracture risk, even 

when the cadmium exposure was relatively low. This is in consensus with the result of a small 

study, in which women with severe osteoporosis showed cadmium concentration in plasma 

significantly higher than control women (Sadeghi et al. 2014). Positive association between 

urinary calcium and cadmium content in kidney specimens obtained from biopsy and negative 

correlation between kidney cadmium and bone mineral density in women were observed by 

Wallin et al. (2013). 
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      Cadmium has a negative impact on growth. Exposure to the element during pregnancy 

negatively influences birth size in neonates. In Bangladeshi women, maternal urinary 

cadmium inversely correlated with neonatal birth weight and head and chest circumferences 

in girls (Kippler et al. 2012). In 155 schoolchildren in Pakistan, two times higher cadmium 

concentration in urine was associated with 1.72 times increase in deoxypyridin and a 1.21 

times increase in calcium excretion.  This association, however, needs to be analyzed in other 

ethnic groups, too. 

            The mechanism of detrimental cadmium effect on the skeleton is not fully understood. 

In vitro study showed that longer exposure of human osteoblast-like cells to cadmium induced 

cytoskeleton disruption and accelerated cell apoptosis (Papa et al. 2015). Liang et al. (2015) 

found an elevated urinary 2-microglobulin, which is a serious indicator of tubular 

dysfunction, in women subjected to long-term exposure to cadmium in the most polluted 

areas. Furthermore, Kim et al. (2014) found low values of BMD in exposed females, together 

with high urinary 2-microglobulin. The tubular dysfunction (probably as a consequence of 

activated fibroblast growth factor 23) appears to be the fundamental cause of calcium-

phosphate imbalance in cadmium-exposed subjects (Kido et al. 2014).  

     However, while an inverse correlation between urinary cadmium and BMD was found in 

men exposed to high cadmium concentrations, only 5% of them showed evidence of renal 

tubular disorder with urine  -microglobulin exeeding the value of 300 µg/g creatinine 

(Nawrot et al., 2010). Thus, the latter study shows that cadmium‘s negative influence on the 

skeleton is independent of the tubular effect. In vivo, cadmium inhibits bone formation and 

stimulates bone resorption, even at moderate concentrations. In toxic concentrations, 

cadmium breaks down the collagen matrix and inhibits its mineralisation (reviewed by 

Zofkova et al. 2013). The detrimental effect of cadmium on metabolism of beneficial trace 
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elements such as zinc, iron, magnesium, selenium, copper, and manganese should be also 

taken into account.   

 

Heavy metals (lead and chromium) 

      Lead accumulates in bones over a long time and damages osteoblastogenesis. Beier et al. 

(2015) demonstrated a detrimental effect of  long-term exposure to lead on bone accrual and 

bone strength in juvenile male mice. Women with higher lead content in their skeleton had 

thinner cortices in distal tibias and lower volumetric BMD (Wong et al. 2015). Furthermore, 

the latter parameter in the same gender negatively correlated with urinary lead levels (Tsai et 

al. 2015).  

      Chromium has a potentially harmful effect on bone health via oxidative stress. The 

element reduced osteoblast-like cell survival and activity in vitro in several different 

concentrations and incubation times, and decreased OPG/RANKL ratio (mainly due to 

stimulation of osteoclasts forming) (Zijlstra et al. 2012; Andrews et al. 2011). An imbalance 

in bone remodelling that favours resorption may contribute to complications following total 

hip arthroplasty. Relatively limited data exist on the detrimenal effect of lead and chromium 

on the skeleton, therefore further investigations are necessary.  

 

Conclusions  

     Many trace eelments  (e.g. boron, iron, magnesium, manganese) are beneficial for bone 

health, however some are toxic, such as cadmium, cobalt and lead. It is important to note, 

nevertheless, that excessive intake of certain beneficial elements (fluoride, iron, magnesium, 

zinc) can also have toxic effects. For example, high intake of fluoride damages bone integrity. 

The positive or negative effect of trace elements depends, to a degree, on the influence of 

external environments (nutrition) and internal factors (individual absorption and metabolism 
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of these elements, genetic disposition, age and gender). Finally, the effect of trace elements 

depends not only on their quantity in the diet but also on their mutual interactions (Khandare 

et al., 2005). 

 

Perspectives in the topic research 

      The protective effect of selected trace elements on the skeleton has been confirmed, 

however theoretical and practical issues of supplementation in terms of osteoporosis  

prevention and treatment are still unknown. Data on the effect of individual elements are 

limited, partly because these elements are usually taken in combinations. In addition, 

homeostasis of trace elements in the body is determined by diet, as well as age and gender 

(Sakai et al., 2000). Due to these inconsistencies, further studies are necessary to confirm the 

effect of different doses, concentrations and interactions of indiviual trace elements on bone 

health. Fom this perspective, absorption spectrophotometry remains a valuable tool in 

measuring trace elements concentrations in body fluids (blood and urine) and tissues and, 

therefore, it contributes to the prevention and treatment of osteoporosis. 
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