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compositions of lattices.

Keywords: direct product of lattices, algebraic lattice, conditional completeness, strictly
join-irreducible elements

MSC 1991: 06B05

1. INTRODUCTION

An element z of a lattice L is called strictly join-irreducible if, whenever ) # X C L
and x = \/ X, then € X. A lattice in which every element is the join of strictly
join-irreducible elements is called a Vj-lattice. Such lattices were investigated in [6].

The following theorem is the main result of [5].

(A) (Libkin [5], Theorem 2.) Every algebraic V;-lattice is a direct product of
directly indecomposable lattices.

A lattice is defined to be algebraic if it is complete and compactly generated
(cf. [1]).

When investigating direct product decompositions of a lattice L having the least
element 0 we can suppose without loss of generality that all direct factors under
consideration are convex sublattices of L containing the element 0 (cf. Section 1
below). The set of all such direct factors of L will be denoted by D(L). The system
D(L) is partially ordered by the set-theoretical inclusion.

In the present paper we prove

(B) Let L be a lattice such that
(i) L is conditionally complete and has the least element 0;
(ii) L is compactly generated;
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(iii) L is a V;-lattice.
Then D(L) is atomistic.

From (B) we deduce a generalization of Theorem (A) above; this generaliza-
tion concerns lattices which are conditionally complete and orthogonally complete.
(Cf. Theorem 5.2.)

The method is essentially different from that of [5].

For a lattice L with the least element 0 we denote by S(L) the set of all strictly
join-irreducible elements of L. Let us consider the following condition for L.

(o) If {z;}ier is a nonempty subset of L,y = \/ z;, z € S(L),i(0) € I, zAz; =0

i€l
for each i € I'\ {i(0)} and if 2 <y, then 2 < x;(g).

We show that the assertion of (B) remains valid if the condition (ii) is replaced by
the condition ().

Directly indecomposable direct factors of some types of partially ordered sets were
investigated in [3] and [4].

2. PRELIMINARIES

We recall some notions and the notation that we will use in the sequel.

Let Ly be a lattice and let a be an element of Li. Then a is called compact if
a <\ X implies that a < \/ X; for some finite X; C X. If each element of L, is a
join of compact elements, then L; is said to be compactly generated.

A lattice L with the least element 0 will be called atomistic if each its nonzero
element exceeds some atom. If L is a Boolean algebra, then it is atomistic if every
nonzero element of L is a join of atoms.

The notion of the direct product of lattices has the usual meaning. Let L be a
lattice with the least element 0 and let ¢ be an isomorphism of L onto the direct
product Ax B. If z € L and ¢(z) = (a,b), then we denote a = z(A), b = z(B). Put

Ay={zreL:2(B)=0}, By={zeL:xz(A) =0}
Then A and By are convex sublattices of L with Ag N By = {0}. Also,
By={rxe€L:zANa=0 foreachac€ Ap}.
The lattice Ag is isomorphic to A and By is isomorphic to B. The mapping

QOOZL—>A0><BO
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defined by oo (z) = (a’,b’) where

is an isomorphism of L onto Ag x By.
Hence without loss of generality we can suppose that A = Ag and B = Bp. In

such a case we write
(1) L= AO X Bo.

The lattice L is called directly indecomposable if, whenever (1) is valid, then either
A ={0} or B={0}.

Analogous notation will be applied in the case when we consider the direct product
decompositions having more than two factors; we write

L=A xAs x...x A,

or

(1a) L=]]4
i€l
where the power of the set I # () can be arbitrary.

The following lemma can, in fact, be considered a folklore.

2.1. Lemma. Let {0} # A € D(L). Then the following conditions are equiva-
lent:

(i) A is directly indecomposable.
(ii) A is an atom of D(L).

Proof. Let (i) be valid. By way of contradiction, suppose that A fails to be an
atom of D(L). Hence there exists {0} # A; € D(L) with A; < A. Then there is a
direct product decomposition

(1/) L= A1 X Bl.

The direct product decompositions (1) and (1’) have a common refinement (cf., e.g.,
[2]) and thus

(1”) A:(AﬂAl) X (AﬂBl)
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We have ANA; = A; # {0} and Ag # A. The last relation implies that ANB; # {0}
and we have arrived at a contradiction.

Conversely, suppose that (ii) is valid. Assume that (i) does not hold. Hence there
exists a direct product decomposition

A=PxQ
such that P # {0} # Q. Then P < A and
L=Px(Qx B),
hence P € D(L), contradicting (ii). O

2.2. Corollary. Assume that L # {0} is a direct product of directly indecom-
posable lattices. Then D(L) is atomistic.

Proof. Suppose that (1a) is valid and that all A; are directly indecomposable.
Let {0} # A € D(L). Then
A=T]AnA).
iel
There exists i(1) € I such that AN A;q) # {0}. Then AN A;qy € D(A;(1)), whence
AN Ayqy = Ajn)- We conclude that Ajq) < A. Thus in view of 2.1, D(A) is
atomistic. O

With regard to the conditions (i), (ii), (iii) used in (B) and to the condition («)
let us consider the following two examples.

Let L, be the lattice consisting of elements u, v, a; (i = 1,2,3,...) such that
u < a; <vand

aj(1) N\ Gy2) = U,  Qy1) V Qi2) =V

whenever (1) and i(2) are distinct positive integers. Then L; is an algebraic V;-
lattice which does not satisfy the condition (a).

Further, let Ly be the lattice consisting of elements uy, us, v, a;, b; (1 =1,2,3,...)
such that u; < us < a; <as <...<v,us <by <by <...<wand

ai/\bj:uQ, ai\/bj:v

whenever ¢ and j are positive integers. This is a complete V;-lattice satisfying the
condition (a), but it fails to be algebraic.

284



3. Proor or (B)

In this section we suppose that L is a conditionally complete lattice with the least
element 0. Further we assume that L is a V;-lattice and L # {0}.
3.1. Lemma. Lets € S(L) and let (1) be valid. Then either s € A or s € B.

Proof. From (1) we obtain that s = s(A) V s(B). Then, since s € S(L), we
must have either s = s(A4) or s = s(B). O

For x € L we denote

[x]O = ﬂ Aia

i€l
where {A;}icr is the set of all direct factors A; of L with z € A;.
3.2. Lemma. Letx € L. Then [z]" is a closed sublattice of L and 0 € [z]°.
Proof. Let {A;}ics be as above. Each A; is a closed sublattice of L containing
the element 0, thus the same is valid for [x]°. a
3.3. Lemma. Letz,y€ S(L),0+# x € [y|°. Then [z]° = [y]°.

Proof. From the relation z € [y]® we infer that [z]° C [y]°. Let (1) be valid
and suppose that x € A. If y ¢ A, then in view of 3.1 we have y € B and hence x
belongs to B as well. Therefore x € AN B = {0}, which is a contradiction. Thus
y € A yielding that [y]° C [z]°. ad

3.4. Lemma. Letx € L,ye S(L),0+# z € [y]°. Then [z]° = [y]°.

Proof. Clearly [z]° C [y]°. Since L is a V;-lattice there exists z; € S(L) such
that 0 < z; < x. Then [z1]° C [z]°, thus z; € [y]°. Now 3.3 yields that [z1]° = [y]°.

Hence [z]° = [y]°. O

3.5. Lemma. Letz,y€ S(L),0<z € [z]°N[y°. Then [z]° = [y]°.
Proof. This is an immediate consequence of 3.4. O

Let us denote by {C;};e the system of all sublattices [z]° of L, where z runs over
the set S(L) \ {0}.
For t € L and j € J we denote

t; =sup{z € C;: z < t}.
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Since L is conditionally complete and in view of 3.2, the element ¢; does exist and
belongs to C;. Also, for t;,t2 € L we have

(2) ty <t = (t1); < (t2);-

There exists a subset {xj }rerx C S(L) \ {0} such that
(3) t= \/ Tk

For k1 € K we put
K(ki) = {k2 € K: [21,]° = [21,]°},

x(ky) = \/ T

kEK (k;)

Then in view of 3.2 we obtain z(k;) € [z4,]°. Moreover, z(k;) < t and hence
z(k1) < tj for Cj =[xk, ]°. Therefore according to (3) we get

(4) t=\/t:
jeJ
3.6. Lemma. Letj(0),5(1),...,5(n) be distinct elements of J and let z* € Cjy,
fork=0,1,2,...,n,y =z va?Vv...va", 2% € Cjq), 2° <z°Vy. Then 2°! < 2°.

Proof. Leti € {1,2,...,n}. Then 2* ¢ Cj). Hence there exists a direct
product decomposition
L= Al X Bl

such that 20,29 € A; and 2 € B;. Put A = Ajq) N Ajo) N ... N Ajiy. Then
A € D(L). Hence there exists B € D(L) such that

L =AxB.
Since A; N B; = {0} we get AN B; = {0}. Further,

thus B; = B; N B and hence B; C B for i € {1,2,...,n}, implying that y € B. We
have
e A, 2™eA,

¥ =20(4), 2% =201(4), 0=y(A),
291(A) < 2°(A) v y(A) = 2°(A).
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Since 0 is an element of Cj(g), we obtain
3.7. Corollary. Let j(0),;(1),5(2),...,j(n) be distinct elements of J, z* €
Cjm) (k=0,1,2,...,n). Suppose that
2Lzt v, vt
Then 2° = 0.

Again, let j(0) be a fixed element of J. We denote by B the set of all elements
t € L such that t;) = 0.
In the remaining part of this section we suppose that L is compactly generated.

3.8. Lemma. Letx € S(L). Then s is compact.

Proof. Since L is compactly generated, s is a join of compact elements of L.
But s is strictly join-irreducible, whence s must be compact. a

3.9. Lemma. Leta¢€ Cjq), b€ B. ThenaAb=0.

Proof. By way of contradiction, suppose that a Ab = a; > 0. Then there exists
s € S(L) such that 0 < s < a;. Since b € B, in view of (4) we have

b=\/ b,

je\{i(0)}

S < \/ bj.
7€\ (0)}
According to 3.8, the element s is compact. Thus there exists a finite subset
{j(1),5(2),...,4(n)} of the set J\ {j(0)} such that

s < bj(l) V bj(g) V...V bj(n)'
In view of 3.7 we have arrived at a contradiction. O

3.10. Lemma. For each j € J let b € C;. Further lett € L, t = \/ b/. Then
jeJ
for each j € J we have t; =bJ.
Proof. Let j(0) € J. Since /(%) € Cj(p) and /(©) < t we get /(9 < t;. For
each s € S(L) with s <t;(0) we have s < t. In view of 3.8, s is compact, thus there
are distinct elements j(1),5(2),...,j(n) in J such that

PR ARV ORISRV M OR

Thus in view of 3.7 we must have j(0) € {j(1),4(2),...,75(n)} and s < /(®). This
yields that ;) < b/ () completing the proof. a
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3.11. Lemma. Lett be as above andt € L, t' = \/ t}; with t; € C;j. Then

jedJ
(tVt); =t; Vvt for each j € J.
Proof. We have
tvit' = \/(t; vt}
jeJ
and in view of 2.2, ¢; Vv t;- € C;. Now it suffices to apply 3.10. d

3.12. Lemma. Let j(0) and B be as above. Then B is a convex sublattice of L

Proof. Ifbe€ B,z € L and x < b, then in view of the definition of B the
relation z € B is valid; hence B is convex in L. From this and from 3.11 we conclude
that B is a sublattice of L. From 3.9 we obtain that C;) N B = {0}. a

Let ¢t € L and consider the relation (4). Since L is conditionally complete there
exists « € L such that
Tr = \/ tj.

jeJI\{7(0)}
Then in view of 3.10 we have z € B. Put

»(t) = (tj0), 2)-

Thus 9 is a mapping of L into Cjq) X B.

We apply the following convention. The pair (tj(o),O) or (0,z) will be identified
with ¢;(0) or with z, respectively.

In view of this convention we have 1 (t) = t for each t € C;0) U B.

3.13. Lemma. Let t® € Cj), b€ B, t=1t°Vb. Then (t) = (t°,b).

Proof. Thisis a consequence of 3.11. O
3.14. Lemma. Lett',t> € L. Then

t <t = (") < 9(t?).

Proof. Let t' < t*. Then tj < t3 for each j € J, whence 9(t') < ¥(t?).
Conversely, let ¥(t') < ¢(t?). Put ¥(t') = (tj),b") (i = 1,2). Hence t;,, < t},
and b' < b*. From the last relation and by applying 3.6 we obtain that ¢} < ¢ is
valid for each j € J\ {j(0)}. Therefore in view of (4) we have t! < 2. ad
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3.15. Proposition. Let j(0) and B be as above. Then L = Cjo) x B.

Proof. This is a consequence of 3.13 and 3.14. O

3.16. Lemma. Let 0 < s € S(L). Then [s]° is a direct factor of L. Moreover,

[s]° is an atom of D(L).

Proof. There exists j(0) € J such that [s]® = Cj(0)- Hence according to 3.15,
[s]° is a direct factor of L. Then each direct factor of [s]° is, at the same time, a
direct factor of L. Now from the definition of [s]° and from 3.5 we conclude that [s]°

is directly indecomposable. Hence in view of 1.1, [s]° is an atom of D(L). a

Proof of (B):

Let (1) be valid, A # {0}. Hence there are 0 < @ € A and 0 < s € S(L) with
s < a. Then s € A, thus [s]° C A. In view of 3.16, [s]° is an atom of D(L). Therefore
D(L) is atomistic.

4. THE CONDITION («)

In this section we assume that L is a lattice having the least element 0. We suppose
that L satisfies the condition () and the conditions (i), (iii) from (B).

Let us remark that («) implies the validity of the following condition:
(o) If {z;}icr is a nonempty subset of L, y = \/ z;, = € S(L), z Az; = 0 for each
iel
i1 €1, then x Ay =0.

We apply the method from Section 3 with the distinction that we modify those
parts where the condition (ii) from (B) was used. Hence 3.1-3.7 remain without
change.

4.1. Lemma. The assertion of 3.9 is valid.

Proof. We begin as in the proof of 3.9; let a1, s, b; (j € J\ {j(0)}) be as in
this proof. Hence we have

(4.1) s< \/ by
jeIN{i(0)}

If j € J, then there is a set K; and a system {s,;},ex; such that this system is a
subset of S(L) and
bj = \/ Svj-

veEK;
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In view of 3.6,
(4.2) 5N 8,5 =0

for each j € J\ {j(0)} and each s,; (v € K;). According to (4.1) we get
(4.3) s < \/ \/ Suj-
JEINI(0)} vEE;

Then in view of (4.2) and (4.3) we have arrived at a contradiction with the condition
(ar). O

4.2. Lemma. Lett, j(0) and B be as above, j € J, j # j(0). Then t; € B.

Proof. The element ¢; is a join of some elements s of S(L) and these elements
belong to C;, hence for each such s and each a € Cj) we have aAs = 0. Then (a;)
yields that a At; = 0. Thus (;);0) = 0 and therefore t; € B. a

4.3. Lemma. The assertion of 3.10 is valid.

Proof. Similarly as in the proof of 3.10 we have b/(9) < tj(0). Further,
(4.4) tioy <t=\/V.

j€J
From b € C; we infer that (b7); = b; and hence according to 4.2 we have b’ € B.
Thus 4.1 yields that
sAV =0

for each s € S(L) belonging to Cj(. Hence 4.4 and («) imply that t;q) < bi0),
Therefore t;(g) = b7(0). O

Now by the same method as in Section 3 we verify that 3.11-3.16 are valid under
the present assumptions.

Hence we obtain:

4.4. Theorem. Let L be a lattice such that
(i) it is conditionally complete and has the least element 0;
(ii) it satisfies the condition («);
(iii) it is a V;-lattice.
Then D(L) is atomistic.

From Examples 1 and 2 in Section 1 we infer that neither 4.4 is a corollary of (B),
nor (B) is a corollary of 4.4.
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5. ORTHOGONAL COMPLETENESS

Again, let L be a lattice with the least element 0. An indexed system (z;);es of
elements of L is called disjoint if x;(1) A z;2) = 0 whenever (1) and i(2) are distinct
elements of I.

5.1. Definition. The lattice L is said to be orthogonally complete if each
nonempty disjoint indexed system of elements of L has the supremum in L.

The analogous notions of orthogonal completeness of lattice ordered groups or of
vector lattices have been frequently applied in literature.

Example. Let A be the set of all non-negative reals with the natural linear
order, B = A, L = A x B. Then L is conditionally complete and orthogonally
complete, but it fails to be complete.

5.2. Theorem. Let L be a lattice. Suppose that it is orthogonally complete
and satisfies the conditions (i), (ii) and (iii) from (B). Then L is a direct product of
directly indecomposable lattices.

Proof. We apply the notation as in Section 3. For each t € L we put

Yi(t) = (t5)jes-

Then in view of 3.15, ¥ is a homomorphism of L into the direct product

c=1[¢-

jedJ

Let t1,t2 € L and suppose that ¢ (t1) = ¥2(t2). Then (¢1); = (¢2); for each j € J,
whence in view of (4) we obtain that ¢; = t5. Thus ) is an isomorphism of L into
C. Choose ¢/ € Cj for each j € J. Then (c)jcs is a disjoint indexed system of
elements of L (cf. 3.12); hence there exists ¢ € L with

c= \/ .
jeJ
According to 3.10 we have 11 (c) = (¢/)jes. Thus ¢ is a surjection. We obtain that
C = L. In view of 3.16 and 1.1, all C; are directly indecomposable. O

The above theorem generalizes (A).
By applying the results of Section 4 we can verify that it is possible to replace the
condition (ii) in 5.2 by the condition (a).
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The following example shows that the assumption of orthogonal completeness
cannot be omitted in 4.2.

Let N be the set of all positive integers and let B be the Boolean algebra of all
subsets of N. Further let L be the sublattice of B consisting of all finite subsets of
N. Then L is a lattice satisfying the conditions (i), (ii) and (iii) from (B). The lattice
L cannot be represented as a direct product of directly indecomposable lattices.
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