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Abstract

We study a metric-like structure on categories, showing that the concept
of the limit of a sequence in a metric space and the concept of the colimit of
a sequence in a category have a common generalization. The main concept is
a norm on a category, generalizing pseudo-metrics and group valuations. In
this new context, we discuss topics like Cauchy completion and the Banach
Contraction Principle.
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1 Introduction

A celebrated work of Lawvere [11] exhibits surprising connections between metric
spaces and categories. A crucial link is the idea of enriched category, where several
different concepts can be uniformized.
The aim of our note is to generalize the concept of a metric in a different way,
namely, where the underlying set is replaced by a category. Our starting point is
the observation that every set can be regarded as a (quasi-ordered) category, in
which for every two objects a, b there exists exactly one arrow ab from a to b. The
distance between a and b can be used as some “measure” of the arrow ab. Since ab
also resembles a vector, its measure could actually be called length or norm. This
leads to the concept of a normed category, where each arrow f has a non-negative
value µ(f) (possibly +∞) and three natural axioms are imposed. We give the precise
definition in Section 2. Presenting several examples, we argue that our list of axioms
for a norm on a category is natural. In case where the category is a quasi-ordered
set in which each two elements are related, our axioms reduce to the usual axioms
of a metric (including symmetry!) except that we allow the distance to be +∞
and we also allow that different points might have distance zero (thus, formally, we
obtain a metric after a suitable identification of points). Our motivating example of
a normed category is the category of metric spaces with Lipschitz mappings, where
µ(f) is the logarithm of the maximum of the Lipschitz constants Lip (f), Lip (f−1),
agreeing that µ(f) = +∞ if either f is not one-to-one or f−1 is not Lipschitz. This
example also shows that allowing µ(f) = +∞ indeed makes sense, as this carries
information that f is not bi-Lipschitz.
Section 2 contains, besides the crucial definition of a norm on a category, several
natural examples of normed categories. We show that even discrete norms (having
only one positive value) lead to non-trivial examples, contrary to metric spaces,
where a discrete metric is totally determined by the cardinality of the set of points.
We also show that asymmetric spaces can be viewed as normed categories, however
one has to use certain directed graphs instead of quasi-orderings.
Section 3 introduces the concept of a Cauchy sequence and of its limit, which is the
colimit in category-theoretic sense, requiring that the colimiting cocone of arrows
satisfies a simple and natural convergence condition. This is the place where the
classical concept of a convergent sequence in a metric space meets the concept of a
convergent sequence in a category. Recall that a sequence in a category is simply a
covariant functor from the set of nonnegative integers ω treated as a poset category.
We shall describe a rather simple construction of the Cauchy completion, namely, a
bigger normed category in which every Cauchy sequence is convergent.
Section 4 contains a short discussion of Banach’s Fixed-point Principle in normed
categories. It turns out that the main ideas of Banach’s Principle can be easily
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rephrased in our setting, although the existence of a fixed-point (or rather a fixed
object) is subject to some extra condition, which is always satisfied in a metric space.
Uniqueness of fixed-points is not a general phenomenon in our setting.

2 Normed categories

We shall use standard notation concerning category theory, see e.g. [13]. Given a
category K, we shall denote by Obj (K) its class of objects and K itself will serve
as the class of arrows. In particular, given f ∈ K, we shall denote by dom(f) and
cod(f) its domain and codomain. Given objects x, y ∈ Obj (K), we shall denote by
K(x, y) the set of all f ∈ K with dom(f) = x, cod(f) = y. Obviously, f : x → y
is a shortcut for f ∈ K(x, y). We shall sometimes write “f is a K-arrow” instead
of “f ∈ K”. The composition operation in a category will always be denoted by ◦.
More precisely, if f ∈ K(y, z) and g ∈ K(x, y) then f ◦ g ∈ K(x, z). The identity of
x ∈ Obj (K) will be denoted by idx. Below is the crucial definition.

Definition 2.1. A norm on a category K is a function µ : K → [0,+∞] satisfying
the following conditions:

(N1) µ(idx) = 0 for every object x.

(N2) µ(f ◦ g) 6 µ(f) + µ(g) whenever f ◦ g is defined.

(N3) µ(g) 6 µ(f ◦ g) + µ(f) whenever f ◦ g is defined.

A pair 〈K, µ〉 will be called a normed category.

Condition (N2) may be called, as usual, triangle inequality. It seems reasonable
to allow µ(f) = +∞, although it is always possible to replace µ(f) by µ1(f) =
min(1, µ(f)), obtaining a new norm that is bounded by 1. The number µ(f) is
meant to norm the ‘distortion’ from the domain of f to its range, or rather how
f transforms its domain into its codomain. Perhaps condition (N3) requires some
explanations. First of all, note one of its consequences:

Lemma 2.2. µ(h) = µ(h−1) whenever h is an isomorphism.

Proof. Let x = dom(h). By (N3) and (N1), µ(h) 6 µ(idx) + µ(h−1) = µ(h−1).
Replacing h by h−1 leads to µ(h−1) 6 µ(h).

We say that h : a → b is a 0-isomorphism if h is an isomorphism and µ(h) = 0. In
that case, also µ(h−1) = 0. It is natural to define

K0 = {f ∈ K : µ(f) = 0}.

We shall call K0 the kernel of 〈K, µ〉. Conditions (N1), (N2) say that K0 is indeed a
subcategory of K, while Lemma 2.2 implies that K-isomorphisms which are members
of K0 remain isomorphisms in K0. Actually, K0 satisfies:
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(K1) Obj (K0) = Obj (K),

(K2) f ∈ K0 and f ◦ g ∈ K0 =⇒ g ∈ K0.

We shall see later (Subsection 2.2 below) that every pair of categories K0 ⊆ K
satisfying (K1), (K2) gives rise to a discrete (taking two values only) norm on K
such that K0 becomes its kernel.
Coming back to condition (N3), let us note that if µ(f) norms some ‘distortion’ of
the codomain of f with respect to its domain, then (N3) says that g cannot make
more distortion than the sum of the distortions of f ◦ g and f . As an example, let
K be the category of metric spaces and the distortion of a mapping f is normed
by the Lipschitz constants of f and its inverse f−1 (that is why we need the value
+∞ in case f is not one-to-one). The details are explained in Subsection 2.5. It
seems that omitting (N3) would cause more ‘negative’ consequences than omitting
symmetry in the definition of a metric, see Subsection 2.3. On the other hand, one
may wonder why we do not require a stronger version of (N3), namely:

(N +
3 ) |µ(f)− µ(g)| 6 µ(f ◦ g) whenever f ◦ g is defined.

It turns out that this would be too strong, an evidence is given in the list of several
natural examples of norms collected below, even though few of them actually satisfy
(N +

3 ).

2.1 Historical comments

We feel that some explanations concerning our terminology are needed, supported
by the (known to us) literature.
First of all, the name norm typically refers to vector spaces, meaning the length of
their vectors. A vector actually represents a unique way of ‘moving’ from its origin
to its destination (end-point). A vector space, as any semigroup, is indeed a category
in which the composition is simply the addition of vectors. Scalar multiplications
are ignored here. Anyway, it is clear that every norm on a real vector space is a norm
in the sense of our definition, whenever the vector space is treated as a category.
Having in mind normed linear spaces and bounded linear operators, one immedi-
ately finds out that it is natural to consider categories enriched over normed spaces,
namely, assuming that the hom-sets are normed vector spaces, requiring that the
composition is bi-linear, and imposing some further conditions. By this way, the
norm of an arrow is just the norm in the usual sense. This, unfortunately, formally
differs from our setting, as ‖f ◦ g‖ 6 ‖f‖ · ‖g‖ and a logarithm is required to get
(N2) and (N3), see Subsection 2.7 for details. Fortunately, this is just a formal
(arithmetic) difference. We shall never use ‖ · ‖ for denoting a category norm.
The name norm in the context of category theory, as one could expect, has already
appeared in the literature (see [8, 14, 12, 7]), usually related to theoretical computer
science. In all instances, condition (N3) is discarded. In [14, 12] the name valuation
was used instead of a norm, declaring clauses (N1), (N2), not (N3). On the other
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hand, a valuation satisfying (N1)–(N3) appeared and played a significant role al-
ready in [1], where the authors aimed at certain fixed-point theorems solving some
domain equations. We present this valuation in Subsection 2.6, showing that it is
indeed a norm. Last but not least, our motivation for studying norms on categories
comes from the theory of Fräıssé limits in a continuous setting, see Section 5 and
our preprint [9].
Summarizing, we have decided to use the name ‘norm’ for a function on arrows
satisfying (N1)–(N3), taking into account the fact that such a name has already
appeared in the category-theoretic literature. We hope that our examples support
the claim that the axioms of a norm we propose are quite natural and applicable,
especially when adding the somewhat controversial condition (N3).

2.2 Discrete norms

Let us call a norm µ on a category K discrete if it takes values in the set {0,+∞}.
This is motivated by the notion of a discrete metric, where typically the values are
in the set {0, 1} instead of {0,+∞}, which does not make any difference on the
structure of a space. While discrete metric spaces are not particularly interesting
(precisely: the cardinality determines their isometric type), we shall see that discrete
norms lead to interesting pairs of categories.

Proposition 2.3. Let K0 ⊆ K be a pair of categories. The following properties are
equivalent:

(a) There exists a norm on K such that K0 is its kernel.

(b) There exists a discrete norm on K with K0 being its kernel.

(c) K0 satisfies

(K1) Obj (K0) = Obj (K),

(K2) {f, f ◦ g} ⊆ K0 =⇒ g ∈ K0.

Proof. It is clear that (b) =⇒ (a) and we have already seen that (a) =⇒ (c) (which
immediately follows from (N1)–(N3)). It remains to show that (c) =⇒ (b). Namely,
we need to check that the function µ : K → {0,+∞}, defined by µ(f) = 0 if and
only if f ∈ K0, is a norm on K.
Condition (N1) follows from the fact that K0 has all the objects of K, which is
declared in (K1). Condition (N2) follows from the fact that K0 is a subcategory of
K. Finally, (N3) follows directly from (K2).

Let us say that a subcategory K0 of a category K is a potential kernel of K if it
satisfies (K1), (K2) above. Below we give natural examples of potential kernels.
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Example 2.4. Let K be an arbitrary category and let K0 consists of all monics in
K. Recall that f is a monic if it satisfies the right-cancellation law:

f ◦ g1 = f ◦ g2 =⇒ g1 = g2.

Clearly, each identity is a monic, which proves (K1). If f ◦ g is a monic then so is g,
showing (K2). Note that, in general, if f ◦ g is a monic then f may not be a monic
(take K to be the category of sets). This shows that the discrete norm induced by
K0 does not necessarily satisfy (N +

3 ).

Example 2.5. Let K be a category of models of a fixed first order language L , where
the arrows are homomorphisms. Let K0 be the subcategory of K whose arrows are
embeddings. More precisely, a homomorphism f : X → Y is an embedding if it is
one-to-one and for each relation symbol R in the language L it holds that

〈f(x1), . . . , f(xn)〉 ∈ RY ⇐⇒ 〈x1, . . . , xn〉 ∈ RX ,

where RX , RY are interpretations of R in X, Y respectively, and n is the arity of R
(that is, RX ⊆ Xn and RY ⊆ Y n). In case where L consists of algebraic operations
and constants only, every one-to-one homomorphism is an embedding.
It is clear that K0 is a subcategory of K with Obj (K0) = Obj (K), therefore (K1)
is satisfied. It is easy to see that K0 satisfies (K2). Indeed, assume f, f ◦ g ∈ K0

and suppose g /∈ K0. By Example 2.4, we know that g is one-to-one (monics in
the category of sets are the one-to-one mappings). Suppose g : X → Y and R is a
relation symbol such that 〈g(x1), . . . , g(xn)〉 ∈ RY while 〈x1, . . . , xn〉 /∈ RX . Assume
f : Y → Z is an embedding. Then 〈f(g(x1), . . . , f(g(xn))〉 ∈ RZ . As f ◦ g is an
embedding, we conclude that 〈x1, . . . , xn〉 ∈ RX , a contradiction.

Example 2.6. Let K be the category of nonempty topological spaces with reversed
arrows, namely, f ∈ K(X, Y ) if and only if f is a continuous mapping from Y to
X. Let K0 consist of all quotient mappings. Recall that f : Y → X is a quotient
mapping if for every U ⊆ X the set f−1[U ] is open in Y if and only if U is open in
X. Note that K0 ⊆ K, that is, quotient mappings are continuous. Similar arguments
as in the previous example show that K0 is a potential kernel.

2.3 Metric spaces

A quasi-ordered category is a category K in which |K(a, b)| 6 1 for every K-objects
a, b. Indeed, such a category comes from a quasi-ordered set (or class, in case of large
categories). More precisely, by setting a 6 b iff K(a, b) 6= ∅ we obtain a reflexive
and transitive binary relation on K. A particular example of such a category is a
set X such that x 6 y for every x, y ∈ X. Now observe that a norm on X in the
sense of our definition is the same as a metric in the classical sense, except that +∞
is allowed for the distance and different points can have distance zero. Symmetry
follows from Lemma 2.2, because every arrow of X is an isomorphism. Note that
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discarding condition (N3) would lead to an asymmetric space, a concept studied by
several authors (see [5] and the references therein). In Subsection 2.8 we explain
how to deal with asymmetric spaces in our framework.

2.4 Semigroups and groups

Recall that a semigroup is a structure of the form 〈S, ◦, 1〉, where ◦ is an associative
binary operation on S and 1 is its neutral element. A semigroup 〈S, ◦, 1〉 can be
viewed as a category with a single object S, whose arrows are the elements of S
amd the ◦ is the composition. Of course, 1 is the identity. The conditions for a
norm on S are precisely (N1)–(N2). The only difference, or rather simplification, is
that every two arrows are compatible. Assume now that S is a group, that is, for
every s ∈ S there is s−1 ∈ S satisfying s ◦ s−1 = 1 = s−1 ◦ s. Let µ be a norm on
S. Then µ(s−1) = µ(s), by Lemma 2.2. On the other hand, if S is a group and
µ : S → [0,+∞] satisfies

(N1) µ(1) = 0.

(N2) µ(f−1) = µ(f).

(N3) µ(f ◦ g) 6 µ(f) + µ(g).

This is indeed called a norm on a group, leading to a left-invariant metric given by
the formula %(x, y) = µ(x−1 ◦ y) from which µ is trivially reconstructed. Putting
h := f ◦ g, we get

µ(g) = µ(f−1 ◦ h) 6 µ(f−1) + µ(h) = µ(f) + µ(f ◦ g).

This shows that every function on a group satisfying (N1)–(N3) is a norm in the
sense of (N1)–(N3). Conversely, if µ is a norm on S in the category-theoretic sense,
then it satisfies (N1)–(N3). Thus, our concept of a norm extends the one in group
theory.
Note also that if 〈K, µ〉 is a normed category and x ∈ Obj (K) then the group Aut(x)
of all automorphisms of x is a normed group, that is, it satisfies (N1)–(N3).

2.5 A natural norm on the category of metric spaces

Below we describe one of our motivating examples of a normed category. Namely,
let Ms be the category of metric spaces with Lipschitz mappings. Let Lip (f) denote
the Lipschitz constant of f , that is,

Lip (f) = sup
p,q∈X, p 6=q

%Y (f(p), f(q))

%X(p, q)
,

where f : 〈X, %X〉 → 〈Y, %Y 〉.
Define

µ(f) = log
(

max{Lip (f) ,Lip
(
f−1
)
}
)
,
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where we agree that Lip (f−1) = +∞ if f is not one-to-one. Notice that µ(f) = 0 if
and only if f is an isometric embedding. Note also that µ(f) > 0, as at least one of
the values Lip (f), Lip (f−1) is > 1. On the other hand, if µ(f) = +∞ then f may
be one-to-one, although in that case its inverse is not Lipschitz.

Theorem 2.7. 〈Ms, µ〉 is a normed category.

Proof. It is clear that Ms satisfies (N1). The remaining two conditions are treated
below.

Claim 2.8. 〈Ms, µ〉 satisfies (N2).

Proof. Fix compatible arrows f, g in Ms. If either Lip (f−1) = +∞ or Lip (g−1) =
+∞ then the right-hand side of (N2) equals +∞ and there is nothing to prove.
Otherwise, we have Lip (f ◦ g) 6 Lip (f) · Lip (g) and Lip

(
(f ◦ g)−1

)
6 Lip (g−1) ·

Lip (f−1). Finally, µ(f ◦ g) is either log Lip (f ◦ g) or log Lip
(
(f ◦ g)−1

)
.

Claim 2.9. 〈Ms, µ〉 satisfies (N3).

Proof. Fix arrows g : X → Y , h : Y → Z in Ms and let f = h ◦ g.

Y
h

��
X

g
>>

f // Z

We shall denote the metrics on X, Y, Z by the same letter %. Let µ(g) = log a,
µ(h) = log b and µ(f) = log c. Condition (N3) can be reformulated into:

(1) a 6 bc.

In order to prove (1) it suffices to check that %(g(x), g(y)) 6 bc · %(x, y) and
%(g(x), g(y)) > (bc)−1%(x, y) for every x, y ∈ X.
Suppose x, y ∈ X are such that %(g(x), g(y)) > bc · %(x, y). Then

c · %(x, y) > %(f(x), f(y)) > b−1 · %(g(x), g(y)) > b−1bc · %(x, y) = c · %(x, y),

a contradiction.
Finally, suppose x, y ∈ X are such that %(g(x), g(y)) < (bc)−1 · %(x, y). Then

c−1 · %(x, y) 6 %(f(x), f(y)) 6 b · %(g(x), g(y)) < b · (bc)−1 · %(x, y) = c−1 · %(x, y),

which again is a contradiction.

The claims above complete the proof of the theorem.

Note that 〈Ms, µ〉 fails (N +
3 ), namely, |µ(g) − µ(h)| 6 µ(h ◦ g) does not always

hold. Indeed, assume X is the one-element space {x} and let g : X → Y be such
that Y = {x, y} with %(x, y) = 1. Then µ(g) = 0. Now, let Z = {x, z}, where
%(x, z) = r > 1. Let h : Y → Z be the bijection satisfying h(x) = x. Then Lip (h) =
r > 1, so µ(h) > 0. On the other hand, µ(h ◦ g) = 0. Hence µ(h)− µ(g) 66 µ(h ◦ g).
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2.6 Embedding-projection pairs and metric spaces

The following example comes from America & Rutten [1]. The norm δ described
below plays important role in the theory of reflexive domain equations developed
in [1], even though conditions (N1)–(N3) do not appear there.
Let Ms+ep denote the category whose objects are nonempty metric spaces and arrows
from a metric spaceX to a metric space Y are pairs f = 〈ef , pf〉, where ef : X → Y is
an isometric embedding, pf : Y → X is a non-expansive mapping, and pf ◦ ef = idX .
Given f = 〈ef , pf〉 as above, define

δ(f) = sup
y∈Y

%Y

(
ef ◦ pf (y), y

)
,

where %Y is the metric of Y . Quoting from [1]: If f : M1 → M2 then δ(f) can be
regarded as a measure of the quality with which M2 is approximated by M1.

Theorem 2.10. δ is a norm on Ms+ep.

Proof. Clearly, δ(〈idX , idX〉) = 0, therefore (N1) is satisfied, because the pair 〈idX , idX〉
is the identity of X in Ms+ep.
Given two mappings f, g between metric spaces X, Y , we shall write %(f, g) instead
of supx∈X %X(f(x), g(x)). Let f = 〈ef , pf〉, g = 〈eg, pg〉 be Ms+ep-arrows for which
f ◦ g is defined. Then

δ(f ◦ g) = %(ef ◦ eg ◦ pg ◦ pf , id) 6 %(ef ◦ eg ◦ pg ◦ pf , ef ◦ pf ) + %(ef ◦ pf , id)

6 %(eg ◦ pg, id) + %(ef ◦ pf , id) = δ(f) + δ(g),

showing that (N2) holds. We have used the fact that %(f ◦ g0, f ◦ g1) 6 %(g0, g1) and
%(g0 ◦h, g1 ◦h) 6 %(g0, g1). The former inequality is true because f is non-expansive,
the latter one holds for arbitrary mappings.
Finally, we have

δ(f ◦ g) + δ(f) = %(ef ◦ eg ◦ pg ◦ pf , id) + %(ef ◦ pf , id)

> %(ef ◦ eg ◦ pg ◦ pf , ef ◦ pf )

> %(ef ◦ eg ◦ pg ◦ pf ◦ ef , ef ◦ pf ◦ ef )

= %(ef ◦ eg ◦ pg, ef ) = %(eg ◦ pg, id),

showing that (N3) holds. Here, besides the inequalities mentioned above, we have
also used the equality %(e ◦ g0, e ◦ g1) = %(g0, g1), which is true whenever e is an
isometric embedding. This complete the proof.

2.7 Normed linear spaces

As we have already mentioned, every norm on a real or complex vector space is also
a norm according to our definition, when the vector space is treated as a category.
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On the other hand, the category V‖·‖ of all normed linear spaces with bounded linear
operators is a subcategory of the category Ms, because bounded linear operators are
Lipschitz. Specifically, ‖f‖ = Lip (f) for every linear operator f between normed
vector spaces. Thus, V‖·‖ is a normed category with the norm defined by

µ(f) = log
(
‖f‖, ‖f−1‖

)
,

again agreeing that µ(f) = +∞ if f is not 1-1 or f−1 is unbounded.
Another possibility for a norm on V‖·‖ is ν(f) defined to be the infimum of the
expressions of the form ‖i − j ◦ f‖, where i, j range through all linear isometric
embeddings such that dom(i) = dom(f), dom(j) = cod(f), and cod(i) = cod(j).
Note that ν(f) can be viewed as a measure of distortion that f makes on its domain.
We can say that the isometric embeddings i, j ε-correct f if ‖i− j ◦ f‖ 6 ε. Thus,
ν(f) measures how difficult it is to correct f . The fact that ν is a norm (proved
below) relies on the amalgamation property of V‖·‖, namely, for every V‖·‖-arrows
f : Z → X, g : Z → Y there exist V‖·‖-arrows f ′ : X → W , g′ : Y → W such that
f ′ ◦ f = g′ ◦ g. Furthermore, if f , g are isometric embeddings, then f ′, g′ could be
chosen to be isometric embeddings, too. The amalgamation property (belonging to
the folklore of Banach space theory) is an important tool for constructing special
Banach spaces, see [2, 6].

Theorem 2.11.
〈
V‖·‖, ν

〉
is a normed category.

Proof. Clearly, ν(idX) = 0, therefore (N1) holds. Fix f : Y → Z, g : X → Y in V‖·‖,
so that f ◦ g is defined.
Suppose ν(f ◦ g) > ν(f) + ν(g) and choose linear isometric embeddings if , jf , ig, jg
such that

ν(f ◦ g) > ‖if − jf ◦ f‖+ ‖ig − jg ◦ g‖.
Let k, ` be an amalgamation of jg, if , that is, k, ` are linear isometric embeddings
such that k ◦ jg = ` ◦ if . Now

ν(f ◦ g) 6 ‖k ◦ ig − ` ◦ jf ◦ f ◦ g‖
6 ‖k ◦ ig − k ◦ jg ◦ g‖+ ‖k ◦ jg ◦ g − ` ◦ jf ◦ f ◦ g‖
6 ‖ig − jg ◦ g‖+ ‖` ◦ if ◦ g − ` ◦ jf ◦ f ◦ g‖
6 ‖ig − jg ◦ g‖+ ‖if − jf ◦ f‖ < ν(f ◦ g),

a contradiction. This shows (N2).
Now suppose that ν(g) > ν(f ◦ g) + ν(f) and choose if , jf , ifg, jfg witnessing this
fact. Let k, ` be linear isometric embeddings providing the amalgamation of jf , jfg,
that is, k ◦ jf = ` ◦ jfg. We have

ν(g) 6 ‖` ◦ ifg − k ◦ if ◦ g‖
6 ‖` ◦ ifg − ` ◦ jfg ◦ f ◦ g‖+ ‖` ◦ jfg ◦ f ◦ g − k ◦ if ◦ g‖
= ‖` ◦ ifg − ` ◦ jfg ◦ f ◦ g‖+ ‖k ◦ jf ◦ f ◦ g − k ◦ if ◦ g‖
6 ‖ifg − jfg ◦ f ◦ g‖+ ‖if − jf ◦ f‖ < ν(g),
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a contradiction. This shows (N3) and completes the proof.

The norm ν appears implicitly in [10], playing a crucial role there. It turns out that
ν has a nice correlation with the usual norm:

Theorem 2.12. Let f : X → Y be a linear operator between normed spaces, 0 <
ε < 1. The following conditions are equivalent.

(a) There exists a norm on X ⊕ Y such that the canonical embeddings eX : X →
X ⊕ Y , eY : Y → X ⊕ Y are isometric and ‖eX − eY ◦ f‖ 6 ε.

(b) (1− ε)‖x‖ 6 ‖f(x)‖ 6 (1 + ε)‖x‖ holds for every x ∈ X.

Proof. (a) =⇒ (b) Fix x ∈ X with ‖x‖ = 1. We have

‖f(x)‖ = ‖eY f(x)‖ 6 ‖eY f(x)− eX(x)‖+ ‖eX(x)‖ 6 ε+ 1

and
‖f(x)‖ = ‖eY f(x)‖ > ‖eX(x)‖ − ‖eY f(x)− eX(x)‖ > 1− ε.

(b) =⇒ (a) A suitable norm on X ⊕ Y can be defined by the formula

‖〈x, y〉‖ = inf
{
‖x− w‖X + ‖y + f(w)‖Y + ε‖w‖X : w ∈ X

}
,

where ‖ · ‖X and ‖ · ‖Y are the norms of X and Y , respectively. Checking that (a)
holds is easy, yet it requires some computations. We refer to [4, Proof of Lemma
3.1] for details, where it is done for the case of p-norms, where 0 < p 6 1.

The norm ν can also be defined on the category of metric spaces, where Theorem 2.12
would still hold, as there is a functor embedding isometrically each metric space into
a normed linear space. The norm ν is actually a special case of a much more abstract
construction in categories enriched over metric spaces, see [9].

2.8 Directed graphs, free categories, asymmetric spaces

Recall that a weight on a graph (directed or undirected) is a function assigning to
each arrow/edge a nonnegative real value. A weighted undirected graph naturally
leads to a metric space. Namely, the distance between two vertices a, b is declared
to be the infimum of the weights of all possible paths between a and b, assuming
that it is +∞ if a and b are in different components of the graph. If the graph is
infinite, this might be just a pseudo-metric, as the value zero may be obtained for
two different vertices. Recall that the weight of a path is the sum of the weights of
all its arrows/edges.
It is clear how to define a quasi-metric (that is, a function fulfilling all the axioms
of a metric except the symmetry) on an arbitrary directed graph.
To be more precise, recall that a digraph (or a directed graph) is a quadruple
〈V,A, dom, cod〉, where dom: A → V and cod: A → V are functions, often called
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the source and the sink, respectively. There are no rules (axioms) here. The ele-
ments of A are called arrows, while the elements of V are called vertices or objects.
In this setting, a category is nothing but a digraph endowed with a composition
operation satisfying the usual axioms, adding the requirement that each vertex has
a distinguished loop, called identity. Given a digraph X = 〈V,A, dom, cod〉, the free
category Fr(X) over X is defined to be the collection of all triples 〈x, p, y〉, where
x, y ∈ V and p is a path from x to y, understood in the usual way. The composition
is defined in the obvious way. The empty set is considered to be a path from an
arbitrary vertex to itself, therefore 〈x, ∅, x〉 is the identity of x ∈ V . In particular,
V is the set of objects of Fr(X).
If X is a weighted digraph with a weight function w : A→ [0,+∞), the free category
Fr(X) has a natural norm given by

µ(x, p, y) =
n∑

i=1

w(fi),

where p = 〈f1, f2, . . . , fn〉. Note that µ satisfies a much stronger condition than
(N2) and (N3), namely:

µ(f ◦ g) = µ(f) + µ(g)

whenever f ◦ g is defined. In particular, µ(f) 6 µ(f ◦ g) and µ(g) 6 µ(f ◦ g), which
is an evidence even for (N +

3 ).
Finally, we would like to represent asymmetric spaces as normed categories. For this
aim, let 〈X, %〉 be an asymmetric space and let us convert it to a digraph in which
for each x, y ∈ X there is a unique arrow −→xy. The paths in X are of the form

p = 〈−−→x1x2,−−→x2x3, . . . ,−−−−→xn−1xn〉

and we have µ(p) = %(x1, x2) + %(x2, x3) + · · ·+ %(xn−1, xn). By this way we obtain
a norm µ on Fr(X). Note that the original quasi-metric % is reconstructible as µ
restricted to paths of length 1. This approach suggests that for some purposes it
might be meaningful to consider directed graphs instead of quasi-metric spaces.

2.9 Quasi-metrics from normed categories

Actually, there is also a way of obtaining a quasi-metric from a normed category
〈K, µ〉. Namely, let X := Obj (K) be the class of all objects of K. Given x, y ∈ X,
define

%(x, y) = inf
f∈K(x,y)

µ(f),

where K(x, y) denotes (as usual) the set of all K-arrows from x to y. We agree that
%(x, y) = +∞ if K(x, y) = ∅. Conditions (N1), (N2) guarantee that % satisfies

(Q1) %(x, x) = 0,

12



(Q2) %(x, y) 6 %(x, z) + %(z, y),

which is the standard definition of a quasi-metric, allowing +∞ as a possible value.
This might serve as a motivation for further study in the theory of asymmetric
spaces, although this line of research will not be explored here.

hhagg

We believe that the examples described above provide enough justification for con-
sidering our set of axioms (N1)–(N3), while at the same time discarding (N +

3 ).

3 Cauchy completion

Let 〈K, µ〉 be a fixed normed category. A sequence in K is, by definition, a covariant
functor from ω (the set of natural numbers) into K. We shall denote sequences by
~x, ~y, etc. Given a sequence ~x : ω → K, we denote by xn the nth element of ~x and by
xmn the bonding arrow from xn to xm.

Definition 3.1. A sequence ~x : ω → K is convergent if there exist v ∈ Obj (K) and
a family of arrows {gn : xn → v}n∈ω such that

(C1) 〈v, {gn}n∈ω〉 is the co-limit of ~x, i.e. gn : xn → v are such that gm ◦ xmn = gn
for n < m and for every pair 〈v′, {g′n}n∈ω〉 with the same property there exists
a unique arrow h : v → v′ satisfying h ◦ gn = g′n for n ∈ ω.

(C2) limn→∞ µ(gn) = 0.

We shall write 〈v, {gn}n∈ω〉 = lim ~x or just v = lim ~x when there is no confusion
what the arrows gn are taken into account. The object v (more formally, the pair
〈v, {gn}n∈ω〉) is the limit of ~x.

Unfortunately, there is no way to prove that the limit is unique up to a 0-isomorphism.
Here is an example:

Example 3.2. Let K be a poset category whose class of objects is ω∪{`0, `1}, where
ω has the usual ordering and n 6 `i for every n ∈ ω, i = 0, 1. We make `0 and `1
isomorphic, setting `0 6 `1 and `1 6 `0. By this way, 6 is a quasi-ordering on the
K-objects. We now define µ(x, y) = 0 whenever x 6 y and x /∈ {`0, `1}. Finally, we
set µ(`0, `1) = +∞ = µ(`1, `0). By this way, 〈K, µ〉 becomes a normed category. Let
~x be the sequence such that xn = n for n ∈ ω. Then lim ~x = `i for i = 0, 1. Of
course, `0 and `1 are isomorphic, however they are not 0-isomorphic.

Definition 3.3. A Cauchy sequence is a sequence ~x satisfying the following condi-
tion:

(C) For every ε > 0 there exists n0 such that µ(xnm) < ε whenever n0 < m 6 n.
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Particular case of a Cauchy sequence is any sequence ~x such that µ(x`k) = 0 for
every k < ` < ω. Such a sequence will be called stable. As in the case of metric
spaces, one can use convergent series to test whether a sequence is Cauchy. Namely,
we have the following simple fact, which is a consequence of (N2):

Proposition 3.4. Let 〈K, µ〉 be a normed category and let ~x be a sequence in K. If∑∞
n=0 µ(xn+1

n ) < +∞ then ~x is a Cauchy sequence.

One needs to be careful here, namely, if a subsequence is Cauchy then the sequence
may not be Cauchy (of course, this pathology does not occur in metric spaces). Here
is an example:

Example 3.5. Let N be the set of natural numbers, treated as a poset category.
Define µ(m,n) = 0 if m is even or m = n, and µ(m,n) = +∞, otherwise (here
m < n). Clearly, 〈N, µ〉 is a normed category. The natural sequence ~x, xn = n, is
not Cauchy, although its subsequence obtained by restricting the domain to all even
numbers is Cauchy.

Axiom (N3) is needed to yield the following natural fact.

Lemma 3.6. Every convergent sequence is Cauchy.

Proof. Let ~x be a sequence convergent to 〈g, {gn}n∈ω〉. Fix ε > 0 and find n0 such
that µ(gn) < ε/2 whenever n > n0. Given n < m, using (N3) we get

µ(xmn ) 6 µ(gm ◦ xmn ) + µ(gm) = µ(gn) + µ(gm) < ε.

Thus µ(xmn ) < ε whenever m > n > n0.

We shall denote by σ(K, µ) the class of all Cauchy sequences in 〈K, µ〉. Given
~x, ~y ∈ σ(K), a transformation from ~x to ~y is a natural transformation from ~x to
~y ◦ ϕ, where ϕ : ω → ω is increasing (i.e. a self-functor on ω). More precisely, a

transformation is a family of arrows ~f = {fn}n∈ω such that fn : xn → yϕ(n) for some
increasing map ϕ : ω → ω, satisfying

y
ϕ(n)
ϕ(m) ◦ fm = fn ◦ xnm

for every m < n < ω. We shall write ~f : ~x→ ~y.
It is clear how to identify a normed category 〈K, µ〉 with a subcategory of σ(K, µ);
namely, every K-object x corresponds to the constant sequence

x // x // x // . . .

where all the arrows are identities. Further on, we shall make this identification.
Note that every transformation between constant sequences is induced by a uniquely
determined K-arrow. In order to make the theory reasonable, it remains to show
that σ(K, µ) is again a normed category and that all Cauchy sequences converge in
σ(K, µ). This is done below.
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Lemma 3.7. Let ~f : ~x → ~y be a transformation of Cauchy sequences. Then the
limit

lim
n→∞

µ(fn)

exists.

Proof. Assume fn : xn → yϕ(n), where ϕ : ω → ω is increasing. Let

` = lim inf
n→∞

µ(fn)

and let {kn}n∈ω be such that limn→∞ µ(fkn) = `. We may assume that n 6 kn for
every n ∈ ω. Note that

fm ◦ xmn = y
ϕ(m)
ϕ(n) ◦ fn

whenever n 6 m. Using this equation with m = kn and applying (N2), (N3), we
get

(*) µ(fn) 6 µ(y
ϕ(kn)
ϕ(n) ◦ fn) + µ(y

ϕ(kn)
ϕ(n) ) 6 µ(xknn ) + µ(fkn) + µ(y

ϕ(kn)
ϕ(n) ).

Note that
lim
n→∞

µ(xknn ) = 0 and lim
n→∞

µ(y
ϕ(kn)
ϕ(n) ) = 0,

because ~x and ~y are Cauchy sequences. Using this together with (*), we obtain

lim sup
n→∞

µ(fn) 6 `.

It follows that ` = limn→∞ µ(fn).

By the lemma above, we conclude that σ(K, µ) is again a normed category with the
norm defined by

µ(~f) := lim
n→∞

µ(fn).

It is easy to check that conditions (N1)–(N3) are satisfied. Note also that µ(~f) =

µ(f) whenever ~f is a transformation between sequences of identities determined by
a K-arrow f .
A normed category 〈K, µ〉 is said to be Cauchy complete if every Cauchy sequence is
convergent in 〈K, µ〉. It is natural to expect that σ(K, µ) is Cauchy complete. This
is indeed the case, as we show below.

Theorem 3.8. Let 〈K, µ〉 be a normed category. Then σ(K, µ) is Cauchy complete.

Proof. This is a standard diagonalization argument. Namely, let ~~x be a Cauchy
sequence in σ(K, µ). We make the agreement that xn,m will denote the mth element
of the sequence ~xn. Refining the sequences ~xn inductively, we may assume that
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the transformations from ~xn to ~xn+1 are natural. That is, the sequence ~~x can be
presented as the following infinite matrix:

...
...

...

x0,2 //

OO

x1,2 //

OO

x2,2 //

OO

· · ·

x0,1 //

OO

x1,1 //

OO

x2,1 //

OO

· · ·

x0,0 //

OO

x1,0 //

OO

x2,0 //

OO

· · ·

Notice that the diagonal sequence

x0,0 // x1,1 // x2,2 // · · ·

is the co-limit of ~~x. The only obstacle is that this sequence may not be Cauchy and
(C2) may not be satisfied. However, this can be achieved by further refining the
sequences ~x0, ~x1, ~x2, . . . .

A natural way to compare normed categories is by using ‘norm-preserving’ functors.
Let 〈K, µ〉, 〈L, ν〉 be fixed normed categories. A functor F : K→ L is non-expansive
if

ν(F (f)) 6 µ(f)

for every K-arrow f . This is an obvious generalization of non-expansive maps be-
tween metric spaces. A functor is sequentially continuous if it preserves limits of
convergent sequences.
It turns out that σ(K, µ) has the following universal property:

Theorem 3.9. Let 〈K, µ〉 be a normed category. Given a Cauchy complete normed
category 〈L, ν〉, for every sequentially continuous non-expansive functor F : K → L
there exists a unique sequentially continuous functor F : σ(K, µ)→ L extending F .

Proof. Put F (~x) = lim(F ◦ ~x). Clearly, this defines a functor from σ(K, µ) to
L. Uniqueness of F is obvious. It remains to check that F is indeed sequentially
continuous. However, this follows from the following property of co-limits:

lim ~~x = lim
n→∞

lim
m→∞

xn,m.

We cannot prove that F is non-expansive, see Example 3.2 above. Actually, unique-
ness of F is up to an isomorphism only, not necessarily a 0-isomorphism.
In view of the statement above, σ(K, µ) will be called the Cauchy completion of
〈K, µ〉.
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After all, we do not care much about the uniqueness of limits of convergent se-
quences. In natural examples the limits are indeed unique. On the other hand, we
never rely on limit uniqueness; the only problem is to make the theory more natural
and aesthetic... Anyway, it makes sense to call a normed category 〈K, µ〉 Hausdorff
if every converging sequence in K has a unique limit, up to 0-isomorphisms.
Below are examples of a Cauchy complete category.

Example 3.10. Let Ms be the category of metric spaces endowed with the usual
norm (see Subsection 2.5). Let ~x be a Cauchy sequence in Ms. Removing its initial
part, we may assume that the bonding mappings xmn : Xn → Xm are one-to-one,
therefore without loss of generality we may even assume that they are inclusions.
Thus Xn ⊆ Xm for n 6 m and the only problem is that the metric %n on Xn may
not coincide with %m. Let X∞ =

⋃
n∈ωXn. The fact that ~x is Cauchy implies that

the limit
%∞(s, t) := lim

n→∞
%n(s, t)

exists for every s, t ∈ X∞. Furthermore, %∞ is obviously a metric. It is rather
obvious that X∞ is the limit of ~x.
Another, perhaps more useful, example is the category Ms of all complete metric
spaces, endowed with the same norm. It is Cauchy complete too, as one can take
X∞ to be the completion of

〈⋃
n∈ω, %∞

〉
. This construction of a limit is particularly

useful when a metric (or a norm, in the case of Banach spaces) needs to be defined
by certain approximations.

Example 3.11. Let
〈
Ms+ep, δ

〉
be the category of embedding-projection pairs con-

sidered in [1] and discussed in Subsection 2.6. It has been proved in [1] that
〈
Ms+ep, δ

〉
is Cauchy complete. It is worth pointing out that arbitrary sequences in Ms+ep do
not necessarily have co-limits, the norm δ is essential to get convergence.

4 Banach’s fixed-point theorem

There is no need to recall the famous Banach’s Contraction Principle. On the
other hand, it is hopeless to try to create a comprehensive list of its generalizations,
scattered through the literature. Still, once we have made a proper generalization of
the concept of a complete metric space, it has to be tested on the validity of Banach’s
fixed-point theorem. It turns out that such a statement is not only true in our
setting, but its proof becomes merely trivial! Triviality is actually the consequence
of our setting: we work with Cauchy sequences as the main objects of investigations.
Given two normed categories, it is clear how to define the notion of a contraction: it
is a covariant functor F satisfying µ(F (f)) 6 rµ(f) for every arrow f , where r < 1
is fixed and independent of f . A fixed-point of F is an object X for which there
exists a 0-isomorphism h : X → F (x). The classical Banach’s Contraction Principle
can be stated as follows:
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Theorem 4.1. Let 〈K, µ〉 be a normed category and let F : K→ K be a contraction.
Suppose f : a→ F (a) is a K-arrow such that µ(f) < +∞. Then the sequence

(?) a
f // F (a)

F (f) // F 2(a)
F 2(f) // F 3(a)

F 3(f) // · · ·

is a fixed-point of the extension F defined on σ(K, µ).

The proof is rather obvious: Apply the functor F to the sequence (?) and draw a
suitable infinite diagram in order to see that limn→∞ F

n(f) is a 0-isomorphism. The
fact that F is a contraction implies that the sequence (?) is Cauchy.

Corollary 4.2. Assume 〈K, µ〉 is a Cauchy complete normed category, F : K→ K is
a sequentially continuous contraction. If there exists a K-arrow of the form f : a→
F (a) with µ(f) finite, then F has a fixed-point, i.e., there exist s ∈ Obj (K) and a
0-isomorphism h : s→ F (s).

Theorem 4.1 indeed contains the essence of the classical Banach’s fixed-point theo-
rem. This is evidenced by the case where K is a metric space, viewed as a normed
category, when there is always a unique arrow

a→ F (a)

for every a ∈ Obj (K). Note that Theorem 4.1 says in particular that the sequence
(?) is Cauchy, which follows from Proposition 3.4, knowing from basic calculus that
the series

∑+∞
n=1 r

n is convergent whenever r < 1.
Special cases of Theorem 4.1 already appeared in the category-theoretic literature,
typically in theoretical computer science, where one of the lines of research is solving
equations of the form X ≈ F (X), where F is some functor. It seems that America &
Rutten [1] is the first work in this topic containing explicitly formulated fixed-point
theorem. Theorem 4.1 says nothing about uniqueness of fixed-points, as in general
it is impossible to get it:

Example 4.3. Let 〈K, µ〉 be a Cauchy complete category with a sequentially con-
tinuous contraction F : K → K. Let K ⊕ K be the disjoint sum of two copies of K
and let µ ⊕ µ and F ⊕ F be defined in the obvious way. It is clear that F ⊕ F is
a contraction and each fixed-point of F appears now in two non-isomorphic copies
that are fixed-points of F ⊕ F .

Thus, in order to get uniqueness of fixed-points (which is trivial in metric spaces) one
needs to look for some reasonable extra conditions. This issue is discussed in [1] and
in several subsequent works, including [3] where categories enriched over ultrametric
spaces were considered.
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5 Final remarks

We believe that the concept of a norm satisfying (N1)–(N3) is applicable and worth
further studying. We have shown that several natural categories have canonical
norms. Some of them were essentially used, see e.g. [1, 3, 7, 8, 12, 14], where the
authors often discard (N3).
Our personal motivation for introducing norm on categories comes from our preprint
[9], where one deals with a metric-enriched category K with a fixed subcategory K0.
The norm of f ∈ K is defined to be the infimum of all distances %(i, j ◦ f), where
i, j ∈ K0 are such that dom(i) = dom(f), dom(j) = cod(f), and cod(i) = cod(j). It
turns out that µ satisfies (N1)–(N3) provided that Obj (K0) = Obj (K) and K0 has
the almost amalgamation property, that is, for every i, j ∈ K0 with the same domain,
for every ε > 0 there exist i′, j′ ∈ K0 such that dom(i′) = cod(i), dom(j′) = cod(j),
cod(i′) = cod(j′), and %(i′◦i, j′◦j) < ε. This norm is needed for defining the concept
of a generic sequence which is crucial in studying universal almost homogeneous
objects, also called continuous Fräıssé limits.
Concerning further research, we believe that several well-established concepts (e.g.
sequential compactness) will find their place in the new, more general, context. In
fact, more detailed study of abstract convergence involving Cauchy sequences (that
clearly require norms) had already been indicated in the last section of America &
Rutten [1]. The main point of further research studying norms is of course finding
non-trivial results and applications, at the same time avoiding trivialities.
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