
We have seen that the wavefunctions of electrons are completely anti-
symmetric. By this statement we mean that under the exchange of any two
particles’ coordinates and spins the wavefunction changes sign. Inclusion of
the spin degree of freedom complicates the matters a little bit, but the dis-
cussion is fairly simple for two electrons. When the total spin is conserved
eigenfunctions of the Hamiltonian can also be chosen as the eigenfunctions
of the total spin. More precisely, we can choose the energy eigenfunctions
as the common eigenstates of H, S2 and Sz. In that case the eigenfunctions
will be

Ψ(1, 2) = φ(r1, r2)χspin

where φ is the part of the wavefunction describing positions of the two elec-
trons and χspin is the part that describe the “spin motion” of the electrons.
Since that last part is chosen as an eigenstate of S2 and Sz, it can be written
as

χspin =| S = 1,ms〉 =


|↑↑〉 ms = 1,
1√
2
(|↑↓〉+ |↓↑〉) ms = 0,

|↓↓〉 ms = −1,

and

χspin =| S = 0,ms = 0〉 =
1√
2

(|↑↓〉− |↓↑〉) .

Since for S = 1 case (triplet) χspin is symmetric under the exchange of par-
ticles’ spin, the space part of the wavefunction should be antisymmetric:

φtriplet(r1, r2) = −φtriplet(r2, r1) .

For the S = 0 case (singlet), spin part is antisymmetric and as a result the
space part should be symmetric:

φsinglet(r1, r2) = φsinglet(r2, r1) .

We should add that this simplification occurs only if the total spin, S =
S1 +S2, is a conserved quantity (i.e., it commutes with the Hamiltonian). In
real atoms and molecules, this is not the case due to the spin-orbit coupling.
Only the total angular momentum is conserved and not the total spin. As a
result, true eigenstates of realistic Hamiltonians will be a mixture of singlet
and triplet states, i.e., a very complicated wavefunction where spin and space
are “correlated”.
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For the case of three or more particles, the breakdown of the wavefunc-
tion into a space and spin part will be quite complicated, even when the
total spin is conserved. You may try to see this yourself for the case of three
electrons with total spin quantum number S = 1/2. If the complete an-
tisymmetry of the whole wavefunction is imposed, no wavefunction can be
written as a product of a space part and a spin part. This is a result of the
non-commutativeness of the different exchange operators for three or more
particles. As a result in some cases (e.g., when S = 1/2 restriction is im-
posed) you cannot find common eigenfunctions of all the exchange operators.

1 Slater Determinants

Therefore a general method is needed to construct electron wavefunctions
which are completely antisymmetric in all cases. For this purpose, we can
use the complete antisymmetry property of determinants. Since interchang-
ing any two rows (or columns) of a determinant changes the sign of the
determinant, completely antisymmetric wavefunctions can be expressed in
the form of a determinant.

Let us consider the case of N electrons. Let ϕ1, . . . , ϕN be some arbitrary
“one-particle states” of electrons. By a “one-particle state” we mean the
spin and space part of a wavefunction of single electron. So, ϕi might be
ψ100(r) |↑〉, or ψ21−1(r, θ, φ) 1√

2
(|↑〉− |↓〉). They do not even need to be a

product of spin and space parts, so 1√
3
(ψ100(r) |↑〉 +

√
2ψ211 |↓〉) is possible

as well.
We will also have a short-hand notation for the particle coordinates. The

space and spin coordinates of the ith particle will be denoted by the single
number i. We haven’t been very precise in what we mean by “spin coordi-
nate” of a particle, since it is fairly obvious. So by ϕj(i) we mean that the ith

particle’s space and spin is in the one-particle state ϕj. Since exchange should
change both the space coordinate and the spin coordinate, this short-hand
notation is quite useful in this case.

For the state where these N electrons are in these N one-particle states,
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the wavefunction of the whole system can be written as

Ψ(1, 2, . . . , N) =

∣∣∣∣∣∣∣∣∣
ϕ1(1) ϕ1(2) . . . ϕ1(N)
ϕ2(1) ϕ2(2) . . . ϕ2(N)

...
...

. . .
...

ϕN(1) ϕN(2) . . . ϕN(N)

∣∣∣∣∣∣∣∣∣
where we have ignored the normalization factor. This expression is called as
the Slater determinant of N states ϕ1, . . . , ϕN . As can be seen, exchanging
the coordinates of ith and jth particles’ coordinates is equivalent to inter-
changing ith and jth columns of the determinant. As a result, exchange of
any two particles’ coordinates changes the sign of the wavefunction of the
system Ψ. We have managed to obtain a totally anti-symmetric wavefunc-
tion. Although the equation does not show us well, there is a price that
we pay for this: Ψ may not be chosen as an eigenstate of some operators
(like S2). For the time being, we will postpone the discussion of the physical
meaning of the state Ψ.

We should also note that, since the determinant is also totally antisym-
metric rowwise, interchanging the places of any two one-particle states will
change the sign of Ψ. One implication of this property is that when you have
chosen a set ϕ1, . . . , ϕN such that two states are the same, e.g., ϕi = ϕj, then
the wavefunction of the system is identically zero. This is because, when you
interchange the positions of ith and jth states, Ψ should remain the same
since the one-particle-state set is unchanged. On the other hand, it should
change sign because of the antisymmetry of the determinant. Last two sen-
tences are consistent only if Ψ is identically zero. Since an identically zero
wavefunction is not possible in quantum mechanics, we should have distinct
one-particle states in the set ϕ1, . . . , ϕN . This is the famous “Pauli exclusion
principle”. No two electrons in a system can be in the same one-particle
state. Although we have shown this only for Slater determinants, we can
extend this statement for other types of system wavefunctions as well. Note
that in the statement “one-particle state” refers to both space and spin parts.

1.1 Choosing one-particle states

We have said that if two one-particle states are the same, the determinant
is identically zero, since in that case two rows in the determinant will be
exactly identical for all possible values of the particle coordinates. There
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are other properties of the determinants which will enable us to do further
simplifications. For example, multiplying a row by a constant and adding
to another row will not change the value of a determinant. As a result,
for example we can replace the one-particle state ϕ1 with ϕ1 + aϕ2 and the
system’s wavefunction Ψ will remain the same. Since, only the system’s
wavefunction is relevant for the physical properties of the system, we have
some freedom in choosing one-particle states.

First of all we can extend the “Pauli exclusion principle” a little bit. If the
one-particle state set ϕ1, . . . , ϕN is linearly dependent (that means one state
can be written as a linear combination of others, e.g., ϕ1 = aϕ2 + bϕ3) the Ψ
is identically zero. We have to make sure that the set ϕ1, . . . , ϕN is formed
by N independent one-particle states. Their being distinct is not enough.
Linear independence of the N one-particle states is enough to guarantee that
Ψ is not identically zero. Proof of this statement is left to the reader.

There is still some freedom in choosing the one-particle states, and it is
convenient to take advantage of this. First of all, we need to explore how
much freedom we have. We claim that for a given set of one-particle states
ϕ1, . . . , ϕN , by taking any linear combinations of this set and forming any
other N linearly independent states, say ϕ′1, . . . , ϕ

′
N , we won’t change Ψ. Let

us be a little bit more specific. Let us define the new one-particle states ϕ′i
as

ϕ′i =
N∑

j=1

Aijϕj , (1)

where Aij are some complex numbers. The new set ϕ′i is linearly independent
only if the determinant of the matrix A is non-zero. In this case the old set
can be written in terms of the new set as well.

ϕi =
N∑

j=1

(A−1)ijϕ
′
j .

Now, what happens when we form the Slater determinant from the new set
ϕ′i? To see this clearly, we need to re-express Eq. (1) in matrix notation:

ϕ′1
ϕ′2
...
ϕ′N

 =


A11 A12 . . . A1N

A21 A22 . . . A2N
...

...
. . .

...
AN1 AN2 . . . ANN



ϕ1

ϕ2
...
ϕN

 .
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It is fairly straightforward to change this relationship to a relationship be-
tween Slater determinants. First, in matrix form

ϕ′1(1) . . . ϕ′1(N)
ϕ′2(1) . . . ϕ′2(N)

...
. . .

...
ϕ′N(1) . . . ϕ′N(N)

 =


A11 . . . A1N

A21 . . . A2N
...
. . .

...
AN1 . . . ANN



ϕ1(1) . . . ϕ1(N)
ϕ2(1) . . . ϕ2(N)

...
. . .

...
ϕN(1) . . . ϕN(N)


Since the determinant of a product of matrices is equal to the product of
determinants we have

Ψ′(1, 2, . . . , N) = det(A)Ψ(1, 2, . . . , N) ,

where Ψ′ is the wavefunction of the system prepared by the new set of one-
particle states ϕ′1, . . . , ϕ

′
N and Ψ is the one that is prepared by the old set

ϕ1, . . . , ϕN . Therefore the wavefunctions of the system prepared by the two
sets differ only by a normalization factor. Since, that means the same ex-
pectation values for physical observables (if proper normalization is carried
out), we claim that the “same” wavefunction is obtained in both cases.

As a result, we see that in the choice of the one-particle states ϕ1, . . . , ϕN ,
neither order nor the particular linear combination is important. As a con-
crete example, a Slater determinant constructed from the states 1s-spin-up
and 1s-spin-down is not different than the one constructed from 1s-spin-x-up
and 1s-spin-x-down. There is no physical way of distinguishing the way the
determinant is constructed.

Because of this, we choose the one-particle states as an orthonormal set.
Gram-Schmidt process enables us to do this for any independent set of N
states. As a result we will assume that the relations

〈ϕi | ϕj〉 = δij, i, j = 1, . . . , N

are satisfied. This orthonormality property that we require will be very useful
in evaluating expectation values of observables. Even with that restriction,
there is some arbitrariness in the choice of the particular states of the set.
We can still take linear combinations

ϕ′i =
N∑

j=1

Aijϕj ,
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and if the matrix-A is unitary, the new set will be orthonormal as well. This
kind of arbitrariness cannot be eliminated further. At this point, the user
should decide which particular linear combinations are useful. So, if the two
electron system mentioned above is in a magnetic field along x-axis, then you
may want to choose your states as 1s-spin-x-up and 1s-spin-x-down.

1.2 Normalization

Before going further we need to normalize the system’s wavefunction. We
need to keep in mind that in evaluating 〈Ψ | Ψ〉 integrals over particles’
coordinates should be unlimited. This is a choice that we have made at the
beginning when we were discussing the wavefunctions of identical particles.
For the case of a Slater determinant formed by N orthonormal one-particle
states, it is useful to have an expanded form of the determinants. Expanding
the determinant is easy for N = 2 and perhaps for N = 3, but for larger N
values, it becomes increasingly cumbersome to write the expansion. For this
reason we need a shortened way of representing the determinant.

First we note that the determinant will be a sum of terms that are ob-
tained by multiplying N elements of the matrix coming from different rows
and different columns. As a result, the first few terms in the expansion of Ψ
will be

Ψ(1, 2, . . . , N) = ϕ1(1)ϕ2(2)ϕ3(3) · · ·ϕN(N)

−ϕ1(2)ϕ2(1)ϕ3(3) · · ·ϕN(N) + . . .

There will be N ! terms in the expansion which will be formed by terms like

±ϕi1(1)ϕi2(2) · · ·ϕiN (N)

where i1, i2, . . . , iN are distinct numbers from the set 1, 2, . . . , N . We say
that i1, i2, . . . , iN is a permutation of 1, 2, . . . , N . Since there are N ! different
permutations of an N element set, we have N ! terms in the expansion of the
determinant. The only problem is to decide whether the term should have a
+ or − sign.

A property that we should keep in mind is that when we have a permuta-
tion and we exchange the places of two labels, the new permutation should
have the opposite sign. Since the “identity” permutation 12 . . . N should
have + sign, you can find the sign of any permutation starting from the
identity permutation. As a definition, a permutation which can be obtained
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from the identity permutation by an even number of exchanges is called an
even permutation and should have + sign. On the other hand, a permutation
which can be obtained from the identity permutation by an odd number of
exchanges is called an odd permutation and should have − sign.

There is a faster way of finding the sign of a permutation which might
be useful. When you write down the permuted labels, you count the number
of the pairs which are out of order. Or, in other words, for each label in the
list you count the number of labels which came before but was larger than
the particular label you are considering. If the sum of all of these numbers
are even, then the permutation is even and similarly for the odd case. For
example in the permutation 143265 of six labels, the sum of the numbers
mentioned above is 0 + 0 + 1 + 2 + 0 + 1 = 4, as a result the permutation is
even.

Denoting a permutation by P , its labels by P1, P2, . . . , PN and its sign
by (−)P we can express the Slater determinant as:

Ψ(1, 2, . . . , N) =
∑

P

(−)PϕP1(1)ϕP2(2) · · ·ϕPN(N) .

Note that each term in this summation is normalized and any two different
terms are orthogonal. This is because the inner product of the term with
permutation P and the one with permutation Q is

(−)P (−)Q〈ϕP1(1) · · ·ϕPN(N) | ϕQ1(1) · · ·ϕQN(N)〉 =

(−)P (−)QδP1,Q1 · · · δPN,QN .

Since the Slater determinant is a sum of N ! orthonormal terms, the inner
product of Ψ with itself is simly

〈Ψ | Ψ〉 = N ! .

Hence, including the normalization, the Slater determinant of N orthonormal
one-particle states can be written as

Ψ(1, 2, . . . , N) =
1√
N !

∣∣∣∣∣∣∣∣∣
ϕ1(1) ϕ1(2) . . . ϕ1(N)
ϕ2(1) ϕ2(2) . . . ϕ2(N)

...
...

. . .
...

ϕN(1) ϕN(2) . . . ϕN(N)

∣∣∣∣∣∣∣∣∣ (2)

This is the form that we will use when evaluating the expectation values.
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1.3 Expectation values single-particle observables

We start with the expectation values of single-particle observables. Consider
an arbitrary operator A which expresses a property of only one particle. For
example, A might be a component of position (x), of momentum (py) or of
spin (Sz). We will use the notation A(i) to show that the operator depends
on ith particle’s properties. So, if A(1) = x1, then A(2) = x2, etc. Since the
wavefunction of the system Ψ is quite complicated, we need to find a simple
expression for the expectation value of A(i).

The first thing that we should note is that the expectation value of A
for particle-1 should not be different from the expectation value of A for any
other particle. i.e.,

〈A(1)〉 = 〈Ψ | A(1) | Ψ〉 = 〈A(2)〉 = . . . = 〈A(N)〉 .

This is not a result of the particular properties of the Slater determinants. It
is due to the identicalness of the electrons. Same relations should hold for an
arbitrary totally antisymmetric wavefunction as well. It just expresses the
fact that there is no physical way of distinguishing particles in your system.

When you try to calculate the expectation value of A(1), you will find
the expression

〈A(1)〉 =
1

N !

∑
P,Q

(−)P (−)Q〈ϕP1(1) | A(1) | ϕQ1(1)〉δP2,Q2 · · · δPN,QN

It is not difficult to see that in the summation the permutations P and Q
need to be same if a non-zero result should be found. Nor it is difficult to
sum over most of the terms. The final result for the expectation value is:

〈Ψ | A(1) | Ψ〉 =
1

N

N∑
i=1

〈ϕi(1) | A(1) | ϕi(1)〉

In the terms within the summation we have expectation values of A in each
of the N one-particle states. In here, there is no need to keep the label-1,
which denotes space and spin coordinates of the first particle. As a result,
we can rewrite the last expression as

〈Ψ | A(1) | Ψ〉 =
1

N

N∑
i=1

〈ϕi | A | ϕi〉
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In these kinds of expressions, care is needed to distinguish in which state the
expectation value is taken. On the left, we have the expectation value in the
state of the system (the physically relevant ones), and on the right we have
the expectation values in the one-particle states used to prepare the Slater
determinant ( physically inaccessible ones).

The last expression can be utilized to calculate the expectation values of
single-particle operators. But it has a clear physical meaning as well. It just
expresses the fact that the particle-1 sees an equal probability of occupying
each of the N states. As a result, property-A of the particle-1 will be the
arithmetic average of the properties in each state.

Finally, one is rarely interested in a property of a single particle in an
N -particle system. For example, consider the case where A(1) denotes the
electric field created by particle-1 at a certain point in space. Obviously,
electric field at that certain point will not be created by the first particle only.
So, for that physical quantity we should be interested in A(1) +A(2) + . . .+
A(N) as the electric field created by all of the N electrons. This is a general
property of systems composed of identical particles. Any physically relevant
observables should remain the same under particle exchanges. Although you
can form observables (operators) which does not have this property (like
A(1)), and evaluate their expectation values, they cannot be measured by a
physical apparatus. Now the expectation value of A(1) +A(2) + . . .+A(N)
can be expressed as

〈Ψ | {A(1) + A(2) + . . .+ A(N)} | Ψ〉 =

〈ϕ1 | A | ϕ1〉 + 〈ϕ2 | A | ϕ2〉 + . . .+ 〈ϕN | A | ϕN〉

So, the sum of a property over particles is equal to the sum of the same
property over one-particle states.

1.4 Expectation values of two-particle observables

The simplification obtained above is not present for observables depending on
two particles. Such a property might be the Coulomb interaction potential
between electrons

A(1, 2) =
e2

| r1 − r2 |
,

(which is usually the case) or it might be operators like A(1, 2) = x1py2 +
x2py1. You should make sure that the operator is symmetric under the ex-
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change of two coordinates since they have to be physically relevant. [In prin-
ciple you may evaluate the expectation values of the operators like A(1, 2) =
x1py2, but such operators will never arise in actual problems. You need to
extend the expression given below to deal with those kinds of operators.]

Now, the expectation value of A(1, 2) can be expressed as,

〈Ψ | A(1, 2) | Ψ〉 =
1

N !

∑
P,Q

(−)P (−)Q〈ϕP1ϕP2 | A | ϕQ1ϕQ2〉δP3,Q3 · · · δPN,QN .

In this case, if a term in the summation is nonzero, either P and Q should
be the same, or they should differ by an exchange of first and second labels.
Because of this, the expectation value can be expressed as

〈Ψ | A(1, 2) | Ψ〉 =
2

N(N − 1)

∑
i<j

〈ϕiϕj | A | ϕiϕj〉 − 〈ϕjϕi | A | ϕiϕj〉. (3)

Here we needed to use a short-hand notation for the two-particle integrals on
the left hand side. This notation is quite widely used. When the one-particle
states do not include the spin degree of freedom, the definition is

〈φψ | A | χξ〉 =

∫ ∫
φ(r1)

∗ψ(r2)
∗A(1, 2)χ(r1)ξ(r2)dr1dr2 .

We don’t dare to write the right hand side when the spin is included, espe-
cially when A(1, 2) includes spin operators. But how the spin part is handled
should be obvious. In 〈φψ | A | χξ〉, the first states on the bra and ket sides
(φ and χ) have the same particle’s coordinate. And similarly for the second
states.

In the first term in the summation of Eq. (3), the states on the bra and
the ket sides are the same and they are in the same order. Thus, this first
term is the same thing as what we mean by “expectation value”. However,
in the second term, 〈ϕjϕi | A | ϕiϕj〉, the order of the states are different in
the bra and ket sides. For this reason, these terms (and similar terms that
will arise later) are called exchange terms. Exchange terms do not have a
classical counterpart. To see why, consider the case where A is the Coulomb
potential energy of two electrons. In this case, the first terms give (ignoring
again the spin parts)

〈ϕiϕj | A | ϕiϕj〉 =

∫ ∫
| ϕi(r1) |2| ϕj(r2) |2

e2

| r1 − r2 |
dr1dr2 ,
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which can be interpreted as the expectation value of Coulomb energy when
the first particle is in the state ϕi and the second particle is in the state ϕj.
On the other hand, the exchange term,

〈ϕjϕi | A | ϕiϕj〉 =

∫ ∫
ϕi(r1)

∗ϕi(r2)ϕj(r2)
∗ϕj(r1)

e2

| r1 − r2 |
dr1dr2 ,

is something else. We cannot give a nice physical meaning to it immediately.
However, the exchange terms have a contribution to the Coulomb energy of
two particles in the N particle system. Where did this term come from?
Basic interpretation goes something like this: The Coulomb interaction be-
tween the particles can cause the particles to exchange their places. (Is this
physically meaningful?) This issue does not arise for distinguishable par-
ticles. Only for identical particles such a path is open. Presence of such
an exchange processes, then, affects the expectation values of two-particle
observables. The meaning of this last interpretation is left to the reader.
But, mathematically, exchange terms are present and we have to use them
to obtain the physically relevant results.

1.5 The question of independence

We say that two statistical quantities A and B are uncorrelated if the statis-
tical properties of A and B are independent of each other. (Distribution of
A is not dependent on which value we find for B.) In terms of averages this
implies that 〈AB〉 = 〈A〉〈B〉. That property should be valid for any property
of A and B, so we should have 〈f(A)g(B)〉 = 〈f(A)〉〈g(B)〉 for all functions
f and g. For the case of particles, we say that two particles are independent
(or they are uncorrelated) if 〈A(1)B(2)〉 = 〈A(1)〉〈B(2)〉 for all observables
A and B. This is only possible if the wavefunction of the whole system is a
product of the wavefunctions of two particles:

Ψ(1, 2) = ϕ1(1)ϕ2(2) .

Only in that case we can say that any property of particle-1 can be measured
by disregarding particle-2. Any property of particle-1 is independent of what
the second particle is doing.

In classical mechanics we will have independent particles if the particles
are not interacting either directly or indirectly. (If 1 interacts with 3 and 2
interacts with 3, then 1 and 2 interacts indirectly although there may not be
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a direct interaction between them.) In quantum mechanics, the absence of
the interaction is not enough. You also need to have a wavefunction which
is uncorrelated.

Independence issue may also arise in the investigation of an isolated sys-
tem. In that case, we expect that any property of the system is independent
of what is going on in the rest of the universe. In such a case, what we mean
by independence, in terms of wavefunctions, is, ΨUniverse = ψsystemψrest. As a
result, any property of the isolated system, evaluated in the full wavefunction
of the universe, ΨUniverse, will be the same as the one calculated in the wave-
function of the system only (ψsystem), ignoring the rest of the universe. This
is what we have been doing when we were solving the Hydrogen atom prob-
lem. In principle, though, we might have correlations between the particular
hydrogen atom and the rest of the universe.

Now, for the case of identical fermions, the wavefunctions of many-particle
systems cannot be written as a simple product. The best we can do is to
write them in Slater determinants. As a result, identical particles can never
be independent by the definition given above. This is actually troublesome,
since if we want to investigate the behavior of an electron in a particular
hydrogen atom, we cannot claim that this electron is behaving independently
from what the electrons on the Moon are doing!

It is important that we settle the questions that arise in the paragraph
above. When we claim “independence” we have to separate the (direct or
indirect) interaction effects from the effects arising from indistinguishability.
You can claim that your electron is independent of the other electrons in the
Moon because the Coulomb potentials of the Moon’s electrons are negligible
at the location of your hydrogen atom. This is OK. On the other hand, the
most troublesome is the effects caused by identicalness. In that case, it seems
that the relevant concept that has to to used is the “exchange effects”. Since
the probability of your electron exchanging places with one of the electrons
on the Moon is small, the “exchange processes” cause a negligible change in
what you are measuring.

In any case, we need a separate definition of independence for identical
particles. Since the Slater determinant is the simplest expression for the
many-body wavefunction of many fermions, we will say that the fermions are
independent if their wavefunction is a Slater determinant. There is a good
reason for this definition. If the N particles in a system are not interacting,
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then the Hamiltonian of the system can be written as

H = h(1) + h(2) + . . .+ h(N)

where h is a one-particle hermitian operator that can be called as one-particle
Hamiltonian. For the case of N non-interacting electrons in an atom, h is

h(i) =
p2

i

2m
− Ze2

ri

,

ignoring also the spin-orbit coupling. Now, if ϕi are the eigenstates of h with
eigenvalue εi, i.e.,

hϕi = εiϕi ,

then the complete set of eigenstates of H are the Slater determinants of any
N distinct subsets of ϕ:

Ψi1,i2,...,iN =
1√
N !

∣∣∣∣∣∣∣
ϕi1(1) . . . ϕi1(N)

...
. . .

...
ϕiN (1) . . . ϕiN (N)

∣∣∣∣∣∣∣
HΨi1,i2,...,iN = Ei1,i2,...,iN Ψi1,i2,...,iN = (εi1 + . . .+ εiN )Ψi1,i2,...,iN .

Since, the eigenfunctions of a noninteracting system of identical particles is
of the form of a Slater determinant, and since noninteracting means indepen-
dent (at least classically), then all Slater determinants describe independent
identical particles.

A Slater determinant is the most independent wavefunction possible for
identical particles. We obviously do not have 〈A(1)B(2)〉 = 〈A(1)〉〈B(2)〉 for
Slater determinants. Hence the particles are always correlated. And this is
the minimum amount of correlation that you will get for identical particles.

When the particles are interacting, eigenfunctions of the Hamiltonian will
not be of the form of Slater determinants. Hence, writing down an expression
for the eigenstates of the Hamiltonian will be quite difficult. In those cases,
we might take linear combinations of different Slater determinants. Even in
this case, there will be too many possible wavefunctions that will make the
life difficult for you. As an example, consider the Lithium atom with three
electrons. You may want to use only the 1s, 2s and the 2p states to write
down a wavefunction which will have a “dependent” electron character. That
implies that there are two 1s, two 2s and six 2p states which will be available
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in forming possible Slater determinants. Three element subsets of these ten
one-particle states can be formed in 120 possible ways. Hence if you don’t
have a way of radically cutting down this number to reasonable levels (for
example by using conservation of Sz and Lz) then you will have too many
terms to deal with. This is the main difficulty in many-particle problems.
There are too many possible states for the wavefunction of the system (which
grows exponentially with the size of the system). As a result, you cannot
form wavefunctions where the state is sufficiently far away from independent
particle case. Even if you do form, you cannot evaluate expectation values.

2 Ground State of Helium

Now we pass on to realistic problems. Consider the states of the Helium
atom. Ignoring the spin-orbit coupling, the Hamiltonian will be

H =
p2

1

2m
+

p2
2

2m
− Ze2

r1
− Ze2

r1
+

e2

| r1 − r2 |
,

where Z is the number of protons in the nucleus (Z = 2 for Helium). We
can use the shorthand to write this Hamiltonian

H = T (1) + T (2) + V (1) + V (2) + Vee(1, 2) ,

where T denotes the kinetic energy operator, V denotes the Coulomb inter-
action energy with the nucleus and Vee is the electron-electron interaction
energy. This last term is the one that makes this problem unsolvable. With
the use of variational theory and heavy use of computers, the energy levels
of the Helium atom can be calculated with high accuracy. In here, we just
want to obtain a suitable approximate expression for the ground state.

Since the total spin is conserved, we can label the eigenstates of H as
spin-singlet and spin-triplets. The ground state is a spin singlet state. As
a simple first approximation we can ignore the Vee term in the Hamiltonian
and write the energy eigenfunctions as Slater determinants. Presence of spin
creates some minor problems in here but at least for the ground state we
have

Ψ(1, 2) = ψ100(r1)ψ100(r2)
1√
2

(|↑↓〉− |↓↑〉)

=
1√
2!

∣∣∣∣ ψ100(r1) |↑〉1 ψ100(r2) |↑〉2
ψ100(r1) |↓〉1 ψ100(r2) |↓〉2

∣∣∣∣
14



If Vee term is ignored this state will have the energy eigenvalue −2Z2 Ryd-
bergs. Now, the addition of the Vee term will definitely increase this value,
since Vee is a positive operator. So, at this point, we know that the ground
state energy of the Helium atom is larger than −2Z2 = −8 Rydbergs.

We can use the variational theory to come up with a good value of the
ground state energy. The only thing that we know about the exact ground
state wavefunction is that it is of the form

Ψ(1, 2) = φ(r1, r2)
1√
2

(|↑↓〉− |↓↑〉)

where φ(r1, r2) is a symmetric function. It should also have the s-symmetry
under rotations. We just need to come up with a good wavefunction having
same properties.

In here we will use

Ψ(1, 2) = φ(r1)φ(r2)
1√
2

(|↑↓〉− |↓↑〉)

where φ(r) = N exp(−βr) as a trial wavefunction. We have chosen φ as a
1s-like wavefunction with a variable parameter β. At this point we need to
calculate the expectation value of H, and choose the best possible value of
β. You have to convince yourselves that, Ψ is antisymmetric, has total spin
0, and has the s-symmetry. Verify the following

N =
β3/2

√
π

,

〈T (1) + T (2)〉 = 2〈φ | T | φ〉 = 2
h̄2β2

2m
,

〈V (1) + V (2)〉 = 2〈φ | V | φ〉 = −2Ze2β .

Now the main problem is the calculation of 〈Vee〉. Just note that spin
parts are nicely eliminated and therefore there is no exchange term in here.
The integral that we need to evaluate is

〈Vee〉 = N4

∫ ∫
e2

| r1 − r2 |
e−2β(r1+r2)d3r1d

3r2.

As a first step, we divide the integral into two parts, one over regions r1 < r2
and the other over regions r1 > r2. Since, the integrals over both regions
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should be the same, we just need to multiply the integral over the r1 < r2
region by 2.

In r1 < r2 region, we evaluate first the r2 integral, than the r1 integral.
When evaluating the r2 integral we choose the spherical coordinates such
that θ2 = 0 corresponds to the direction of the first particle. (In other words,
z axis for the second particle is chosen as the direction of r1.) The advantage
of this choice is that the distance between particles can be expressed simply
as:

| r1 − r2 |=
√
r2
1 + r2

2 − 2r1r2 cos θ2.

Hence, we have

〈Vee〉 = 2N4e2
∫
d3r1e

−2βr1

∫
e−2βr2√

r2
1 + r2

2 − 2r1r2 cos θ2

r2
2 sin θ2dr2dθ2dϕ2.

where r2 is integrated from 0 to r1. Now, ϕ2 and θ2 integrals can be evaluated
quite easily,

〈Vee〉 = 8πN4e2
∫
d3r1e

−2βr1

∫ r1

0

e−2βr2
r2
2

r1
dr2.

Angular integrals of r1 brings another factor of 4π. As a result we have

〈Vee〉 = 32π2N4e2
∫ ∞

0

dr1

∫ r1

0

dr2 r1r
2
2e
−2β(r1+r2).

This last integral is easily evaluated if the orders of r1 and r2 integrations
are interchanged. The final expression is

〈Vee〉 =
5

8
e2β

Finally we have the expression for the expectation value of the Hamilto-
nian.

〈H〉 = 2

(
h̄2β2

2m
− (Z − 5

16
)e2β

)
.

By denoting Z − 5
16

as Zeff, we have

β =
Zeff

a0
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as the best value of β and 〈H〉 = −2Z2
eff Rydbergs as the minimum energy.

Now, the interpretation. We have chosen the trial wavefunction on pur-
pose. On the one hand, we want to see how well an independent electron
picture describes at least the ground state of the Helium atom. On the other
hand, we want to see how the electron electron interaction alters the electron
orbitals. We see that, when the interaction is not present, the 1s orbitals are

φ(r) = ψ100(r) =
Z3/2

√
πa

3/2
0

e−Zr/a0 ,

but when the interaction is present, the 1s orbital changes to

φ(r) =
Z

3/2
eff√
πa

3/2
0

e−Zeffr/a0 .

where Zeff = Z − 5/16. That means, the interaction effectively decreases the
nuclear charge by 5e/16. This is the screening effect of the other electron.
So, the interpretation is simple: When the electron is moving around the
nucleus, it sees the effect of the other electron. The electrons will see a
reduced nuclear charge, and the reduction will be a quantity between 0 and
e. If one of the electrons were in higher levels, than probably this one would
see a nuclear charge close to (Z − 1)e, but the one in 1s orbital would see
something close to Ze.

How good is this approximation? To be able to answer this question, we
need to see how close we are to the exact energy. The exact calculations show
that the exact ground state energy of the Helium atom is Eexact = −78.975
eV≈ −5.81 Rydbergs. Now, our approximation gives 〈H〉 ≈ −5.69 Rydbergs.
These are fairly close. Obviously, the physical effects that you are looking
for important in deciding whether your approximation is good or not. If,
what you need is a mere qualitative picture of the eigenstates of the Helium
atom, than even the Slater determinants prepared from Hydrogen-like states
will be enough. If the physical processes you are interested in involves subtle
many-body effects, than you have to go further than Slater determinants.

In the variation calculation above, we have chosen the electron orbital,
φ(r) to be a 1s state (with arbitrary Z). It is of interest to see how we can
improve on this. Obviously, φ(r) should be an s-state (it should depend only
on r), but it may have a complicated variation with r. What is the best
possible φ function? To answer this question, we should vary φ at all points.
This whole procedure is known as Hartree-Fock theory.
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