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ON THE APPROXIMATION OF A VIRTUAL COARSE SPACE FOR
DOMAIN DECOMPOSITION METHODS IN TWO DIMENSIONS

JUAN G. CALVO ∗

Abstract. A new extension operator for a virtual coarse space is presented which can be used
in domain decomposition methods for nodal elliptic problems in two dimensions. In particular, a
two-level overlapping Schwarz algorithm is considered and a bound for the condition number of
the preconditioned system is obtained. This bound is independent of discontinuities across the
interface. The extension operator saves computational time compared to previous studies where
discrete harmonic extensions are required and it is suitable for general polygonal meshes and irregular
subdomains. Numerical experiments that verify the result are shown, including some with regular
and irregular polygonal elements and with subdomains obtained by a mesh partitioner.
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1. Introduction. We will consider the scalar elliptic problem in two dimensions

(1) −∇ · (ρ(x)∇u(x)) = f(x), x ∈ Ω, ρ(x) > 0, f ∈ L2(Ω),

posed in H1(Ω) := {v ∈ L2(Ω) : ‖∇v‖L2(Ω) < ∞} and with homogeneous Dirichlet
boundary conditions. We will work as usual with a weak formulation for problem (1),
namely: Find u ∈ H1

0 (Ω) such that

(2) a(u, v) = F (v) ∀ v ∈ H1
0 (Ω),

where a(u, v) :=
∫

Ω
ρ ∇u · ∇v dx, F (v) := (f, v)0,Ω is the inner product in L2(Ω) and

H1
0 (Ω) is the subspace of H1(Ω) with vanishing trace.

We consider a general polygonal triangulation Th of Ω and discretize problem
(2) with the novel Virtual Element Method (VEM) [1, 2]. The associated stiffness
matrix is then obtained by defining a finite-dimensional space Vh and an computable,
consistent and stable bilinear form ah(·, ·) defined in Vh × Vh.

We then construct a two-level overlapping additive Schwarz preconditioner for the
associated linear system; see, e.g., [18, Chapter 3]. These methods were introduced
in [10, 11, 12]. For this purpose, the domain Ω is decomposed in N non-overlapping
subdomains {Ωi}Ni=1 of diameter Hi which are the union of elements of the triangula-
tion Th. The preconditioner has local contributions that correspond to homogeneous
Dirichlet solvers on extensions Ω′i ⊃ Ωi, and a coarse component that involves a
global solver of modest size. The dimension of our coarse space is equal to the num-
ber of subdomain vertices (the nodes of the triangulation that belong to three or more
subdomains).

In general, there is no straightforward approach to define coarse basis functions
in the presence of irregular subdomains. In this setting, the virtual space seems to
be a natural choice since it can accommodate polygonal elements with no complica-
tions. Thus, general polygonal subdomains can be considered in the decomposition.
Furthermore, the lowest-order space is characterized by functions that are harmonic
in the interior of the subdomains, which have minimum H1-seminorm amog the func-
tions with the same values on the boundary. We note that previous studies related to
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irregular subdomains are based on discrete harmonic extensions starting with [8]; see
also [7, 16, 19, 9] where John [13] and Jones [14] subdomains are considered.

Our virtual coarse space was introduced in [6], where two variants were considered:
the full coarse virtual space V0 defined on the partition {Ωi} of Ω, and a reduced
version V R0 ⊂ V0. In the VEM terminology, functions are virtual in the sense that
they are never required to be constructed explicitly; the only available information is
their degrees of freedom. Hence, in order to compute the coarse component of our
preconditioner, we need to approximate the coarse functions in the virtual element
space.

The first approach considered in [6] consists in defining the operator RT0 : V R0 →
Vh by evaluating a piecewise linear interpolant. In the present study, we modify this
operator and consider polynomial approximations inside the subdomains (with degree
greater than or equal to two). These projectors are used in the VEM methods when
assembling the stiffness matrices and can be computed by only knowing the degrees
of freedom of the virtual functions. They provide a good approximation and allow to
deduce a similar upper bound for the condition number of the preconditioned system.
The bound obtained in Theorem 4.1 is also independent of discontinuities of ρ across
the interface, and we will assume that ρ is constant in each subdomain Ωi.

We note that the main advantage of our approach with respect to previous studies
is that no discrete harmonic extensions are required in the algorithm, saving compu-
tational time. We also aim to contribute and enrich the literature related to iterative
solvers for VEM discretizations, since there is a lack of theoretical analysis for such
problems.

The rest of this paper is organized as follows. In Section 2 we introduce the
notation that will be used throughout our analysis. In Section 3 we present the basic
theory of VEM and the discretization of our problem. The coarse space is described
in Section 4 along with the new extension operators that approximate the coarse basis
functions. Then, Section 5 includes some technical tools and the proof of the bound for
the condition number of the preconditioned system. We include some implementation
details and report on some numerical experiments in Section 6. Finally, we present
some closing remarks in Section 7.

2. Notation. Given h > 0, we will divide the domain Ω into simply connected
polygons K (not necessarily similar) of diameter hK ≤ h; see some examples in
Section 6. These polygons will be called elements and later we will introduce two
assumptions on them. This polygonal triangulation will be called fine mesh and will
be denoted by Th. The set of nodes of a partition Th contains the vertices of all the
elements K ∈ Th and will be represented by SN , while the set SKN will include the
nodes of Th that are on the boundary of K. We note that the set SKN can contain,
besides vertices of K, also hanging nodes, i.e., vertices of other polygons that lie on
an edge of K. The bilinear form (2) restricted to an element K will be denoted by

aK(u, v) :=

∫
K

ρ ∇u · ∇v dx.

Furthermore, the domain Ω will be partitioned into N non-overlapping and simply
connected subdomains {Ωi}Ni=1 of diameter Hi which are the union of elements of the
triangulation Th; see, e.g., Figure 1. The partition formed by {Ωi} will be called
coarse mesh and will be denoted by TH . In a similarly way, the set of nodes of TH
contains the vertices of all the subdomains Ωi and will be represented by SHN , while
the set SΩi

N will include only the nodes of TH that are on the boundary of Ωi. Again,
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hanging nodes are allowed on the coarse mesh. We will assume also that the coefficient
ρ(x) is constant and equal to ρi inside each subdomain Ωi. We will then construct
overlapping subdomains Ω′i ⊃ Ωi by adding layers of elements that are external to Ωi,
and we will denote by δi the maximum width of the region Ω′i \ Ωi.

We will also partition the set of nodes SN into disjoint sets. The nodes that
belong to exactly one subdomain Ωi are its interior nodes. A subdomain edge E ij will
be the interior of the intersection of the closure of two neighboring subdomains Ωi
and Ωj . If such intersection has more than one component, each open component will
be considered as a subdomain edge. Then, the endpoint nodes of E ij will belong to
the set of subdomain vertices, which will be denoted by SV . We will write E instead
of E ij if there is no need to identify the two subdomains Ωi and Ωj . The interface of
the decomposition will include the closure of all the subdomain edges.

We remark the distinction between SΩi

N (nodes that are vertices of the polygonal

subdomains) and SΩi

V (nodes that belong to at least three subdomains); see Figure 1.

It is clear that SΩi

V ⊂ S
Ωi

N .

Fig. 1: A METIS decomposition for the unit square with square elements. The colored
subdomain is a dodecagon with six subdomain edges. (a) Subdomain nodes, SΩi

N (left)

(b) Subdomain vertices, SΩi

V (right)

We also define some polynomial spaces that will be used in the description of the
algorithm. Given two non-negative integers α1, α2, we will use the standard notation
for a multi-index α = (α1, α2), with |α| := α1 + α2 and xα := xα1

1 xα2
2 for any point

in the plane x = (x1, x2). The space of polynomials of degree less than or equal to k
defined on D will be denoted by Pk(D). We recall that dimPk(D) = (k+ 1)(k+ 2)/2
for two-dimensional domains.

Let mα be the scaled monomial of degree |α| in the domain D, defined by

mα(x) :=

(
x− xD
hD

)α
,

where xD is the barycenter of D and hD its diameter. The set of such polynomials
of degree less than or equal to k will be denoted by

(3) Mk(D) := {mα : |α| ≤ k}.

Let D represent an element K ∈ Th or a subdomain Ωi. We distinguish between
vD, the standard nodal average of v, and v̂D, the mean value of v, defined respectively
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by

vD :=
1

|SDN |
∑
x∈SD

N

w(x), and v̂D :=
1

|D|

∫
D

w(x) dx.

For a positive integer k, we will also consider the set

Bk(∂D) := {v ∈ C0(∂D) : v|e ∈ Pk(e) ∀ e ⊂ ∂D}

where e represents any edge on the boundary of D, and the local virtual element space

(4) V Dk := {v ∈ H1(D) : v ∈ Bk(∂D), ∆v ∈ Pk−2(D)}.

We note that we consider P−1(D) = 0. Hence, a function in V D1 is continuous
and piecewise linear on the boundary of D and harmonic in the interior, and it is
completely determined by its values at the nodes in SDN .

Finally, we define the operator Π∇D,k : V Dk → Pk(D) ⊂ V Dk where ṽ := Π∇D,kv is
the polynomial that satisfies

(5)

{
aD(ṽ, q) = aD(v, q) ∀ q ∈ Pk(D),
P0(ṽ) = P0(v).

Here, P0 : V Dk → R is a projection operator onto constants, which is chosen as the
nodal average if k = 1 or the mean value if k ≥ 2; see Subsection 6.1 for implementa-
tion details related to the operator Π∇D,k .

3. Virtual Element Methods and discretization. We describe the basic
theory of the VEM introduced in [1]; see also [2] for implementation details. We dis-
cretize (2) with the lowest-order VEM and we restrict in this section our presentation
to this case. Nevertheless, for the approximation of the coarse space we will use the
projectors Π∇D,k for k ≥ 2; see Subsection 4.2. It is assumed that the elements satisfy
the following two assumptions, where h denotes the maximum of the diameters of the
elements in Th:

Assumption 1. There exists γ > 0 such that for all h, each element K in Th is
star-shaped with respect to a ball of radius greater than or equal to γhK .

Assumption 2. There exists γ > 0 such that for all h and for each element K
in Th, the distance between any two vertices of K is greater than or equal to γhK .

The global space of lowest-order virtual element functions is defined as

Vh := {v ∈ H1
0 (Ω) : v|K ∈ V K1 ∀ K ∈ Th},

where V K1 is defined in (4). The dimension of Vh is equal to the number of nodes of
Th in the interior of Ω. It is easy to check that they are unisolvent ([1, Proposition
4.1]) and Vh reduces to the first-order Lagrange finite element space in the case of a
triangular mesh.

We consider the canonical basis {φhxi
} of Vh such that, for any node xj ∈ SN ,

we have that φhxi
(xj) = δij . For a continuous function u, we can define the natural

interpolant onto Vh given by

Ihu :=
∑
x∈SN

u(x)φhx.
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We note that in general a(φhxi
, φhxj

) cannot be evaluated as discussed in [1, Section

4.5]. Therefore, we consider the local bilinear form aKh : V K1 × V K1 → R defined by

(6) aKh (u, v) := aK(Π∇K,1u,Π
∇
K,1v) + SK(u−Π∇K,1u, v −Π∇K,1v),

where SK : V K1 × V K1 → R is a stabilizing term, which can be chosen as

SK(u, v) :=
∑
x∈SK

N

ρ u(x)v(x).

From (6) it is clear that aKh satisfies the consistency property

aKh (p, v) = aK(p, v) ∀ p ∈ P1(K), ∀ v ∈ V K1 ,

and the stability property

(7) α1a
K(v, v) ≤ aKh (v, v) ≤ α2a

K(v, v) ∀ v ∈ V K1 ,

where α1, α2 are independent of ρ, hK and K; see [1, Theorem 4.1]. The discrete
bilinear form and right hand side are then defined by

ah(u, v) :=
∑
K∈Th

aKh (u, v), Fh(v) :=
∑
K∈Th

|K|f̂ v.

Finally, the discrete formulation for problem (2) is: Find uh ∈ Vh such that

(8) ah(uh, vh) = Fh(vh) ∀ vh ∈ Vh.

We refer to [1, 5] for an a priori estimate and approximation properties, [2] for imple-
mentation details and [17] for an implementation in Matlab.

4. Overlapping Schwarz methods. We briefly describe the two-level additive
overlapping Schwarz methods; for a complete study see [18, Chapters 2, 3]. We also
describe the reduced virtual coarse space V R0 introduced in [6, Section 6] and the new
operator RT0 in detail.

4.1. The coarse space. Consider the partition T H formed by the subdomains
{Ωi}Ni=1. For each subdomain, let V i1 := V Ωi

1 be the lowest-order local virtual space
defined in (4). The degrees of freedom are chosen again as the values at the nodes in
SΩi

N . Then, the global virtual space on T H is defined as

V0 :=
{
v ∈ H1

0 (Ω) : v|Ωi
∈ V i1 , 1 ≤ i ≤ N

}
.

For each subdomain vertex x0 ∈ SV we define a coarse function ψHx0
∈ V0 by

choosing appropriately its degrees of freedom. First, we set ψHx0
(x) = 0 for all the

subdomain vertices x, except at x0 where ψHx0
(x0) = 1. Second, we set the degrees

of freedom related to the nodal values on each subdomain edge. If x0 is not an
endpoint of E , then ψHx0

vanishes on that edge. If E has endpoints x0 and x1, let
dE be the unit vector with direction from x1 to x0. Consider any node x̃ ∈ E . If
0 ≤ (x̃− x1) · dE ≤ |x0 − x1|, we then set

(9) ψHx0
(x̃) =

(x̃− x1) · dE
|x0 − x1|

.
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It is clear that ψHx0
(x0) = 1, ψHx0

(x1) = 0 and that the function varies linearly in the
direction of dE for such nodes. If (x̃ − x1) · dE < 0 or (x̃ − x1) · dE > |x0 − x1|, we
then set ψHx0

(x̃) = 0 or ψHx0
(x̃) = 1, respectively. In this way, we define all the degrees

of freedom of ψHx0
∈ V0. By construction it is clear that 0 ≤ ψHx0

≤ 1 and the sum∑
x0
ψHx0

of all these coarse basis functions is equal to one.

We then define the reduced coarse space as the span of {ψHx0
}, i.e.,

V R0 :=
{
v ∈ H1

0 (Ω) : v =
∑
x0∈SV

αx0
ψHx0

}
⊂ V0,

where αx0
∈ R ∀ x0 ∈ SV . We note that there is only one degree of freedom per

subdomain vertex, and that functions are piecewise linear on the subdomain edges
and harmonic in the interior of each subdomain. We can naturally define a linear
interpolant IH : Vh → V R0 by

IHu :=
∑
x0∈SV

u(x0)ψHx0
,

and it is easy to deduce that IH reproduces linear polynomials.

4.2. Extension operators. The crucial aspect in the construction of the pre-
conditioner is to define an operator RT0 : V R0 → Vh that approximates functions in the
coarse space by elements in Vh. The straightforward approach would be to evaluate
each coarse basis function ψHx0

at the internal nodes of the subdomains, but these
coarse functions are virtual and we only know the value of their degrees of freedom.
We could consider also the discrete harmonic extension for each subdomain Ωi by
using the bilinear form a(·, ·) restricted to Ωi. This is the usual approach in most of
the existing literature; see, e.g., [8, 7, 16, 19, 9]. A different approach is presented in
[6], where RT0 is constructed by considering piecewise-linear contributions.

Instead, we take advantage of the operators Π∇Ωi,k
defined in (5). We start by

describing the virtual space when k ≥ 2. For each subdomain Ωi, the local virtual
space of degree k is defined by V ik := V Ωi

k ; see (4). It is easy to deduce that dimV ik =
nik + k(k − 1)/2, where ni is the number of edges of the polygon Ωi. The degrees of
freedom of a function v ∈ V ik can be chosen as:

(a) The values of v at the ni vertices of the polygon Ωi.
(b) The values of v at k − 1 internal points of each edge of Ωi.

(c) The moments
1

|Ωi|

∫
Ωi

m(x)v(x) dx ∀ m ∈ Mk−2(Ωi), where Mk−2 is the

set of scaled monomials defined in (3).
Then, the global virtual space on T H of degree k is defined as

V kH :=
{
v ∈ H1

0 (Ω) : v|Ωi ∈ V ik , 1 ≤ i ≤ N
}
.

Clearly V R0 ⊂ V0 ⊂ V kH . Thus, given a coarse basis function ψHx0
, we can identify

it as an element of V kH by computing its degrees of freedom (a), (b) and (c). We note
that the nodal degrees of freedom given in (a) and (b) are straightforward to compute
by using (9). We then need to compute the moments (c), namely

|Ωi|−1

∫
Ωi

mα(x)ψHx0
(x) dx, ∀ mα ∈Mk−2(Ωi),

which might seem difficult. However, we recall that ψHx0
is harmonic in Ωi. Thus, it is

enough to choose these moments in such way that aΩi(ψHx0
, ψHx0

) is minimized among
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all the functions in V kH with the prescribed boundary data. As we will show, this is
equivalent to solving a linear system with k(k − 1)/2 unknowns for each subdomain
Ωi; see Subsection 6.1 for implementation details.

We then define the action of RT0 on each basis function of V R0 . We note that RT0
depends on k ≥ 2, but for simplicity we omit this dependence. We set the degrees of
freedom of RT0 ψ

H
x0
∈ Vh as follows:

(a’) If x is a node of Th in the interior of Ωi, we set

(RT0 ψ
H
x0

)(x) := (Π∇Ωi,kψ
H
x0

)(x).

(b’) For all the other nodes in Th (that belong to the interface), we set

(RT0 ψ
H
x0

)(x) := ψHx0
(x).

Therefore, given u0 =
∑
x∈SV

αxψ
H
x ∈ V R0 , we can write the restriction of RT0 to a

subdomain Ωi as

(10) (RT0 u0)|Ωi
= Ih

(
Π∇Ωi,ku0

)
+

∑
x∈SN∩∂Ωi

(u0 −Π∇Ωi,ku0)(x)φhx.

Finally, we consider the bilinear form defined in V R0 × V R0 by

(11) ãh,0(u0, v0) := ah(RT0 u0, R
T
0 v0) =

∑
K∈Th

aKh (RT0 u0, R
T
0 v0).

We note that as we increase k, the possibility of choosing more moments (c) allows
us to obtain a better approximation RT0 ψ

H
x for ψHx by just solving a small linear

system. In practice, results for k = 2 and k = 3 are quite competitive as it is shown
in Section 6.

4.3. Local spaces. We consider the usual local virtual spaces Vi, 1 ≤ i ≤ N ,
defined by

Vi :=
{
v ∈ H1

0 (Ω′i) : v|K ∈ B1(∂K), ∆v|K = 0 in K, ∀ K ⊂ Ω′i
}
.

Thus, the degrees of freedom are the values at the nodes of Th in the interior of Ω′i.
We also consider the natural operators RTi : Vi → Vh given by the zero extension from
the subdomain Ω′i to Ω, 1 ≤ i ≤ N . We use exact solvers for the local spaces, i.e., we
define the bilinear forms ãh,i : Vi × Vi → R given by

(12) ãh,i(ui, vi) := ah(RTi ui, R
T
i vi) =

∑
K∈Ω′

i

aKh (ui, vi), 1 ≤ i ≤ N.

4.4. Algorithm. In this subsection we define an additive preconditioner for
the ill-conditioned sparse linear system Aλ = g obtained from problem (8), where
Ai,j = ah(φhxj

, φhxi
), gi = Fh(φhxi

) and λ is the vector of coordinates of the solution

with respect to the basis {φhxi
} of Vh, i.e., uh =

∑
λiφ

h
xi

.
Consider the matrix representation of the operators RTi denoted again by RTi . We

define the stiffness matrices Ãi = RiAR
T
i , 0 ≤ i ≤ N , and then consider the Schwarz

projections Pi = RTi Ã
−1
i RiA, 0 ≤ i ≤ N. The additive preconditioned operator is

defined by

(13) Pad :=
N∑
i=0

Pi = A−1
adA, with A−1

ad =
N∑
i=0

RTi Ã
−1
i Ri.
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Multiplicative and hybrid preconditioners can be considered as well; see [18, Section
2.2]. For the preconditioned system A−1

adAλ = A−1
ad g, we have the main theorem of

this paper. Its proof is presented in Section 5.

Theorem 4.1. There exists a constant C, independent of H, h and ρ, such that
the condition number of the preconditioned system κ(A−1

adA) satisfies

κ(A−1
adA) ≤ C

(
1 + log

H

h

)(
1 +

H

δ

)
,

where the ratios H/h and H/δ denote their maximum value over all the subdomains.

5. Technical Tools. We collect some tools that are needed in the proof of
Theorem 4.1. For simplicity we write ωi := 1 + log(Hi/hi) and ω := maxi ωi. We
recall the following Poincaré and discrete Sobolev inequalities:

Lemma 5.1. Let Ω be Lipschitz continuous with diameter H. Then, there exists
a constant C that depends only on the shape of Ω but not on H, such that

‖u‖2L2(Ω) ≤ CH
2|u|2H1(Ω),

for u ∈ H1(Ω) with vanishing mean value.

Proof. See [18, Corollary A.15].

Lemma 5.2. Given v ∈ Vh with zero mean value, there exists a constant C such
that

‖v‖2L∞(Ωi)
≤ Cωi|v|2H1(Ωi)

,

where C is independent of Hi and hi.

Proof. See [3], [4, Section 4.9] for a proof with domains satisfying an interior cone
condition. This inequality holds for more general subdomains; see, e.g., [7, Lemma
3.2] for a proof with John domains.

We then have the following estimates for the interpolation operators Ih and Π∇Ωi,k
:

Lemma 5.3. Let K ∈ Th and v ∈ H2(K). Then, there exists C, independent of
hK , such that

|v − Ihv|Hs(K) ≤ Ch2−s
K |v|H2(K),

with s ∈ {0, 1}.
Proof. See [5, Lemma 3.3.4].

Lemma 5.4. Let K ∈ Th and suppose that there exists a triangular partition TK
of K such that u ∈ H1(Ω) is a quadratic function in each T ∈ TK . Then, there exists
a constant C such that

|Ihu|H1(K) ≤ C|u|H1(K),

where C is independent of hK .

Proof. This is a modification of [18, Lemma 3.9]; see the details in [6, Lemma
4.6].
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Lemma 5.5. Given k ≥ 2 and u0 ∈ V ik , there exists a constant C such that

|Π∇Ωi,ku0|2H1(Ωi)
≤ |u0|2H1(Ωi)

,

‖u0 −Π∇Ωi,ku0‖2L2(Ωi)
≤ CH2

i |u0|2H1(Ωi)
,

where C is independent of Hi.

Proof. Let ũ0 := Π∇Ωi,k
u0 ∈ Pk(Ωi). The first inequality follows straightforward

from the definition of Π∇Ωi,k
, since aΩi(u0− ũ0, u0− ũ0) ≥ 0 and aΩi(u0− ũ0, ũ0) = 0.

The second inequality is a consequence of Lemma 5.1, since u0 and ũ0 have the same
mean value over Ωi by definition of the operator for k ≥ 2.

We now obtain some bounds for the operators introduced in Section 4:

Lemma 5.6. Given u ∈ Vh, let u0 := IHu ∈ V R0 . Then, there exists a constant C
such that

|u0|2H1(Ωi)
≤ Cωi|u|2H1(Ωi)

,

where C is independent of Hi and hi.

Proof. See [6, Lemma 4.4 and Theorem 6.1].

Lemma 5.7. Given u ∈ Vh, let u0 := IHu ∈ V R0 . If k ≥ 2, then there exists a
constant C such that

‖u−RT0 u0‖2L2(Ωi)
≤ CH2

i ωi|u|2H1(Ωi)
,

|RT0 u0|2H1(Ωi)
≤ Cwi|u|2H1(Ωi)

,

where C is independent of Hi and hi.

Proof. Define ũ0 := Π∇Ωi,k
u0. By triangle inequality and (10), we have that

‖u−RT0 u0‖2L2(Ωi)
≤ 5
(
‖u− û‖2L2(Ωi)

+ ‖u0 − û‖2L2(Ωi)
+ ‖ũ0 − u0‖2L2(Ωi)

+ ‖Ihũ0 − ũ0‖2L2(Ωi)
+ ‖g‖2L2(Ωi)

)
,

where û is the mean value of u over Ωi and

g :=
∑

x∈SN∩∂Ωi

(u0 − ũ0)(x)φhx ∈ Vh.

We bound each term of the last sum separately. The first term is easily bounded by
Lemma 5.1. In turn, for the second term we have that

‖u0 − û‖2L2(Ωi)
= ‖IH(u− û)‖2L2(Ωi)

≤ CH2
i ‖u− û‖2L∞(Ωi)

,

and we use then Lemma 5.2 to obtain the required bound. Here, we have used that
IH(u− û) is harmonic in Ωi and that the values (9) are uniformly bounded. For the
third term, we recall that u0 − ũ0 has zero mean value. Thus,

‖ũ0 − u0‖2L2(Ωi)
≤ CH2

i |ũ0 − u0|2H1(Ωi)
,

and we then use Lemma 5.5 and Lemma 5.6.
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Next, the fourth term is bounded by using Lemma 5.3, an inverse inequality for
polynomials, Lemma 5.5 and Lemma 5.6. Finally, we note that g vanishes on all the
elements K that do not intersect ∂Ωi. For the remaining elements,

‖g‖2L2(K) ≤ Ch
2
K‖u0 − ũ0‖2L∞(Ωi)

≤ Ch2
K |ũ0 − u0|2H1(Ωi)

.

By adding all the contributions, we get

‖g‖2L2(Ωi)
≤ CH2

i |ũ0 − u0|2H1(Ωi)
,

and we conclude by using Lemma 5.5 and Lemma 5.6.
In order to deduce the second inequality, by Lemma 5.5 and Lemma 5.6 we note

that it is enough to bound the H1-seminorm of RT0 u0 − ũ0. We have that

|RT0 u0 − ũ0|2H1(Ωi)
≤ |Ihũ0 − ũ0|2H1(Ωi)

+ |g|2H1(Ωi)
.

The first term is easily bounded by |ũ0|2H1(Ωi)
, where we use Lemma 5.3 and an

inverse inequality for polynomials. Finally, since the energy of each basis function φhx
is uniformly bounded, for an element with an edge on ∂Ωi we have that

|g|2H1(K) ≤ Ch
−1
K ‖u0 − ũ0‖2L2(∂K)

≤ Ch−1
K ‖u0 − ũ0‖L2(K)‖u0 − ũ0‖H1(K)

≤ C‖u0 − ũ0‖2H1(K),

where we have used a standard trace estimate; see, e.g., [4, Theorem 1.6.6]. We then
add all the contributions and use Lemma 5.1, Lemma 5.5 and Lemma 5.6 to conclude
the proof of our lemma.

We now present the proof of our main theorem:

Proof. (Theorem 4.1) Given u ∈ Vh, we define

u0 := IHu ∈ V R0 and ui := Ri(I
h(θ̃i(u−RT0 u0))) ∈ Vi,

with θ̃i a typical partition of unity for the overlapping subdomains Ω′i; see [18, Lemma

3.4]. It is straightforward to verify that
∑N
i=0R

T
i ui = u. By [18, Theorem 3.13], if

there exists a constant C0 such that

(14)

N∑
i=0

ãh,i(ui, ui) ≤ C2
0 ah(u, u),

then it holds that κ(Pad) ≤ (NC + 1)C2
0 , where NC is the minimum number of colors

needed to paint the overlapping subdomains Ω′i such that no pair of subdomains of
the same color intersect.

For the sake of completeness we present the main ideas required to estimate C0;
we refer to [6, Theorem 3.1] for more details. From (11), (7) and Lemma 5.7 it is easy
to deduce that

ãh,0(u0, u0) ≤ Cα2

α1
ωah(u, u).(15)

For any element K ∈ Th, we consider a fixed triangular mesh TK of K. Denote
by IK the piecewise-linear interpolant onto TK . Define then θ`i , w

` ∈ H1(Ωi) element
by element by

θ`i |K := IK θ̃i and w`|K := IK(u−RT0 u0).
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It is clear that θ`i satisfies ‖∇θ`i‖L∞(K) ≤ ‖∇θ̃i‖L∞(K) ≤ C/δi. From (12), (7) and
Lemma 5.4 we deduce that

ãh,i(ui, ui) ≤ Cα2

(∫
Ω′

i

ρ|θ`i∇w`|2 dx+

∫
Ω′

i

ρ|w`∇θ`i |2 dx

)
.(16)

We have that |w`|2H1(K) ≤ C‖u − RT0 u0‖2H1(K) by using an inverse inequality. Since

|θ`i | ≤ 1, the first term in the sum of (16) can be bounded then by∫
Ω′

i

ρ |θ`i∇w`|2 dx ≤ C
∑
j∈Ξi

ρj‖u−RT0 u0‖2H1(Ωj) ≤ Cω
∑
j∈Ξi

aΩj (u, u),(17)

where we have used Lemma 5.7. Here, Ξi := {j : Ωj ∩ Ωi 6= ∅}.
In order to estimate the last term in (16), we note that the gradient of θ`i is not

zero only in a neighborhood of ∂Ωi of width maxj∈Ξi
δj . The number of sets Ω′j that

intersect Ωi is uniformly bounded, and therefore we need to consider the contribution
from only one of them. We write w` = w`1 + w`2, with w`1|K := IK(u − u0) and
w`2|K := IK(u0 −RT0 u0) for each element K.

Since ‖w`1‖L∞(Ωi) ≤ C‖u− û‖L∞(Ωi), we have that∫
Ω′

j∩Ωi

ρi |w`1∇θ`i |2 dx ≤ C
ρi
δ2
i

‖u− û‖2L∞(Ωi)
|Ω′j ∩ Ωi| ≤ C

Hi

δi
ωia

Ωi(u, u).(18)

For the remaining term w`2, we cover Ω′j ∩ Ωi with square patches with sides on
the order of δi and note that on the order of Hi/δi of them will suffice. For a square
πk we can bound∫

πk

ρi|w`2∇θ`i |2 dx ≤
C

δ2
i

ρi ‖w`2‖2L2(πk) ≤ Cρi|w
`
2|2H1(πk)

where we have used a Friedrich’s inequality, since w`2 vanishes on ∂Ωi. By adding all
the contributions from the squares πk we can conclude that

(19)

∫
Ω′

i

ρ|w`∇θ`i |2 dx ≤ C
(

1 +
H

δ

)
ω
∑
j∈Ξi

aΩj (u, u).

Thus, by substituting (17) and (19) in (16), we obtain

(20) ãh,i(ui, ui) ≤ C
α2

α1
ω

(
1 +

H

δ

)∑
j∈Ξi

∑
K⊂Ωj

aKh (u, u).

From (15) and (20) we conclude that (14) holds with

C2
0 := C

α2

α1

(
1 +

H

δ

)(
1 + log

H

h

)
,

and our proof is complete.

6. Experimental results. In this section we discuss some implementation de-
tails and present numerical results for our two-level overlapping additive algorithm
with Ω = [0, 1]2.



12 JUAN G. CALVO

6.1. Implementation. We first describe how to compute the operators Π∇Ωi,k
;

see [2] for more details. Consider a subdomain Ωi and the basis of scaled monomials
Mk−2(Ωi). We use the natural ordering for the multi-indices

α1 = (0, 0),α2 = (1, 0),α3 = (0, 1), . . . ,αNM = (0, k − 2),

with NM := k(k−1)/2 the dimension ofMk−2. We also order the degrees of freedom
of V ik and denote by dofp(u) the functional that computes the p-th degree of freedom
of a given function u, 1 ≤ p ≤ NV , with NV := dimV ik . In this way, we define the
canonical basis {ϕp} of V ik such that dofp(ϕq) = δpq. We then define the NV ×NM
matrix D, where its entries are given by

Dpj = dofp(mαj
),

and the NM ×NV matrix B given by

B :=


P0ϕ1 . . . P0ϕNV

(∇mα2
,∇ϕ1)0,Ωi

. . . (∇mα2
,∇ϕNV )0,Ωi

...
. . .

...
(∇mαNM

,∇ϕ1)0,Ωi
. . . (∇mαNM

,∇ϕNV )0,Ωi

 .
By simple linear algebra, it is easy to show that the matrix representation of the
operator Π∇Ωi,k

acting from V ik to Pk(Ωi) in the basis Mk(Ωi) is given by

Π∇∗ := (BD)−1D.

We can compute B by using the formula∫
Ωi

∇mα · ∇ϕp dx = −
∫

Ωi

ϕp∆mα dx +

∫
∂Ωi

ϕp
∂mα
∂n

ds.

The first integral in the sum can be computed with the moments of ϕp since ∆mα ∈
Pk−2. For the last integral, ϕp is a polynomial on the boundary of the subdomain.
Thus, the entries of B can be computed exactly up to machine precision.

Next, we describe how to compute the matrix RT0 . We note that there is one
column for each coarse basis function. Given a subdomain vertex x0, its column
contains the values of the degrees of freedom of RT0 ψ

H
x0

in Vh. The values of ψHx0
at

the nodes on the interface are computed from the definition of ψHx0
. For the interior

nodes of a subdomain Ωi, we compute the degrees of freedom as follows. Consider
the local matrix A(i) written in block form

A(i) =

[
A

(i)
II A

(i)
IB

A
(i)
BI A

(i)
BB

]

where I and B stand for interior and boundary degrees of freedom, respectively.
Similarly, we write the projector matrix Π∇∗ in block form

Π∇∗ = [Π∗,1,Π∗,2],

where the first block Π∗,1 includes the columns related to the nodal degrees of free-
dom, and the second block Π∗,2 has the columns related to the degrees of freedom for
the moments. Similarly, we write the degrees of freedom of ψHx0

as a column vector
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[D1, D2]T , with D2 the unknown moments. Therefore, the coefficients of the polyno-
mial Π∇Ωi,k

ψHx0
on the scaled monomial basis Mk(Ωi) are given by Π∇∗ [D1, D2]T . If

we denote by M the matrix whose columns are the scaled monomials evaluated at
the interior nodes of Ωi and by vB the values of ψHx0

at the nodes of Th on ∂Ωi, when
finding the minimum of aΩi(ψHx0

, ψHx0
) we obtain the linear system with k(k − 1)/2

unknowns given by

(ΠT
∗,2M

TA
(i)
IIMΠ∗,2)D2 = −(vTBA

(i)
BIMΠ∗,2 + ΠT

∗,2M
TA

(i)
IIMΠ∗,1D1).

After solving for D2, the degrees of freedom inside the subdomain are given by

M (Π∗,1D1 + Π∗,2D2) .

Fig. 2: Different approximations for a coarse basis function with square elements and
METIS subdomains (ρ = 1).

We show the time required to assemble the matrix RT0 as a function of H/h in
Figure 3 for different approaches. We consider the case of discrete harmonic extensions
as considered in [9], the case of piecewise-linear approximations studied in [6] and our
operator RT0 for k = 2 and k = 3. The assembling times are obtained by a serial
code implemented in Matlab. For simplicity, we consider square elements and just
four METIS subdomains. The computed time includes the factorization of the local
matrices in the case of discrete harmonic extensions, and the computation of the
local projectors Π∇∗ for our method. In all the cases, the values on the interface are
computed similarly.

0 200 400 600 800 1000
0

10

20

30

40

50

Discrete harmonic

Piecewise linear

Cuadratic

Cubic

Fig. 3: Assembling time (in seconds) for RT0 .
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6.2. Examples. We present some experiments to verify the bound obtained
in Theorem 4.1. We consider different polygonal meshes with square and irregular
subdomains (created with the mesh-partitioner software METIS [15]); see Figure 4
for a triangulation with hexagons and irregular polygons. We estimate the condition
number κ and compute the number of iterations I2 (for k = 2), I3 (for k = 3) and IH
(for the coarse space [9] based on discrete harmonic extensions) for each experiment.
We note that our operator RT0 recovers the bilinear Q1 coarse space if Ωi is a square
and for this reason we only compute I2 when considering square subdomains. For
METIS subdomains we compare the different approximations.

Fig. 4: Solution with virtual elements for hexagonal (left) and irregular (right) meshes
and constant coefficient ρ = 1.

We solve the resulting linear systems using the preconditioned conjugate gradient
method to a relative residual tolerance of 10−6. We compute the right-hand side such
that the exact solution is u(x1, x2) = sin(πx1) sin(πx2) when ρ = 1. When referring
to discontinuous coefficients, we generate random numbers ri ∈ [−3, 3] with a uniform
distribution and assign ρi = 10ri to each individual element inside Ωi.

6.2.1. Triangular mesh. For this case, the VEM corresponds to the first-order
Lagrange space P1 and our analysis provides a new approximation for the coarse
space when using irregular subdomains. We verify that our algorithm is scalable and
observe the logarithmic factor when ρ is discontinuous across the interface; see results
in Table 1. We also confirm the linear growth in the condition number as we increase
H/δ; see Figure 5.

6.2.2. Square mesh. For this case we present two sets of results. First, we
discretize problem (2) with the Q1 standard space of bilinear elements in order to
compare our results to the ones in [9]; see Table 2. In this setting, our coarse space
provides a new approach for irregular subdomains. Second, we solve the discrete
problem (8) obtained by VEM; see Table 3. In the latter case, results are essentially
the same when ρ = 1 and we omit them. We also verify the linear dependence on
H/δ in both cases; see Figure 6.

6.2.3. Hexagonal and irregular polygons. For this set of examples we con-
sider polygonal triangulations with METIS subdomains as in Figure 4. The irregular
mesh is obtained from a Voronoi diagram for a given set of random numbers in the
unit square and contains polygons with different number of edges. We solve the linear
system that arises from Equation (8) and we note that results are quite similar if
we use discrete harmonic extensions or our spaces even for k = 2. We confirm the
scalability in Table 4; see also Table 5 and Figure 7 for the dependence on H/h and
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Table 1: Number of iterations I and condition number κ (in parenthesis) for our
problem with triangular elements and N subdomains. I2, I3 and IH correspond to
k = 2, k = 3 and discrete harmonic extensions, respectively. NV is the dimension of
the coarse space.

Square subd METIS subdomains
NV I2 (κ) NV I2 (κ) I3 (κ) IH (κ)

N Test 1: H/h = 16, H/δ = 4, ρ = 1
122 121 14(6.0) 243 26(10.3) 26(10.2) 25(9.8)
162 225 14(5.9) 447 27(12.9) 26(12.2) 26(12.2)
202 361 13(4.9) 711 30(14.2) 29(13.6) 28(13.3)
242 529 13(4.8) 1054 29(11.7) 27(10.6) 26(10.3)

H/h Test 2: N = 64, H/δ = 4, ρ = 1
8 49 14(4.9) 93 25(10.3) 25(10.3) 25(10.2)

16 49 14(6.1) 93 27(11.6) 26(11.2) 25(10.9)
32 49 15(6.4) 93 29(12.4) 28(11.6) 26(10.9)
64 49 15(6.5) 93 32(13.9) 30(12.1) 27(10.9)

H/h Test 3: N = 64, H/δ = 4, ρ disc
8 49 23(9.0) 93 24(8.6) 24(8.1) 24(8.2)

16 49 24(10.8) 93 27(9.8) 26(8.8) 25(8.3)
32 49 25(13.0) 93 30(12.0) 27(9.7) 26(8.2)
64 49 27(15.0) 93 35(15.9) 29(11.4) 26(8.2)
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15
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35
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METIS, harmonic

Fig. 5: Condition number as a function of H/δ for a triangular mesh with N = 64,
H/h = 32, ρ = 1 (left) and ρ discontinuous (right). The stiffness matrix has 66049
degrees of freedom, NV is 49 and 95 for square and METIS subdomains, respectively.

H/δ respectively.

6.2.4. Discontinuous coefficients across the interface. We conclude with
two experiments where we have discontinuities inside the subdomains, even though our
theory does not cover these cases. We consider first a distribution ρC as in Figure 8a,
where four channels go trough the subdomains. We then consider the extreme case of
different values ρK for each element; see Figure 8b. Results are presented in Table 6,
where we have used a square mesh and METIS subdomains.



16 JUAN G. CALVO

Table 2: Number of iterations I and condition number κ (in parenthesis) for our
problem with bilinear elements (square mesh) and N subdomains. I2, I3 and IH
correspond to k = 2, k = 3 and discrete harmonic extensions, respectively. NV is the
dimension of the coarse space.

Square subd METIS subdomains
NV I2 (κ) NV I2 (κ) I3 (κ) IH (κ)

N Test 1: H/h = 16, H/δ = 4, ρ = 1
122 121 13(6.0) 241 22(7.8) 22(7.8) 21(7.8)
162 225 12(6.5) 450 22(7.9) 22(7.7) 21(7.5)
202 361 12(6.7) 721 23(7.7) 22(7.5) 21(7.2)
242 529 12(6.9) 1058 23(7.7) 22(7.7) 22(7.4)

H/h Test 2: N = 64, H/δ = 8, ρ = 1
8 49 14(10.9) 96 21(8.4) 21(8.5) 21(8.7)

16 49 15(10.6) 96 23(9.0) 22(9.2) 22(9.1)
32 49 16(9.7) 96 25(10.2) 24(9.7) 23(9.1)
64 49 17(8.3) 96 27(11.7) 26(10.5) 23(9.1)

H/h Test 3: N = 64, H/δ = 8, ρ disc
8 49 26(12.6) 96 27(9.7) 26(9.5) 27(9.4)

16 49 27(15.2) 96 28(10.2) 27(9.8) 27(9.7)
32 49 29(17.5) 96 31(12.2) 30(10.4) 28(9.9)
64 49 30(20.4) 96 35(19.5) 32(12.2) 29(10.0)

Table 3: Number of iterations I and condition number κ (in parenthesis) for our
problem with VEM (square mesh) and N subdomains. I2, I3 and IH correspond to
k = 2, k = 3 and discrete harmonic extensions, respectively. NV is the dimension of
the coarse space.

Square subd METIS subdomains
NV I2 (κ) NV I2 (κ) I3 (κ) IH (κ)

N Test 1: H/h = 16, H/δ = 4, ρ disc
122 121 29(12.3) 241 27(9.9) 26(8.9) 26(8.7)
162 225 30(12.8) 450 27(9.5) 26(8.7) 25(7.9)
202 361 32(13.5) 721 29(10.5) 26(8.5) 25(7.9)
242 529 33(14.4) 1058 31(11.1) 29(10.2) 28(9.9)

H/h Test 2: N = 64, H/δ = 8, ρ disc
8 49 23(11.4) 96 27(9.7) 27(9.5) 27(9.5)

16 49 24(14.7) 96 28(10.2) 27(9.7) 27(9.7)
32 49 26(17.6) 96 31(12.2) 30(10.4) 28(9.9)
64 49 26(20.4) 96 35(19.5) 32(12.2) 29(10.0)
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Fig. 6: Condition number as a function of H/δ for a square mesh discretized with
VEM. N = 64, H/h = 32, ρ = 1 (left) and ρ discontinuous (right). The stiffness ma-
trix has 66049 degrees of freedom, NV is 49 and 96 for square and METIS subdomains,
respectively.

Table 4: Number of iterations and condition number (in parenthesis) with hexagonal
and irregular elements and METIS subdomains. NV is the dimension of the coarse
space, N the number of subdomains, k = 2, H/h ≈ 8 and H/δ ≈ 4.

Hexagonal elements Irregular elements
ρ = 1 ρ disc ρ = 1 ρ disc

N NV I2 (κ) I2 (κ) NV I2 (κ) I2 (κ)

122 239 20(7.1) 24(7.8) 203 24(9.1) 26(10.3)
162 450 20(6.1) 25(8.4) 398 23(8.9) 28(10.0)
202 723 20(6.2) 24(7.3) 580 25(9.9) 32(13.3)
242 1064 21(7.2) 26(8.0) 983 36(10.0) 33(13.0)

Table 5: Number of iterations and condition number (in parenthesis) with hexagonal
and irregular elements and METIS subdomains. NV is the dimension of the coarse
space, k = 3, N = 16 and H/δ ≈ 4.

Hexagonal elements Irregular elements
ρ = 1 ρ disc ρ = 1 ρ disc

H/h NV I3 (κ) I3 (κ) NV I3 (κ) I (κ)

8 19 16(4.5) 17(4.6) 18 20(7.1) 22(6.9)
16 18 17(5.3) 19(5.2) 19 23(8.7) 26(8.9)
32 18 21(6.7) 23(6.6) 18 27(10.3) 27(10.2)
64 18 21(6.2) 22(7.2) 18 29(11.0) 30(11.3)
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Fig. 7: Condition number as a function of H/δ for different polygonal meshes dis-
cretized with VEM. N = 16, H/h = 32, ρ = 1 (left) and ρ discontinuous (right).

(a) ρC (b) ρK

Fig. 8: Two discontinuous coefficients ρ considered in Subsection 6.2.4; see results in
Table 6a.

Table 6: Number of iterations and condition number (in parenthesis) for our problem
with VEM (square elements), METIS subdomains and ρ discontinuous as in Figure 8.

(a) N = 36, H/δ ≈ 3

ρC ρK
H/h I3 (κ) I3 (κ)

8 27(51.9) 43(87.9)
16 30(85.3) 47(101)
32 32(125) 48(109)
64 34(150) 50(112)

(b) H/h ≈ 16, H/δ ≈ 3

ρC ρK
N I3 (κ) I3 (κ)

122 32(33.7) 74(106)
162 35(20.8) 92(155)
202 39(18.8) 99(180)
242 37(14.9) 102(211)
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7. Conclusions. In this paper we have introduced a new operator RT0 : V R0 →
Vh for approximating virtual coarse functions that belong to the reduced space V R0 .
This approach is particularly useful in the presence of irregular subdomains and relies
on the construction of a projector operator into the space of polynomials of a pre-
scribed degree k ≥ 2. Our approach is faster than previous studies based on discrete
harmonic extensions as shown in Figure 3, and provides similar number of iterations
and estimates for the condition number of the preconditioned system even for k = 2,
as confirmed in Section 6.

We have obtained a theoretical upper bound for the condition number of the
preconditioned system by using a two-level overlapping Schwarz method, where we
have used VEM for the discretization of problem (2). Results are competitive and
independent of jumps of the coefficient across the subdomains, and the method allows
to handle irregular subdomains as the ones obtained by mesh partitioners. We have
also tested cases not covered by our theory in Subsection 6.2.4, where we have dis-
continuities inside the subdomains. In such cases, a reasonable number of iterations
is obtained even for extreme cases of discontinuities and jumps across the elements.

REFERENCES

[1] L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini, and A. Russo,
Basic principles of virtual element methods, Math. Models Methods Appl. Sci., 23 (2013),
pp. 199–214.

[2] L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo, The hitchhiker’s guide to the
virtual element method, Math. Models Methods Appl. Sci., 24 (2014), pp. 1541–1573.

[3] J. H. Bramble and S. R. Hilbert, Estimation of linear functionals on Sobolev spaces with ap-
plication to Fourier transforms and spline interpolation, SIAM J. Numer. Anal., 7 (1970),
pp. 112–124.

[4] S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods, Texts in
Applied Mathematics, Springer New York, 2007.
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