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A VIRTUAL OVERLAPPING SCHWARZ METHOD FOR SCALAR
ELLIPTIC PROBLEMS IN TWO DIMENSIONS

JUAN G. CALVO ∗

Abstract. A new coarse space for domain decomposition methods is presented for nodal elliptic
problems in two dimensions. The coarse space is derived from the novel virtual element methods
and therefore can accommodate quite irregular polygonal subdomains. It has the advantage with
respect to previous studies that no discrete harmonic extensions are required. The virtual element
method allows to handle polygonal meshes and then the algorithm can be used as a preconditioner for
linear systems that arise from a discretization with such triangulations. A bound is obtained for the
condition number of the preconditioned system by using a two-level overlapping Schwarz algorithm,
but the coarse space can be used for different substructuring methods. This bound is independent of
jumps in the coefficient across the interface between the subdomains. Numerical experiments that
verify the result are shown, including some with triangular, square, hexagonal and irregular elements
and with irregular subdomains obtained by a mesh partitioner.
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irregular subdomain boundaries, virtual element methods
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1. Introduction. The Virtual Element Methods (VEM) were introduced in [1],
while some practical aspects were presented in [2]. As mentioned in [2], some advan-
tages of the VEM are its efficiency and accuracy in computations and its simplicity in
implementation. The virtual element space contains a certain number of polynomials
to guarantee accuracy, plus additional virtual functions that are never required to be
computed. In this way, polygonal elements can be considered for the discretization of
partial differential equations. In order to construct a suitable stiffness matrix, a dif-
ferent bilinear form is considered which can be computed by only knowing the degrees
of freedom of the virtual functions. We will present the basic theory that corresponds
to the lowest-order virtual element functions. In this case, the local virtual space
consists of functions that are piecewise-linear and continuous on the boundary and
harmonic in the interior of each element.

We will study the scalar elliptic problem in two dimensions

(1) −∇ · (ρ(x)∇u(x)) = f(x), x ∈ Ω, ρ(x) > 0, f ∈ L2(Ω),

with homogeneous Dirichlet boundary conditions and posed in the Sobolev space

H1(Ω) := {v ∈ L2(Ω) : ‖∇v‖L2(Ω) <∞}.

We will work as usual with a weak formulation for problem (1), namely: Find u ∈
H1

0 (Ω) such that

(2) a(u, v) = F (v) ∀ v ∈ H1
0 (Ω),

where a(u, v) :=
∫

Ω
ρ ∇u·∇v dx, F (v) := (f, v)0,Ω is the usual inner product in L2(Ω)

and H1
0 (Ω) is the subspace of H1(Ω) with zero trace.

For simplicity we will consider a two-level overlapping Schwarz method in this
paper, but our new coarse space can also replace the coarse spaces of different iterative
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substructuring algorithms; see [21, Chapter 5]. Two-level overlapping methods were
introduced in [13, 14, 15] and a complete theoretical analysis can be found in [21,
Chapter 2]. The implementation of our additive preconditioner is straightforward
and it only requires the knowledge of the fully assembled matrix, as opposed to non-
overlapping methods where the local subdomain matrices are needed.

In order to discretize problem (2) we consider a triangulation Th which can be
composed by different type of polygons as discussed in Section 2. The domain Ω is
then partitioned into N non-overlapping subdomains {Ωi}Ni=1 of diameter Hi which
are the union of elements of the triangulation Th. For the two-level approach, we will
consider local problems on extensions Ω′i ⊃ Ωi and a coarse problem that involves just
a few degrees of freedom related to all the subdomains. In practice, these subdomains
can be quite irregular for example if they are obtained from a mesh partitioner, and
then there is no straightforward approach to define the coarse basis functions for such
subdomains.

If the dimension of the coarse space increases then it can become a bottleneck in
a parallel implementation. Therefore it is desirable to have a small coarse space; see
[12] for a recent study on small coarse spaces for elliptic problems in three dimensions.
For this reason, we will consider two variants: the virtual space on the coarse mesh
and a particular subset of this space. Even for structured hexagonal meshes, the
reduction in the dimension of the space is quite significant and the estimates for the
condition number of the preconditioned system are similar. We construct then the
reduced coarse space with just one degree of freedom per subdomain vertex (the nodes
of the triangulation that belong to three or more subdomains).

Preconditioning linear systems arising from the discretization of elliptic operators
on irregular subdomains has been studied in the past few years. In two dimensions,
the issues related to irregular geometry of the subdomains are now better under-
stood. For problems in H1(Ω) the first results were established for John [16] and
Jones [17] domains in [8, 19, 22, 10]. We note that the coarse spaces considered in
these studies are based on energy minimization starting with [9]. The lowest-order
virtual element space intrinsically incorporates this condition, since functions are har-
monic and therefore have minimum energy. For problems in H(curl), some domain
decomposition methods with irregular subdomains are analyzed in [11, 6, 7].

It is also common to have discontinuities in the coefficient ρ, so it is very restrictive
to assume that it is constant. Our aim is to develop an algorithm that can be defined
for irregular subdomain geometries and that works well even if ρ is not continuous.
However, we will assume that ρ is constant on each subdomain Ωi. For this case,
the bounds for the condition number obtained in Theorem 3.1 and Theorem 6.1 are
independent of discontinuities of ρ across the interface.

There are two practical approaches for the algorithm presented in this paper.
First, for standard discretization methods of problem (2) with linear or bilinear el-
ements, we can use the coarse virtual element space to construct a coarse global
component for the preconditioner; see examples in Subsection 7.1. In this way, we
can consider quite irregular subdomains in the decomposition. The main advantage of
our virtual coarse space with respect to previous studies is that no discrete harmonic
extension is required in the algorithm, saving computational time. Second, there is
a lack of iterative solvers specifically designed for problems discretized by VEM. We
aim to start this analysis by presenting in this paper an estimate for the condition
number of the preconditioned system obtained by a two-level overlapping Schwarz
algorithm; see examples in Subsection 7.2.
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The rest of this paper is organized as follows. In Section 2 we introduce the
basic theory of VEM and the discretization of our problem. The two-level overlap-
ping Schwarz method is described in Section 3. Then, in Section 4 we include some
technical tools that will be used to obtain the bound of the condition number of the
preconditioned system presented in Section 5. In Section 6 we study a variant of
the virtual coarse space in order to reduce its dimension significantly. Finally, we
report on some numerical experiments in Section 7 and present some final remarks in
Section 8.

2. Virtual Element Methods and discretization. In this section we briefly
present the Virtual Element Methods. We restrict our presentation to the lowest-order
case, but a more general theory is introduced in [1].

Given h > 0, we divide the domain Ω into simply connected polygons K (not
necessarily similar) of diameter hK ≤ h; see some examples in Section 7. We will
refer to these polygons as elements and later we will introduce two assumptions on
them. This polygonal triangulation will be called fine mesh and will be represented
by Th. The set of nodes of a partition Th contains the vertices of all the elements
K ∈ Th and will be denoted by SN , while the set SKN includes only the nodes of Th
that are on the boundary of K. We note that the set SKN can contain, besides vertices
of K, also hanging nodes, i.e., vertices of other polygons that lie on an edge of K.

We now define for each element K the functions in the virtual element space. Let

B1(∂K) := {v ∈ C0(∂K) : v|e ∈ P1(e) ∀ e ⊂ ∂K},

where e represents any edge on the boundary of K and P1 is the space of linear
polynomials. We consider then the set of lowest-order local virtual element functions,
defined by

V K := {v ∈ H1(K) : v ∈ B1(∂K), ∆v = 0 in K}.

Thus, functions are completely determined by their value at the nodes in SKN and V K

contains the space of linear polynomials. Then, we define the global space of finite
element functions as

Vh := {v ∈ H1
0 (Ω) : v|K ∈ V K ∀ K ∈ Th}.

Therefore the dimension of Vh is equal to the number of nodes in the interior of Ω. It
is easy to check that they are unisolvent; see, e.g., [1, Proposition 4.1] for a general
proof. It is clear that Vh reduces to the first-order Lagrange finite element space in
the case of a triangular mesh.

We consider the canonical basis {φhxi
}|SN |
i=1 for Vh such that for any node xj ∈

SN we have that φhxi
(xj) = δij . For a continuous function u, we define its linear

interpolant Ih onto Vh by

Ihu :=
∑

xi∈SN

u(xi)φ
h
xi
.

In general it is not possible to evaluate a(φhxi
, φhxj

); see the discussion in [1, Section
4.5]. To overcome this issue, a different bilinear form ah(·, ·) satisfying consistency
and stability properties is considered. For this purpose we first define a projection
onto the space of linear polynomials. Let aK(·, ·) be the bilinear form restricted to
the element K, i.e.,

aK(u, v) :=

∫
K

ρ ∇u · ∇v dx.
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Define the operator Π̂K : V K → P1(K) ⊂ V K where ṽ := Π̂Kv ∈ P1(K) is the linear
polynomial that satisfies{

aK(ṽ, q) = aK(v, q) ∀ q ∈ P1(K),

ṽ = v,

where w denotes the standard nodal average of w,

w :=
1

|SKN |
∑

x∈SK
N

w(x).

From the definition it is clear that Π̂Kv = v for v ∈ P1(K). Given q ∈ P1(K) and
v ∈ V K , aK(v, q) is computed from Green’s identity

aK(v, q) =

∫
K

∇v · ∇q dx =

∫
∂K

v
∂q

∂n
ds,

since ∆q = 0. The last integral can be computed exactly by just knowing the degrees
of freedom of v; see [2] for implementation details.

The discrete local bilinear form aKh : V K × V K → R is then defined by

(3) aKh (u, v) := aK(Π̂Ku, Π̂Kv) + SK(u− Π̂Ku, v − Π̂Kv),

where SK : V K × V K → R is a stabilizing term, which can be chosen as

SK(u, v) :=
∑

x∈SK
N

ρ u(x)v(x).

We consider the following two assumptions where h denotes the maximum of the
diameters of the elements in Th:

Assumption 1. There exists γ > 0 such that for all h, each element K in Th is
star-shaped with respect to a ball of radius greater than or equal to γhK .

Assumption 2. There exists γ > 0 such that for all h and for each element K
in Th, the distance between any two vertices of K is greater than or equal to γhK .

Remark 2.1. Assumption 1 ensures the existence of a local polynomial with op-
timal approximation properties; see [1, Propositions 4.2, 4.3]. As mentioned in [1,
Remark 4.3], we could take the weaker assumption that every K is the union of a
uniformly bounded number of star-shaped domains, each satisfying Assumption 1. In
turn, Assumption 2 guarantees the stability of the bilinear form; see (4) below.

Remark 2.2. As mentioned in [1, Section 4.6], in their numerical experiments
the method appears to be quite robust with respect to Assumption 2. We also have
not found any difficulty when considering elements where the lengths of its sides
have different orders of magnitude; see Subsection 7.2 for experiments with irregular
polygons.

From (3) it is clear that aKh satisfies the consistency property

aKh (p, v) = aK(p, v) ∀ p ∈ P1(K), ∀ v ∈ V K .

The stability property

(4) α1a
K(v, v) ≤ aKh (v, v) ≤ α2a

K(v, v) ∀ v ∈ V K
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follows from [1, Theorem 4.1], where α1, α2 are independent of K, hK and ρ. The
discrete bilinear form and right-hand side are then defined by

ah(u, v) :=
∑
K∈Th

aKh (u, v), Fh(v) :=
∑
K∈Th

∫
K

PK0 (f) v dx,

respectively. Here, PK0 is the L2−projection onto the space of constants; see [1, Section
4.7]. Finally, our discrete formulation for problem (2) is: Find uh ∈ Vh such that

(5) ah(uh, vh) = Fh(vh) ∀ vh ∈ Vh.

We refer to [1, 5] for an a priori estimate and approximation properties.

3. Overlapping Schwarz methods. We briefly describe the two-level additive
overlapping Schwarz methods; for a complete study see [21, Chapters 2, 3]. The need
of a coarse level arises from the fact that the condition number estimate deteriorates
for any one-level algorithm as the number of subdomain increases.

3.1. The coarse space. The domain Ω is partitioned into N non-overlapping
and simply connected subdomains {Ωi}Ni=1 of diameter Hi which are the union of
elements of the triangulation Th; see some examples in Section 7. The partition {Ωi}
will be called coarse mesh and will be denoted by TH . The set of nodes of TH contains
the vertices of all the subdomains Ωi and will be represented by SHN , and the set SΩi

N
includes only the nodes of TH that are on the boundary of ∂Ωi. We assume that ρ(x)
is constant and equal to ρi inside each subdomain Ωi.

The coarse virtual space in TH is given by

V0 :=
{
v ∈ H1

0 (Ω) : v|Ωi
∈ B1(∂Ωi), ∆v|Ωi

= 0 in Ωi, 1 ≤ i ≤ N
}

and the degrees of freedom are the values at the nodes of TH . For any node x ∈ SHN ,
we denote by φHx the canonical basis function of V0 that vanishes at all coarse nodes,
except at x where it takes the value 1. We can define the linear operator IH : Vh → V0

by

IH(u) :=
∑

x∈SH
N

u(x)φHx .

In general we cannot compute exactly the values of IHu at the internal nodes of
a subdomain Ωi. In order to define an operator RT0 : V0 → Vh we could consider the
discrete harmonic extension for each subdomain Ωi by using the bilinear form a(·, ·)
restricted to Ωi. Instead, we assemble RT0 subdomain by subdomain by constructing
a triangulation TΩi of the subdomain Ωi. For our analysis in Section 4 and Section 5,
we will consider TΩi

as an arbitrary (but fixed) triangulation of the nodes in SΩi

N .

Given u0 ∈ V0 we set RT0 u0(x) := u0(x) for the coarse nodes x ∈ SΩi

N . We
then compute the degrees of freedom of RT0 u0 ∈ Vh by evaluating the piecewise-linear
interpolant onto TΩi . Hence, no discrete harmonic extensions are required in order
to construct RT0 in contrast to previous coarse spaces; see, e.g., [10]. Even though,
our theoretical bound for the condition number and the numerical results are quite
similar as theirs.

Finally, we consider the bilinear form defined in V0 × V0 by

(6) ãh,0(u0, v0) := ah(RT0 u0, R
T
0 v0) =

∑
K∈Th

aKh (RT0 u0, R
T
0 v0).
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3.2. Local spaces. We now construct overlapping subdomains Ω′i ⊃ Ωi by
adding layers of elements that are external to Ωi, and we denote by δi the width
of the region Ω′i \Ωi. We then consider the local virtual spaces Vi, 1 ≤ i ≤ N , defined
by

Vi :=
{
v ∈ H1

0 (Ω′i) : v|K ∈ B1(∂K), ∆v|K = 0 in K, ∀ K ⊂ Ω′i
}
.

Thus, the degrees of freedom are the values at the nodes of Th in the interior of Ω′i.
We also consider the natural operators RTi : Vi → Vh given by the zero extension from
the subdomain Ω′i to Ω, 1 ≤ i ≤ N . We use exact solvers for the local spaces, i.e., we
define the bilinear forms ãh,i : Vi × Vi → R given by

(7) ãh,i(ui, vi) := ah(RTi ui, R
T
i vi) =

∑
K⊂Ω′

i

aKh (ui, vi),

for 1 ≤ i ≤ N ; see [21, Chapter 2].

3.3. Algorithm. The discrete problem (5) can be written as the ill-conditioned
sparse linear system

Aλ = g,

where Ai,j = ah(φhxj
, φhxi

), gi = Fh(φhxi
) and λ is the vector of coordinates of the

solution with respect to the basis {φhxi
} of Vh, i.e., uh =

∑
λiφ

h
xi

. In this subsection
we present a scalable preconditioner for this linear system which allows for parallel
implementation.

Consider the matrix representation of the operators RTi denoted again by RTi . We
define the stiffness matrices Ãi = RiAR

T
i , 0 ≤ i ≤ N , and then consider the Schwarz

projections

Pi = RTi Ã
−1
i RiA, 0 ≤ i ≤ N.

The additive preconditioned operator is defined by

(8) Pad :=

N∑
i=0

Pi = A−1
adA, with A−1

ad =

N∑
i=0

RTi Ã
−1
i Ri.

Multiplicative and hybrid preconditioners can be considered as well; see [21, Section
2.2]. For the preconditioned system A−1

adAλ = A−1
ad g, we have the main theorem of

this paper. Its proof is presented in Section 5.

Theorem 3.1. There exists a constant C, independent of H, h and ρ, such that
the condition number of the preconditioned system κ(A−1

adA) satisfies

κ(A−1
adA) ≤ C

(
1 + log

H

h

)(
1 +

H

δ

)
,

where the ratios H/h and H/δ denote their maximum value over all the subdomains.

4. Technical Tools. We collect some tools that will be needed in Section 5. We
start with the following Poincaré inequality and discrete Sobolev inequality:

Lemma 4.1. Let Ω be Lipschitz continuous with diameter H. Then, there exists
a constant C that depends only on the shape of Ω but not on H, such that

‖v‖2L2(Ω) ≤ CH
2|v|2H1(Ω),
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for v ∈ H1(Ω) with vanishing mean value v̂ :=
1

|Ω|

∫
Ω

v dx.

Proof. See [21, Corollary A.15].

Lemma 4.2. There exists a constant C, independent of Hi and hi, such that

‖v‖2L∞(Ωi)
≤ C

(
1 + log

Hi

hi

)
‖v‖2H1(Ωi)

, for v ∈ Vh.

In particular, if u has zero mean value, then

‖v‖2L∞(Ωi)
≤ C

(
1 + log

Hi

hi

)
|v|2H1(Ωi)

.

Proof. See [3], [4, Section 4.9] for a proof with domains satisfying an interior cone
condition. This inequality holds for more general subdomains; see, e.g., [8, Lemma 3.2]
for a proof with John domains. The second inequality is a consequence of Lemma 4.1.

We now obtain some bounds for the operators introduced in Subsection 3.1:

Lemma 4.3. Given u ∈ Vh, let u0 := IHu ∈ V0. Then, there exists a constant C
such that

‖u−RT0 u0‖2L2(Ωi)
≤ CH2

i

(
1 + log

Hi

hi

)
|u|2H1(Ωi)

,

where C is independent of Hi and hi.

Proof. Let û be the mean value of u over Ωi. By triangle inequality and Lemma 4.1,
we have that

‖u−RT0 u0‖2L2(Ωi)
≤ 2

(
‖u− û‖2L2(Ωi)

+ ‖RT0 u0 − û‖2L2(Ωi)

)
≤ CH2

i

(
|u|2H1(Ω) + ‖RT0 (u0 − û)‖2L∞(Ωi)

)
since RT0 reproduces constants. From the definition of the operator RT0 , it holds that

‖RT0 (u0 − û)‖L∞(Ωi) = ‖IH(u− û)‖2L∞(Ωi)
≤ ‖u− û‖2L∞(Ωi)

.

We conclude our proof by using Lemma 4.2.

Lemma 4.4. Given u ∈ Vh, let u0 := IHu ∈ V0. Then, there exists a constant C
such that

|u0|2H1(Ωi)
≤ |RT0 u0|2H1(Ωi)

≤ C
(

1 + log
Hi

hi

)
|u|2H1(Ωi)

,

where C is independent of Hi and hi.

Proof. The first inequality follows from the fact that u0 and RT0 u0 have the same
boundary data on ∂Ωi, and u0 ∈ V0 has minimum energy. Next, consider a fixed
triangulation TΩi of the nodes in SΩi

N and denote by IT the nodal interpolant onto
TΩi

. Furthermore, for any element K ⊂ Ωi, let TK be a triangular partition of K
and define IK as the nodal interpolant onto TK ; see Figure 1. For simplicity we write
uh := RT0 u0.
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Fig. 1: Geometry in the proof of Lemma 4.4: (a) A subdomain Ωi with five edges;
the degrees of freedom for u0 are the values of u at the nodes nj ∈ SΩi

N (left). (b)
Triangulation TΩi = {T1, T2, T3} for Ωi; IT is obtained from the nodal values of
u (middle). (c) An element K (in blue) and its triangulation TK where 4ABC
intersects T1 and T2 (right).

We have that

|uh|2H1(K) ≤ |IKuh|
2
H1(K) =

∑
TK∈TK

|IKuh|2H1(TK)

since uh = IKuh on ∂K. We claim that

(9) |IKuh|H1(TK) ≤ |ITu|H1(ωTK
) ∀ TK ∈ TK ,

where ωTK
is the union of TK and its neighboring triangles (that are in TK̃ for some

K̃ ⊂ Ωi). If TK lies inside a triangle T ∈ TΩi , then uh|TK
is a linear polynomial

and |IKuh|H1(TK) = |ITu|H1(TK). Thus, we need to study only the case when TK
intersects at least two triangles T1, T2 ∈ TΩi

. Let TK be one of such triangles with
vertices A,B,C as in Figure 1. Then,

|IKuh|2H1(TK) ≤ C
(
|ITu(A)|2 + |ITu(B)|2 + |ITu(C)|2

)
,

since the energy of the basis functions are uniformly bounded by Assumption 2. We
now bound the three terms on the right hand side separately. Following similar ideas
as in [21, Lemma 3.8], we can find a shape-regular triangle T̃ ⊂ ωTK

with vertices
A,B′, C ′ and diameter of order hK which is a subset of a triangle T ∈ TΩi . Then,

|ITu(A)|2 ≤ |ITu(A)|2 + |ITu(B′)|2 + |ITu(C ′)|2 ≤ Ch−2
K ‖ITu‖

2
L2(T̃ )

.

We bound the other two terms similarly to obtain

|IKuh|2H1(TK) ≤ Ch
−2
K ‖ITu‖

2
L2(ωTK

).

If we replace u by u−c, the left-hand side does not change since IH and RT0 reproduce
constants. We can use then Lemma 4.1 to bound the right-hand side by choosing c
as the mean value of ITu on ωTK

. Hence, Equation (9) holds and then

|uh|2H1(Ωi)
≤ C|ITu|2H1(Ωi)

.
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Finally, for any T ∈ TΩi
we have that

|ITu|2H1(T ) = |IT (u− ûT )|2H1(T ) ≤ C‖u− ûT ‖
2
L∞(T ) ≤ C

(
1 + log

Hi

hi

)
|u|2H1(T ),

where we have used Lemma 4.2. We conclude our proof by adding the contributions
from all T ∈ TΩi .

We need also a partition of unity in order to obtain local functions that will be
components of our stable decomposition:

Lemma 4.5. There exists a family of functions {θ̃i}Ni=1 in W 1,∞(Ω) such that
0 ≤ θ̃i(x) ≤ 1,

∑
i θ̃i(x) = 1 for x ∈ Ω, supp(θ̃i) ⊂ Ω′i and

‖∇θ̃i‖L∞(Ω′
i)
≤ C/δi,

where C is independent of δi and Hi.

Proof. See [21, Lemma 3.4].

We conclude this section with the following lemma:

Lemma 4.6. Let K ∈ Th and consider any triangular partition TK of K. Suppose
that u ∈ H1(Ω) is a quadratic function in each triangle T ∈ TK . Then, there exists a
constant C, independent of hK , such that

|Ihu|H1(K) ≤ C|u|H1(K).

Proof. This is a modification of [21, Lemma 3.9]. Denote by IK the nodal
piecewise-linear interpolant onto TK . Since Ihu has minimum energy, it holds that

|Ihu|2H1(K) ≤ |IKu|
2
H1(K) =

∑
T∈TK

|IKu|2H1(T )

≤ 2|u|2H1(K) + 2
∑
T∈TK

|IKu− u|2H1(T ).

By using a standard error bound and an elementary inverse inequality as in [21,
Lemma 3.9], it follows that

|IKu− u|2H1(T ) ≤ CH
2
T |u|2H2(T ) ≤ C|u|

2
H1(T ),

where HT is the diameter of T . We conclude the proof by combining the last two
inequalities.

5. Condition number. We follow the theory developed in [21, Chapter 2] in or-
der to estimate κ(Pad). The condition number of the additive operator (8) is bounded
by

κ(Pad) ≤ (NC + 1)C2
0 ,

where NC is the minimum number of colors needed to color the overlapping subdo-
mains Ω′i such that no pair of subdomains of the same color intersect, and C0 is a
constant such that

N∑
i=0

ãh,i(ui, ui) ≤ C2
0 ah(u, u), where u =

N∑
i=0

RTi ui, ui ∈ Vi;
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see [21, Theorem 3.13]. Clearly, as the overlap increases, the number of colors required
might increase while C0 will decrease. We now present the proof of Theorem 3.1:

Proof. (Theorem 3.1) For simplicity we write ωi := 1 + log(Hi/hi) and let ω :=
maxi ωi. We first define u0 := IHu ∈ V0. From (6), (4) and Lemma 4.4 it holds that

ãh,0(u0, u0) ≤ α2

N∑
i=1

aΩi(RT0 u0, R
T
0 u0) ≤ Cα2

N∑
i=1

ωia
Ωi(u, u)

≤ Cα2

α1
ω
∑
K∈Th

aKh (u, u) = C
α2

α1
ωah(u, u).(10)

Define w := u − RT0 u0 and let ui := Ri(I
h(θ̃iw)) ∈ Vi with θ̃i as in Lemma 4.5.

We have that

RT0 u0 +
N∑
i=1

RTi ui = RT0 u0 +
N∑
i=1

Ih(θ̃iw) = RT0 u0 + Ih

(
N∑
i=1

θ̃iw

)
= u

since Ihv = v for v ∈ Vh. From (7) and (4) we have that

ãh,i(ui, ui) ≤ α2

∑
K⊂Ω′

i

aK(ui, ui) = α2

∑
K⊂Ω′

i

∫
K

ρ|∇(Ih(θ̃iw))|2 dx.(11)

For any element K ∈ Th, we consider an arbitrary (but fixed) triangular mesh
TK of K, and denote by IK the piecewise-linear interpolant onto TK . Define the
piecewise-linear functions θ`i and w` element by element by

θ`i |K := IK θ̃i and w`|K := IKw.

It is clear that in this way θ`i satisfies the same properties of Lemma 4.5, since
‖∇θ`i‖L∞(K) ≤ ‖∇θ̃i‖L∞(K).

By using Lemma 4.6, we deduce that

|Ih(θ̃iw)|2H1(K) = |Ih(θ`iw
`)|2H1(K) ≤ C|θ

`
iw

`|2H1(K)

and substituting in (11) yields to

ãh,i(ui, ui) ≤ Cα2

(∫
Ω′

i

ρ|θ`i∇w`|2 dx+

∫
Ω′

i

ρ|w`∇θ`i |2 dx

)
.(12)

It holds that

|w`|2H1(K) ≤ Ch
2
K‖∇w`‖2L∞(K) ≤ Ch

2
K‖∇w‖2L∞(K) ≤ C‖w‖

2
H1(K)(13)

where we have used an inverse inequality in the last step; see, e.g., [4, Lemma 4.5.3].
Since |θ`i | ≤ 1, the first term in the sum of (12) can be bounded easily by∫

Ω′
i

ρ |θ`i∇w`|2 dx ≤ C
∑
j∈Ξi

ρj‖w‖2H1(Ωj)

= C
∑
j∈Ξi

ρj

(
H−2
j ‖u−R

T
0 u0‖2L2(Ωj) + |u−RT0 u0|2H1(Ωj)

)
≤ Cω

∑
j∈Ξi

ρj |u|2H1(Ωj) = Cω
∑
j∈Ξi

aΩj (u, u),(14)
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where we have used triangle inequality, Lemma 4.3 and Lemma 4.4. Here, Ξi := {j :
Ωj ∩ Ωi 6= ∅}.

In order to estimate the last term in (12), the gradient of θ`i is not zero only in a
neighborhood of ∂Ωi of width maxj∈Ξi δj . The number of sets Ω′j that intersect Ωi is
uniformly bounded, and therefore we need to consider the contribution from only one
of them. We write w` = w`1+w`2, with w`1|K := IK(u−u0) and w`2|K := IK(u0−RT0 u0)
for each element K.

We first note that

‖w`1‖L∞(Ωi) ≤ ‖u− û‖L∞(Ωi) + ‖IH(u− û)‖L∞(Ωi) ≤ 2‖u− û‖L∞(Ωi),

where û is the mean average of u over Ωi.
Therefore,∫

Ω′
j∩Ωi

ρi |w`1∇θ`i |2 dx ≤ C
ρi
δ2
i

‖u− û‖2L∞(Ωi)
|Ω′j ∩ Ωi| ≤ C

Hi

δi
ωia

Ωi(u, u).(15)

For the remaining term w`2, we cover Ω′j ∩ Ωi with square patches with sides on
the order of δi and note that on the order of Hi/δi of them will suffice. For a square
πk we can bound∫

πk

ρi|w`2∇θ`i |2 dx ≤
C

δ2
i

ρi ‖w`2‖2L2(πk) ≤ Cρi|w
`
2|2H1(πk)

where we have used a Friedrich’s inequality, since w`2 vanishes on ∂Ωi. By adding all
the contributions from the squares πk we get∫

Ω′
j∩Ωi

ρi|w`2∇θ`i |2 dx ≤ Cρi|w`2|2H1(Ωi)
≤ Cρi‖u0 −RT0 u0‖2H1(Ωi)

≤ Cρi|u0 −RT0 u0|2H1(Ωi)
≤ Cρiwi|u|2H1(Ωi)

,(16)

where we have used a similar argument as in (13), the fact that u0 − RT0 u0 vanishes
on ∂Ωi, and Lemma 4.4. From (15) and (16) we obtain that∫

Ω′
j∩Ωi

ρi|w`∇θ`i |2 dx ≤ C
(

1 +
Hi

δi

)
ωia

Ωi(u, u),

and by adding all the contributions of the sets Ω′j ∩ Ωi and Ω′i ∩ Ωj , we get

(17)

∫
Ω′

i

ρ|w`∇θ`i |2 dx ≤ C
(

1 +
H

δ

)
ω
∑
j∈Ξi

aΩj (u, u).

Thus, by substituting (14) and (17) in (12), we obtain

ãh,i(ui, ui) ≤ Cα2 ω

(
1 +

H

δ

)∑
j∈Ξi

∑
K⊂Ωj

aK(u, u)

≤ Cα2

α1
ω

(
1 +

H

δ

)∑
j∈Ξi

∑
K⊂Ωj

aKh (u, u).(18)



12 JUAN G. CALVO

We sum all the contributions from ãh,i(ui, ui), i = 0, . . . , N . By (10) and (18) we

conclude that
∑N
i=0 ãh,i(ui, ui) ≤ C2

0ah(u, u), with

C2
0 := C

α2

α1

(
1 +

H

δ

)(
1 + log

H

h

)
,

and our theorem holds.

6. Reduced coarse space. In general it is desirable to have a small coarse
space. In our case, the number of vertices of the polygons Ωi could be quite large
even if we have a structured mesh; see for example Table 1 where we report the
dimension of the coarse space V0 when using METIS subdomains. We will introduce
a smaller coarse space V R0 by considering a particular subset of V0.

Given a decomposition {Ωi}Ni=1 of Ω, we partition the nodes of the triangulation
Th into equivalence classes. The nodes that belong to exactly one subdomain Ωi are
its interior nodes. A subdomain edge E ij will be the interior of the intersection of the
closure of two neighboring subdomains Ωi and Ωj . If such intersection has more than
one component, each open component will be considered as a subdomain edge. Then,
the endpoint nodes of E ij will belong to the set of subdomain vertices. We will write
E instead of E ij if there is no need to identify the two subdomains Ωi and Ωj .

Inspired by [10], for each subdomain vertex x0 we will define a coarse function
ψx0
∈ V0. First, we set ψx0

(x) = 0 for all subdomain vertices, except at x0 where
ψx0

(x0) = 1. We then define the coarse degrees of freedom for the nodes in the
interior of the subdomain edges. If x0 is not an endpoint of E , then ψx0

vanishes on
that edge. If E has endpoints x0 and x1, let dE be the unit vector with direction from
x1 to x0. Consider any node x̃ ∈ E . If 0 ≤ (x̃− x1) · dE ≤ |x0 − x1|, we then set

(19) ψx0(x̃) =
(x̃− x1) · dE
|x0 − x1|

.

It is clear that ψx0
(x0) = 1, ψx0

(x1) = 0 and that the function varies linearly in the
direction of dE for such nodes. If (x̃ − x1) · dE < 0 or (x̃ − x1) · dE > |x0 − x1|,
we then set ψx0(x̃) = 0 or ψx0(x̃) = 1, respectively. In this way, we define all the
degrees of freedom of ψx0

∈ V0. By construction it is clear that ψx0
∈ V0 is uniformly

bounded and that ψx0
+ψx1

≡ 1 along the edge E . We present RT0 ψx0
for a particular

subdomain vertex in Figure 2, where we have used hexagonal elements and METIS
subdomains. We then define the reduced coarse space

V R0 :=
{
v ∈ H1

0 (Ω) : v =
∑
x0

αx0
ψx0

}
⊂ V0,

where the sum goes over all the subdomain vertices x0. In this setting we have only
one coarse degree of freedom per subdomain vertex. In the numerical experiments,
the dimension of V R0 is in average just a 6% of the dimension of V0 for hexagonal
and irregular elements. We conclude with an analogous result as Theorem 3.1 for this
reduced coarse space:

Theorem 6.1. Consider the preconditioner A−1
ad obtained by using the reduced

coarse space V R0 . Then, there exists a constant C, independent of H, h and ρ, such
that the condition number of the preconditioned system κ(A−1

adA) satisfies

κ(A−1
adA) ≤ C

(
1 + log

H

h

)(
1 +

H

δ

)
,
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Fig. 2: A reduced coarse basis function for an hexagonal mesh with METIS subdo-
mains.

where the ratios H/h and H/δ denote their maximum value over all the subdomains.

Proof. Given u ∈ Vh we define IH̃u :=
∑

x0
u(x0)ψx0

∈ V R0 . We have that

IH̃ reproduces constants and since V R0 ⊂ V0, we can write u0 := IH̃u as a linear
combination of the coarse basis functions φHx of V0, where all the degrees of freedom
can be expressed in terms of u. More precisely,

u0 =
∑
x∈SV

u(x)φHx +
∑
E

∑
x∈E

(ψx0
(x)u(x0) + (1− ψx0

(x))u(x1))φHx ,

where SV is the set of subdomain vertices and x0, x1 are the endpoints of edge E .

When replacing IH by IH̃ , we have also that

‖IH̃(u− û)‖2L∞(Ωi)
≤ ‖u− û‖2L∞(Ωi)

.

Therefore, similar results as in Lemma 4.3 and Lemma 4.4 can be obtained. No
new ideas are required to deduce a similar bound for the condition number of the
preconditioned system as in Theorem 3.1.

7. Experimental results. We present some numerical results for our two-level
overlapping additive algorithm with Ω = [0, 1]2. We consider meshes with triangular,
square, hexagonal and irregular elements, with square subdomains (for triangular
and square elements) and irregular subdomains (for all the types of elements) created
with the mesh-partitioner software METIS [18]; for some examples see Figure 3 and
Figure 4.

We solve the resulting linear systems using the preconditioned conjugate gradient
method to a relative residual tolerance of 10−6. We compute the right-hand side such
that the exact solution is u(x1, x2) = sin(πx1) sin(πx2) when ρ = 1. The number of
iterations and condition number estimates (in parenthesis) are reported for each of
the experiments.
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(a) Triangular elements and METIS subdo-
mains

(b) Square elements and METIS subdomains

Fig. 3: Example of piecewise discontinuous ρ across the interface. For each subdomain,
ρi = 10ri , where ri is a random number in [−3, 3] with a uniform distribution.

(a) Hexagonal elements and subdomains (b) Irregular elements and subdomains

Fig. 4: Solution for ρ = 1 with virtual elements.

7.1. Standard Finite Element Spaces. We start by considering the dis-
cretization of problem (2) with the first-order Lagrange space P1 (triangular elements)
and the bilinear space Q1 (square elements). In this case, our analysis provides a new
coarse space for irregular subdomains. We note that our results are similar to the
ones obtained in [10] where experiments were reported for a different coarse space
based on discrete harmonic extensions, and that the dimension of our reduced coarse
space is similar as theirs.

Example 7.1. We verify the scalability of our algorithm. We first consider trian-
gular elements with the first-order Lagrange space P1 and square elements with the
bilinear space Q1, for a constant coefficient ρ = 1. We include experiments with square
and METIS subdomains as in Figure 3. The condition number remains bounded as
we increase the number of subdomains; see Table 1.
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Table 1: Number of iterations and condition number (in parenthesis) for our algorithm
discretized with P1 and Q1 elements with N subdomains, ρ = 1, H/h = 16 and
H/δ = 4. NV is the dimension of the coarse space.

Square subd METIS subd METIS reduc
FEM N NV I(κ) NV I(κ) NV I(κ)
P1 122 121 15(4.9) 1819 21(8.3) 243 26(9.9)

162 225 15(4.8) 3308 26(10.6) 447 27(11.0)
202 361 15(4.8) 5347 26(11.0) 711 29(13.5)
242 529 15(4.7) 7651 30(10.8) 1054 27(10.8)

Q1 122 121 14(5.5) 624 21(7.2) 241 22(7.7)
162 225 14(5.9) 1265 24(7.3) 450 22(7.6)
202 361 14(5.9) 2192 23(7.4) 721 22(7.2)
242 529 14(5.7) 2685 23(7.4) 1058 22(7.0)

Example 7.2. We confirm that the condition number grows linearly as a function
of H/δ. In these experiments, we use 64 subdomains with H/h = 64, ρ = 1. The
stiffness matrix has 263169 degrees of freedom. For square, METIS and reduced
subdomains, the coarse space has dimension 49, 2923, 96 for P1 elements, and 49,
1074 and 98 for Q1 elements, respectively; see results in Figure 5.
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(a) Triangular elements
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(b) Square elements

Fig. 5: Condition number (y−axis) as a function of H/δ (the number of iterations is
shown for each point).

Example 7.3. We study the behavior for increasing values of H/h with 64 sub-
domains, H/δ = 4 and ρ = 1; see Table 2. Results in this case are insensitive to
increasing values of H/h.

Example 7.4. We study the behavior of our algorithm when ρ has discontinuities
across the interface; see Figure 3 for a particular example of ρ. For each test we
generate random numbers ri ∈ [−3, 3] with a uniform distribution, and assign ρi =
10ri for individual elements inside each subdomain Ωi. In this case, we observe the
logarithmic factor 1 + log(H/h) in some cases; see results in Table 3.
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Table 2: Number of iterations and condition number (in parenthesis) for our algorithm
discretized with P1 and Q1 elements with 64 subdomains, ρ = 1 and H/δ = 4. NV is
the dimension of the coarse space and dof the size of the stiffness matrix.

Square subd METIS subd METIS reduced
FEM H/h dof NV I(κ) NV I(κ) NV I(κ)
P1 8 4225 49 14(5.2) 386 21(7.6) 93 25(10.2)

16 16641 49 15(5.5) 386 22(7.9) 93 26(10.9)
32 66049 49 16(5.7) 386 23(7.8) 93 27(10.8)
64 263169 49 16(5.8) 386 23(7.8) 93 28(11.0)

Q1 8 4225 49 14(6.0) 252 19(6.2) 96 19(5.7)
16 16641 49 14(4.9) 252 20(6.3) 96 20(6.3)
32 66049 49 15(4.8) 252 20(6.3) 96 21(6.4)
64 263169 49 15(4.8) 252 21(6.4) 96 21(6.4)

Table 3: Number of iterations and condition number (in parenthesis) for our algorithm
with P1 and Q1 elements and 64 subdomains, ρ discontinuous across the interface,
H/δ = 4.

Square subd METIS subd METIS reduc
FEM H/h NV I(κ) NV I(κ) NV I(κ)
P1 16 49 25(11.6) 386 24(7.5) 93 26(8.7)

32 49 27(14.0) 386 25(7.6) 93 27(8.8)
64 49 27(16.3) 386 25(7.7) 93 27(8.8)

Q1 16 49 25(17.6) 252 25(8.6) 96 24(7.4)
32 49 26(20.6) 252 27(9.0) 96 26(9.3)
64 49 27(23.6) 252 28(9.2) 96 27(9.7)

7.2. Discretizacion with VEM. We now consider general polygonal meshes
as in Figure 4. We use our two-level additive algorithm in order to construct a
preconditioner for the linear system that arises from (5); see [20] for a Matlab’s
implementation of the lowest-order VEM.

Example 7.5. We first verify the scalability for ρ = 1; see Table 4 and Table 5.
We add two layers of elements in order to construct Ω′i in both cases and H/h ≈ 8. For
hexagonal and irregular elements we construct subdomains based on the incenter of
the elements (to obtain square-like subdomains) and METIS subdomains. We observe
that results agree with the bounds obtained in Theorem 3.1 and Theorem 6.1.

Example 7.6. In this case, we study the behavior of the condition number for
increasing values of H/δ for ρ = 1 and H/h = 32; see Figure 6. We observe linear
growth as we increase H/δ, as expected.

Example 7.7. We study the dependence on H/h for the different type of el-
ements; see results in Table 6. We observe a logarithmic growth in the cases of
hexagonal and irregular elements.

Example 7.8. We conclude by presenting some examples where ρ has disconti-
nuities across the interface as in Example 7.4. Results are independent of jumps of
the coefficient across the interface; see Table 7 and Figure 7.
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Table 4: Number of iterations and condition number (in parenthesis) for our algorithm
with square elements and VEM. We add two layers of elements to construct the
overlapping subdomains Ω′i. NV is the dimension of the coarse space, N the number
of subdomains, ρ = 1 and H/h = 8.

Square subd METIS subd METIS reduced
N NV I(κ) NV I(κ) NV I(κ)

122 121 13(6.7) 654 20(6.7) 243 21(6.8)
162 225 13(6.2) 1160 20(6.8) 439 21(7.1)
242 529 13(6.3) 2721 23(7.4) 1047 22(7.3)
322 961 12(5.4) 4711 24(7.6) 1891 22(7.5)

Table 5: Number of iterations and condition number (in parenthesis) for our reduced
algorithm with hexagonal and irregular elements with VEM. We add two layers of
elements to construct the overlapping subdomains Ω′i. NV is the dimension of the
coarse space, N the number of subdomains, ρ = 1 and H/h ≈ 8. The dimension of
the reduced coarse represents only a 6% of the dimension of the full coarse space.

Hexagonal elements Irregular elements
Incenter METIS Incenter METIS

N NV I(κ) NV I(κ) NV I(κ) NV I(κ)
82 98 17(5.7) 99 17(5.0) 98 20(6.5) 99 23(7.7)

122 242 22(8.8) 242 24(8.6) 242 21(6.7) 247 24(10.5)
162 450 20(7.6) 453 22(7.8) 450 22(7.1) 452 24(8.1)
202 722 19(6.6) 721 22(7.1) 730 25(9.2) 724 25(8.7)
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Fig. 6: Condition number (y−axis) as a function of H/δ for ρ = 1, H/h = 32, N = 16
(the number of iterations is shown for each point).
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Table 6: Number of iterations and condition number (in parenthesis) for our reduced
algorithm with 16 METIS subdomains, ρ = 1 and H/δ = 4.

Square elem Hexagonal elem Irregular elem
H/h NV I(κ) NV I(κ) NV I(κ)

16 17 19(6.1) 18 18(5.9) 18 22(7.4)
32 17 20(6.2) 18 19(6.1) 19 28(13.7)
64 17 20(6.2) 18 20(6.6) 18 37(20.9)

Table 7: Scalability for different VEM discretizations for the reduced coarse space
with METIS subdomains, ρ discontinuous across the interface, H/h = 8, H/δ = 4.

Squares Hexagons Irregular
N I(κ) I(κ) I(κ)

122 27(9.5) 28(10.2) 27(9.7)
162 26(9.1) 26(8.8) 29(10.2)
202 27(9.2) 26(8.0) 32(12.1)
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Fig. 7: Condition number as a function of H/h (left) and H/δ (right) for the reduced
coarse space, with N = 16 and ρ discontinuous across the interface as in Figure 3.
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8. Conclusions. We have defined a new coarse space V0 that can be used for
different domain decomposition methods which is useful in the presence of irregular
subdomains. In particular, we have obtained a bound for the condition number of
the preconditioned system by using a two-level overlapping Schwarz method, where
we have used VEM for the discretization of problem (2). Nevertheless, the dimension
of V0 can grow if the edges are quite irregular, even for structured meshes. For that
reason, we have introduced a reduced coarse space V R0 . Its dimension is equal to the
number of internal subdomain vertices and the estimates for the condition numbers
are quite similar in both cases, even though there is a significant reduction in the
dimension of the coarse space.

We have developed two sets of numerical experiments. First, the coarse spaces
V0 and V R0 are used for standard P1 and Q1 discretizations; see Subsection 7.1. Our
results are similar as the ones obtained in [10] where their coarse space is based on en-
ergy minimization. Second, we have tested the preconditioner for the stiffness matrix
obtained by VEM, which allows to consider polygonal elements; see Subsection 7.2.
In both cases, we have verified the theoretical bounds obtained in Theorem 3.1 and
Theorem 6.1. Results are competitive and independent of jumps of the coefficient
across the subdomains, and the method allows to handle irregular subdomains as the
ones obtained by mesh partitioners.

Acknowledgments. The author would like to thank his former advisor Prof.
Olof Widlund and Prof. Tomáš Vejchodský for their suggestions during the work on
this article.
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