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1. Introduction

We will be concerned with inequalities between means that are functions of ntuples

of real numbers with which are associated some positive weights, a typical example

being the geometric-arithmetic mean inequality:

(GA) Wn

√

aw1

1 . . . awn

n 6
w1a1 + . . .+ wnan

Wn
,

where the weights w1, . . . , wn and the variables, a1, . . . , an, are positive numbers

and Wn = w1 + . . . + wn.
1 There is no real reason for excluding zero values for

the weights except that if for instance wn = 0 this effectively means that we are

stating or discussing the inequality for a smaller value of n. Equivalently allowing

zero weights means that (GA) states the inequality for all values of k, 1 6 k 6 n. A

similar remark can be made about assuming all the variables are distinct.

1 This notation will be used throughout; given real numbers q1, q2, . . . , qn then Qk =
kP
i=1

qi,

1 6 k 6 n. Also we write Q̃k = Qn − Qk−1 =
nP
i=k

qi, 1 6 k 6 n.
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However it is usual not to allow negative weights even though there is a very good

and useful theory that covers this possibility. Classically the first person to consider

real weights in detail was Steffensen early in the twentieth century. More recently

very significant contributions have been made by Pečarić and his colleagues. The

case of real weights has been of interest to Pečarić throughout his career from his

student days up to the present. However the results are not generally known and

this paper is an attempt to remedy this neglect.

Since almost all the inequalities between means are particular cases of the Jensen

inequality for convex functions2 the paper will concentrate on this result. Applica-

tions to particular means will then follow using the lines of the original application

of Jensen’s inequality.

2. Convex functions

The definitions and properties of convex functions are well known and will not

be given in detail here. However the basic inequality of Jensen is equivalent to the

definition of convexity and so in this section we will give details that are necessary

for later discussion.

Perhaps the simplest analytic definition of a convex function is: let I be an open

interval, I ⊆ R,3 then f : I → R is convex if ∀x, y ∈ I the function D : ]0, 1[→ R is

non-positive, where:

(1) D(t) = D2(t) = f
(

(1 − t)x+ ty
)

−
(

(1 − t)f(x) + tf(y)
)

6 0.

It should be noted that if x, y ∈ I then so is x = (1 − t)x + ty, ∀ t, 0 < t < 1, so all

the terms on the right-hand side are defined.4 Further note that D is defined for all

t such that x ∈ I and use will be made of this in later discussions.

An alternative but equivalent definition is: ∀ z ∈ I there is an affine function

Sz : R → R such that:

Sz(z) = f(z) and Sz(x) = f(z) + λ(x − z) 6 f(x) ∀x ∈ I.

See [6, p. 27; 8, pp. 70–75, 94–96; 18, p. 5; 20 p. 12].

The geometric interpretations of these definitions are immediate from Figures 1

and 2.

2 Thus (GA) is just a property of the convexity of the function f(x) = − log x, or the
convexity of g(x) = ex; [4, pp. 6–7; 6, p. 92].

3 This meaning for I will be used throughout the paper.
4More precisely if x 6= y, x ∈ I0 = ]min{x, y},max{x, y}[.
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P =(x̄, f(x̄)) Q=(x̄, (1−t)f(x)+tf(y))

Figure 1. Graph of a convex function

0 1

Figure 2. Graph of D

Use will be made of the following properties of convex functions.

(C1) The first divided difference [x, y; f ] =
(

f(x)− f(y)
)/

(x− y), x, y ∈ I, x 6= y,

is increasing in both variables; [6, p. 26; 19, p. 2; 20, p. 6].

(C2) If x, y, z, u, v ∈ I and x 6 y 6 z 6 u 6 v and if Sz(t) = f(z) + λ(t− z) then:

f(y) − f(x) 6 λ(y − x), f(v) − f(u) > λ(v − u).

See [16].

(C3) A function convex on I is continuous; [20, p. 4].5

(C4) The Hardy-Littlewood-Pólya-Karamata-Fuchs majorization theorem, or just

HLPKF, [4, pp. 30–32; 6, pp. 23, 24, 30; 8, pp. 88–91; 10, pp. 64–67; 19, pp. 319–

320]: if a = (a1, . . . , an),
6 b = (b1, . . . , bn) are decreasing ntuples with entries in the

domain of a convex function f and w = (w1, . . . , wn) a real ntuple and if:

k
∑

i=1

wiai 6

k
∑

i=1

wibi, 1 6 k < n and

n
∑

i=1

wiai =

n
∑

i=1

wibi

then:
n

∑

i=1

wif(ai) 6

n
∑

i=1

wif(bi).

(C1) and (C2) are rather elementary and have obvious geometric interpretations but

(C3) and (C4) are more sophisticated.

Jensen’s inequality is an easy deduction from the definition of convexity and in a

variety of forms is given in the following theorem.

5 But not necessarily differentiable; consider f(x) = |x|.
6 This notation for ntuples or sequences, will be used throughout.
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Theorem 1. Let n ∈ N, n > 2, I an interval, f : I → R convex then:

(a) ∀xi ∈ I, 1 6 i 6 n, and ∀ti, 1 6 i 6 n, such that 0 < ti < 1, 1 6 i 6 n, and

t1 = 1 −
n
∑

2
ti we have

D(t2, . . . tn) = Dn(t2, . . . tn) = f

( n
∑

i=1

tixi

)

−
n

∑

i=1

tif(xi) 6 0;

(b) ∀ai ∈ I, 1 6 i 6 n, and for all positive weights wi, 1 6 i 6 n,

(Jn) f

(

1

Wn

n
∑

i=1

wiai

)

6
1

Wn

n
∑

i=1

wif(ai);

(c) ∀ ai ∈ I, 1 6 i 6 n, and positive weights pi, 1 6 i 6 n, with Pn = 1,

f

( n
∑

i=1

piai

)

6

n
∑

i=1

pif(ai).

P r o o f. (i) The most well known proof is by induction, the case n = 2, (J2),

being just (1), a definition of convexity; [6, p. 31; 17; 18, pp. 43–44]. �

P r o o f. (ii) Another proof can be based on the support line definition above;

[17; 19, pp. 189–190]. �

P r o o f. (iii) A geometric proof can be given as follows.

First note, using (1), that the set bounded by the chord joining
(

x, f(x)
)

to

(y, f(y)) and the graph of f joining the same points is a convex set. Then by

induction show that the point (a, α)7, a =
n
∑

i=1

piai, α =
n
∑

i=1

pif(ai), lies inside this

set and so α > f(a) which is just (Jn). �

We now turn to the main interest of this paper. What happens if we allow negative

weights in (Jn)?

3. The case of two variables

The inequality (J2) is just D(t) 6 0, 0 < t < 1, and it is immediate from Figures 1

and 2 that if either t < 0 or 1 − t < 0, equivalently t > 1, then D(t) > 0, that is

the reverse inequality8 holds. Formally we have the following result where the last

of the notations in Theorem 1 is used, [6, p. 33; 9].

7 This point is just the weighted centroid of the points (ai, f(ai)), 1 6 i 6 n, that lie on
the graph of f .

8 The naming of reverse inequalities varies; sometimes the term inverse is used and some-
times converse but reverse seems to be the best usage.
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Theorem 2. If f is convex on the interval I and either p1 < 0 or p2 < 0 then

for all a1, a2 in I with a = p1a1 + p2a2 ∈ I,

(∼ J2) f(p1a1 + p2a2) > p1f(a1) + p2f(a2).

There is no loss in generality in assuming that a1 6= a2.

P r o o f. (i) It is an easy exercise to use the second definition of convexity to

prove that the function D is convex on its domain. Hence since D(0) = D(1) = 0

we must have that D(t) 6 0, 0 < t < 1, and D(t) > 0, t < 0, t > 1, as shown in

Figure 2. �

P r o o f. (ii) Assume that p2 < 0 then:

a1 =
a− p2a2

p1
=
a− p2a2

1 − p2
.

So, using (J2),

f(a1) = f
(a− p2a2

1 − p2

)

6
f(a) − p2f(a2)

1 − p2
=
f(a) − p2f(a2)

p1
.

Rewriting the last line gives (∼ J2). �

P r o o f. (iii) Let us assume that t < 0 and, without loss of generality, that

a1 < a2.

Then a1 lies between a and a2 and a1 = (a− ta2)
/

(1 − t). Now let S = Sa1
then

f(a1) = S(a1) = S
(a− ta2

1 − t

)

=
S(a) − tS(a2)

1 − t
6
f(a) − tf(a2)

1 − t
,

which on rewriting gives (∼ J2).

Note that the condition a ∈ I is necessary as a /∈ I0 = ]a1, a2[ and so we must

ensure that f(a) is defined.9 �

In the case of two variables the situation is completely determined: either the

weights are positive when we have Jensen’s inequality or one is negative when we have

the reverse of inequality.10 In other terms: for all x, y ∈ I, x 6= y, with x ∈ I the sets

D+ = {t ; t ∈ R∧D(t) > 0},D− = {t ; t ∈ R∧D(t) < 0},D0 = {t ; t ∈ R∧D(t) = 0}

are partition R and do not depend on x or y.

This very simple result has been given this much attention as the ideas and meth-

ods of proof are used in the more complicated cases we now consider.

9 Clearly if I = R the condition can be omitted.
10 The geometric-arithmetic mean inequality case of this result was the motivation for one
of Pečarić’s more interesting collaborations, [9].
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4. The three variable case

This case is very different to the two variable situation discussed above but has

its own peculiarities; in addition it introduces ideas needed for the general case. The

function D can now be written:

D(s, t) = D3(s, t) = f((1 − s− t)x+ sy + tz) − ((1 − s− t)f(x) + sf(y) + tf(z)).

Clearly if x, y, z are distinct D3 partitions R
2 into three sets11: the closed convex

0-level curve D0, the open convex set D−, that is the interior of this curve and where

(J3) holds, and the unbounded exterior of the this curve, D+, where (∼ J3) holds.

However unlike the two variable case these sets depend on the variables x, y, z as we

will now see.

The set where Jensen’s inequality, (J3), holds for all x, y, z ∈ I, is the triangle T

where the above weights are positive

T = {(s, t) ; 0 < s < 1, 0 < t < 1, 0 < s+ t < 1};

see Figure 3.

s

t

(0, 0)

(1, 0)

(0, 1)

S1 S2

S3

T

T1

T2

T3 s+t=1

s+t=0

s=1

t=1

Figure 3.

On the sides of this triangle one of the weights is zero and so we have cases of the

two variable situation, as we noted in Section 1, and as a result by (J2) D3 6 0 on the

11 Using the notation of the previous section.
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sides of T . Hence by continuity, (C3), D3 must be negative on a set larger than the

triangle, that is T ⊂ D−; note that the vertices of T lie on D0. In any case for some

choices of x, y, z ∈ I (J3) holds with negative weights and the question is whether

there is a larger set than T on which (J3) holds for a large choice of variables, or for

variables satisfying some simple condition: [5; 6, pp. 39–41].

Let us first look at what happens when there are two negative weights.

The next result, due to Pečarić, [14; 15; 22], resolves the case when there is a

maximum number of negative weights:12 [6, p. 43; 19 p. 83].

Theorem 3. If f is convex on the interval I and only one of p1, p2, p3 is positive

and if a1, a2, a3, a = p1a1 + p2a2 + p3a3 ∈ I then

(∼ J3) f(p1a1 + p2a2 + p3a3) > p1f(a1) + p2f(a2) + p3f(a3).

Again there is no loss of generality in assuming the a1, a2, a3 are distinct.

P r o o f. (i) If we consider D(s, t), (s, t) ∈ R
2, and assume f is differentiable then

it can easily be shown that D has no stationary points in its domain. An immediate

conclusion is that (J3) must hold in the triangle T since the maximum and minimum

of D must occur on the boundary and it is non-positive there by (J2). The domains

where two of the weights are negative are the three unbounded triangles T1, T2, T3

of Figure 3. By Theorem 2 D is non-negative on the boundaries of these triangles

and so it would be reasonable to conclude that D is non-negative on these triangles

giving a proof of (∼ J3). This proof is not quite complete as these are unbounded

regions and this simple argument does not work. Let us look at the second proof of

Theorem 2. �

P r o o f. (ii) Assume without loss of generality that p1 > 0, p2 < 0, p3 < 0 then

a1 =
a− p2a2 − p3a3

p1
=
a− p2a2 − p3a3

1 − p2 − p3
.

So, using (J3),

f(a1) = f
(a− p2a2 − p3a3

1 − p2

)

6
f(a) − p2f(a2) − p3f(a3)

1 − p2
=
f(a) − p2f(a2) − p3f(a3)

p1
.

Rewriting the last line gives (∼ J3). �

12 Clearly three negative weights is the same as three positive weights.
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It remains to consider what happens if there is only one negative weight. In order

for (J3) to hold we need a ∈ I0 =
[

min{a1, a2, a3},max{a1, a2, a3}
]

, and for (∼ J3)

to hold a ∈ I \ I0. Assume without loss of generality that a1 < a2 < a3 and assume

that p1 < 0 then

a = p1a1 + (p2 + p3)
a2p2 + a3p3

p2 + p3
,

The second term on the right of the last term is in the interval ]a2, a3[ and so a

is to the right of a2 and can lie either in I0 or not depending on the value of the

negative p1. Further any condition on p1 to require one or other of these options

would obviously depend on the values of a1, a2, a3.

A similar argument applies if the negative weight is p3.

However in the case of the middle term a2 having a negative weight, p2 < 0.

Steffensen, [21], obtained a simple condition on the weights that would assure a ∈ I0.

Consider

a = p3(a3 − a2) + (p3 + p2)(a2 − a1) + a1 = p1(a1 − a2) + (p1 + p2)(a2 − a3) + a3.

If we assume that p3 +p2 > 0 the first expression shows that a > a1 and if we require

that p1 + p2 > 0 the second expression shows that a < a3. That is: with these two

conditions on the weights a ∈ I0 and (J3) should hold.

The conditions can be put in a simpler form:

(S3) 0 < p1 < 0, 0 < P2 = p1 + p2 < 1.

(S3) is easily seen to be equivalent to

(S̃3) 0 < p3 < 0, 0 < P̃2 = p3 + p2 < 1

Later Pečarić, [14], gave an alternative form of this condition: the negative weight

is dominated by both of the positive weights, that is

(P3) P2 > 0, P̃2 > 0.

Thus we have the following result of Steffensen, [21]; several proofs are given, in

addition to the one sketched above since they extend to give different results when

n > 3.
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Theorem 4. If f is convex on the interval I and if 0 < p1 < 1, 0 < P2 < 1 and

either a1 6 a2 6 a3 or a1 > a2 > a3, with a1, a2, a3 ∈ I, then

(J3) f(p1a1 + p2a2 + p3a3) 6 p1f(a1) + p2f(a2) + p3f(a3).

There is no loss of generality in assuming no two of a1, a2, a3 are equal.

P r o o f. (i) [5, p. 39] Assume, as we may, that a1 < a2 < a3 and write ã =

P2a2 + p3a3; note that a1 < a < a3 and a2 < ã < a3. Now

p1f(a1) + p2f(a2) + p3f(a3) − f(a)

= −p1(f(a2) − f(a1)) + P2f(a2) + p3f(a3) − f(a)

> −p1(f(a2) − f(a1)) + f(ã) − f(a), by (J2),

= p1(a2 − a1)
(f(ã) − f(a)

ã− a
−
f(a2) − f(a1)

a2 − a1

)

> 0, by (C1).

�

P r o o f. (ii) [14] In this proof we use the condition p2 < 0, a fact that was not

used in the first proof.

Again asuming a1 < a2 < a3 we have that for some t, 0 < t < 1 that a2 =

(1 − t)a1 + ta3. Then:

a = p1a1 + p2(1 − t)a1 + ta3 + p3a3 = (p1 + (1 − t)p2)a1 + (p3 + tp2)a3.

So by (J2), noting that the coefficients of the last expression are positive and have

sum equal to 1,

f(a) = f((p1 + (1 − t)p2)a1 + (p3 + tp2)a3)

6 (p1 + (1 − t)p2)f(a1) + (p3 + tp2)f(a3)

= p1f(a1) + p2((1 − t)f(a1) + tf(a3)) + p3f(a3)

6 p1f(a1) + p2f((1 − t)a1 + ta3) + p3f(a3)

= p1f(a1) + p2f(a2) + p3f(a3),

�

P r o o f. (iii) [16; 19, pp. 57–58] Assume without loss in generality that a1 < a <

a2 < a3 and define λ by: Sa(x) = f(a) + λ(x − a).
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Using (C2) we get:

p1f(a1) + p2f(a2) + p3f(a3) − f(a)

= p1(f(a1) − f(a)) + (p2 + p3)(−f(a) + f(a2)) + p3(f(a3) − f(a2))

> p1λ(a1 − a) + (p2 + p3)λ(a2 − a) + p3λ(a3 − a2) = 0.

�

P r o o f. (iv) [17] Without loss of generality assume that b1 = a1 > b2 = a >

b3 = a2 > b4 = a3. Further define q1 = p1, q2 = −1, q3 = p2, q4 = p3; then if

ci = a, 1 6 i 6 4:

q1b1 = p1a1 > p1a = q1c1

q1b1 + q2b2 = p1a1 − a > q1c1 + q2c2

q1b1 + q2b2 + q3b3 = p1a1 + p2a2 − a >1 c1 + q2c2 + q3c3

q1b1 + q2b2 + q3b3 + q4b4 = 0 = q1c1 + q2c2 + q3c3 + q4c4

hence by (C4), HLPKF:

q1f(b1) + q2f(b2) + qf (b3) + q4f(b4) > q1f(c1) + q2f(c2) + q3f(c3) + q4f(c4) = 0,

which is just (J3). �

P r o o f. (v) The Steffensen condition tells us that the point (a, p1f(a1) +

p2f(a2) + p3f(a3)
)

lies in the convex hull of the points
(

ai, f(ai), a 6 i 6 3, and so

lies in the convex set {(x, y) ; y > f(x)} and this implies (J3). �

Using the notation in the definition of D3 and assuming that x < y < z and s < 0

the condition (S3) is just: 0 6 s+ t 6 1, 0 6 t 6 1 and so (J3) holds in the triangle

S1 of Figure 3. Depending on the order of x, y, z and provided the central element

has the only negative weight and (S3) holds then (J3) will hold in one of S1, S2, S3

of Figure 3.

5. The n variable case

In this section we turn to the general situation and the notations are those of

Theorem 1.

Let us first consider the extension of Theorem 3. The second proof of Theorem 3

can easily be adapted to the following result of Pečarić; [6, p. 43; 19, p. 83; 22].
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Theorem 5. If f : I → R is convex, n ∈ N, n > 2, ai ∈ I, wi ∈ R, wi 6= 0,

1 6 i 6 n, further assume that all the weights are negative except one, Wn 6= 0, and

that a ∈ I then:

(∼ Jn) f

(

1

Wn

n
∑

i=1

wiai

)

>
1

Wn

n
∑

i=1

wif(ai),

or, using an alternative notation,

(∼ Jn) f

( n
∑

i=1

piai

)

>

n
∑

i=1

pif(ai).

The case n = 2 is Theorem 2, and the case n = 3 is Theorem 3.

Assume then n > 3 and, without loss of generality, that p1 > 0 and pi < 0,

2 6 i 6 n, then:

a1 =

a+
n
∑

i=2

(−pi)ai

p1
=

a+
n
∑

i=2

(−pi)ai

1 +
n
∑

i=2

(−pi)
.

So by (Jn),

f(a1) 6
1

1 +
n
∑

i=2

(−pi)

(

f(a) +

n
∑

i=2

(−pi)f(ai)

)

=
1

p1

(

f(a) +

n
∑

i=2

(−pi)f(ai)

)

,

which on rewriting is just (∼ Jn).

We now turn to the situation where (Jn) holds but there are negative weights, the

generalization of Theorem 4 due Steffensen. Note that from Theorem 5 we will need

at least two positive weights for (Jn) to hold.

The important conditions put on the weights by Steffensen and Pečarić, (S3), and

(P3) above, now differ and are as follows, using the alternative notion of Theorem 5.

(S) 0 < Pi < 1, 1 6 i 6 n− 1; and of course Pn = 1.

This implies that 0 < P̃k < 1, 1 < k 6 n, and in particular that 0 < p1 < 1 and

0 < pn < 1.

For (P) we introduce the following notation:

I+ = {i; 1 6 i 6 n ∧ pi > 0} and I− = {i; 1 6 i 6 n ∧ pi < 0};

obviously I+ ∩ I− = ∅ and I+ ∪ I− = {1, 2, . . . , n}.
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(P) p1, pn ∈ I+ and ∀ i ∈ I+, pi +
∑

j∈I
−

pj > 0.

It is easy to see that (P) implies (S). Further we have the following simple result,

[6, p. 38; 19, pp. 37–38].

Lemma 6. If a is monotonic, a1 6= an and (S) holds then a ∈ I0 = ]maxa,min a[.

P r o o f. Assume without loss in generality that the ntuple is increasing. Since

a =

n
∑

i=1

piai = an +

n−1
∑

i=1

Pi(ai − ai+1)

= a1 +
n

∑

i=2

P̃i(ai − ai−1)

the result follows by (S). �

All the proofs of Theorem 4 can be extended to give a proof of the general case.

Theorem 7. Let n ∈ N, n > 3, I ⊆ R an interval, f : I → R convex then for all

monotonic ntuples with terms in I (Jn) holds for all non-zero real weights satisfying

condition (S).

P r o o f. (i) The standard proof is by induction starting with then case n = 3,

Theorem 4; see [6, pp. 37–39]. �

P r o o f. (ii) This proof, due to Pečarić, [14], assumes the stronger condition (P)

but in a weaker form that still implies (S):

(P ♭) p1, pn ∈ I+ and pi +
∑

j∈I
−

pj > 0, i = 1, n.

We also assume without loss in generality that the ntuple is increasing and distinct.

If i ∈ I− then a1 < ai < an and hence for some ti, 0 < ti < 1, ai = (1−ti)a1 +tian
and so

a =
∑

i∈I+

piai +
∑

i∈I
−

pi((1 − ti)a1 + tian)

=

(

p1 +
∑

i∈I
−

pi((1 − ti))

)

a1 +
∑

i∈I+\{1,n}

piai +

(

pn +
∑

i∈I
−

piti

)

an
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Note that the sum of the weights in this last expression is 1 and that by (P ♭) they

are all positive. Hence by Jensen’s inequality

f(a) 6

(

p1 +
∑

I
−

pi((1 − ti))

)

f(a1) +
∑

I+\{1,n}

pif(ai) +

(

pn +
∑

I
−

piti

)

f(an)

=
∑

i∈I+

pif(ai) +
∑

i∈I
−

pi((1 − ti)f(a1) + tif(an))

6
∑

i∈I+

pif(ai) +
∑

i∈I
−

pif(ai) by (J2) and

the negativity of the pi in the last sum,

=

n
∑

i=1

pif(ai).

which is (Jn). �

P r o o f. (iii) [19, pp. 57–58]. First note that if λ is defined as in Theorem 4 then:

Sa(x) = f(a) + λ(x − a); and by (C2):

a 6 u 6 v =⇒ f(v) − f(u) > λ(v − u); u 6 v 6 a =⇒ f(v) − f(u) 6 λ(v − u).

By Lemma 6 we have that a1 > a > an, and let ak+1 6 a 6 ak for some k,

1 6 k 6 n− 1. Then

f(a) −
n

∑

i=1

pif(ai) = f(a) −
k

∑

i=1

pif(ai) −
k+1
∑

i=1

pif(ai)

= f(a) −
k−1
∑

i=1

Pi
(

f(ai) − f(ai−1)
)

− Pkf(ak)

−
n−1
∑

i=k

P̃i
(

f(ai+1 − f(ai)
)

− P̃k+1f(ak)

=

k−1
∑

i=1

Pi
(

f(ai−1) − f(ai)
)

+ Pk
(

f(a) − f(ak)
)

+ P̃k+1

(

f(a) − f(ak)
)

+

n−1
∑

i=k

P̃i
(

f(ai) − f(ai+1)
)

>

k−1
∑

i=1

λPi(ai−1 − ai) + λPk(a− ak) + λP̃k+1(a− ak+1) +

n−1
∑

i=k

λP̃i(ai − ai+1)

= λ

(

a−
n

∑

i=1

piai

)

= 0.

�
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P r o o f. (iv) [14] Using the notations and assumptions of the previous proof

define the three ntuples x1, . . . , xn+1, y1, . . . , yn+1, q1, . . . qn+1:

xi = ai, qi = pi, 1 6 i 6 k;

xk+1 = a, qk+1 = −1;

xi = ai−1, qi = pi−1, k + 2 6 i 6 n+ 1;

yi = a, 1 6 i 6 n+ 1.

Simple calculations show that:

Qj =











Pj , 1 6 j 6 k,

P̃j−1, k + 1 6 j 6 n,

0, j = n+ 1;

and,

j
∑

i=1

qiyi =











Pja, 1 6 j 6 k,

= P̃j−1a, k + 1 6 j 6 n,

= 0, j = n+ 1.

j
∑

i=1

qixi =























j−1
∑

i=1

Pi(xi − xi+1) + Pjaj , 1 6 j 6 k,

=
j−1
∑

i=1

Pi(xi − xi+1) + P̃j−1a, k + 1 6 j 6 n,

= 0, j = n+ 1.

Hence:
k

∑

i=1

qixi >

k
∑

i=1

qiyi, 1 6 k 6 n;

n+1
∑

i=1

qixi =

n+1
∑

i=1

qiyi,

and by HLPKF if f is convex then

n+1
∑

i=1

qif(xi) >

n+1
∑

i=1

qif(yi) = 0,

which is just (Jn). �

A variant of this result can be found in [1].

While (P ♭) makes much more demands on the negative weights than does (S) its

real advantage in its stronger form (P), as Pečarić pointed out, is that no requirement

on monotonicity of the elements of the ntuple is needed. This allows an extension of

Theorem 7 to convex functions of several variables as we shall now demonstrate; [11].
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If U ⊆ R
k, k > 1, where U is a convex set then the definition of convexity is, with

a slight change in notation, just that given in (1): for all x,y ∈ U

D(t) = D2(t) = f((1 − t)x + ty) − ((1 − t)f(x) + tf(y)) 6 0, 0 6 t 6 1,

and the convexity of U ensures that (1 − t)x + ty ∈ U . Further one of the standard

proofs of (Jn) can be applied in this situation to obtain Jensen’s inequality for such

functions f . Of course we cannot hope to extend the Steffensen result, if k > 2, as

the concept of increasing order of the points in U is not available but the Pečarić

argument can be extended using the same proof as the one given above in the case

k = 1 and uses the same notations.

Theorem 8. Let U be an open convex set in R
k, ai ∈ U , 1 6 i 6 n, and let pi,

1 6 i 6 n, be non-zero real numbers with Pn = 1 and I− = {i; 1 6 i 6 n ∧ pi < 0},

I+ = {i; 1 6 i 6 n ∧ pi > 0}. Further assume that ∀i, i ∈ I−, ai lies in the convex

hull of the set {ai; i ∈ I+} and that ∀j, j ∈ I+, pj +
∑

i∈I
−

pi > 0. If f : U → R is

convex then (Jn) holds.

P r o o f. (ii) of Theorem 7 can be applied with almost no change although the

notation is a little messier.

If i ∈ I− then for some t
(i)
j , 0 6 t

(i)
j 6 1,

∑

j∈I+

t
(i)
j = 1, ai =

∑

j∈I+

t
(i)
j aj and so

a =

n
∑

i=1

piai =
∑

j∈I+

pjaj +
∑

i∈I
−

pi

(

∑

j∈I+

t
(i)
j aj

)

=
∑

j∈I+

(

pj +
∑

i∈I
−

pit
(i)
j

)

aj

=
∑

j∈I+

qjaj .

where, as in proof (ii) above, 0 < qj < 1,
∑

j∈I+

qj = 1. In this proof we now use the

strong requirement (P) and incidentally provide a needed proof that a ∈ U . The

rest of the proof proceeds as in proof (ii) of Theorem 7. �

Note that in the case k = 1 the hypotheses imply that the smallest and largest

element in the ntuple have positive weights each of which dominates the sum of all

the negative weights.

We now turn to (∼ J) and note that proof (iv) of Theorem 7 can with a suitable

change of hypotheses lead to this inequality; [14; 16].
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Theorem 9. Let n, I, be as in Theorem 7, p1, . . . pn a real ntuple with Pn = 1,

then the reverse Jensen inequality holds for all functions f convex on I and for every

monotonic tuple with terms in I if and only if for some m, 1 6 m 6 n, Pk 6 0,

1 6 k < m, and P̃k 6 0, m < k 6 n.

P r o o f. Looking at proof (iv) of Theorem 7 we see that the present hypotheses

imply that

k
∑

i=1

qixi 6

k
∑

i=1

qiyi, 1 6 k 6 n;
n+1
∑

i=1

qixi =
n+1
∑

i=1

qiyi,

and by HLPKF if f is convex then

n+1
∑

i=1

qif(xi) 6

n+1
∑

i=1

qif(yi) = 0,

which is just (∼ Jn). �

6. Applications, cases of equality, integral results

The most obvious application of these extensions and reversals of the Jensen in-

equality are to mean inequalities. A large variety of means derive from the convexity

of a particular function and so we find that these inequalities will now hold with

negative weights satisfying the above conditions or will hold reversed.

6.1 An Example. If p1, p2, p3, p4 are non-zero real numbers with P4 = 1 and

a1, a2, a3, a4 are distinct positive numbers then, using the convexity of the negative

of the logarithmic function, the particular case of (GA)

ap11 a
p2
2 a

p3
3 a

p4
4 6 p1a1 + p2a2 + p3a3 + p4a4

can be deduced from Theorem 7 provided one of the following holds:

(i) all the weights are positive;

(ii) a1 < a2 < a3 < a4 or a1 > a2 > a3 > a4 and 0 < p1 < 1, 0 < P2 < 1,

0 < P3 < 1;

(iii) a1 < a2, a3 < a4, and p1 > 0, p4 > 0 and P3 > 0, P̃3 > 0.

The reverse inequality

ap11 a
p2
2 a

p3
3 a

p4
4 > p1a1 + p2a2 + p3a3 + p4a4,

can be deduced from Theorem 5 or Theorem 9 if one of the following holds:
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(i) only one of the weights is positive;

(ii) either a1 > a2 > a3 > a4, or a1 < a2, a3 < a4 and either 0 < p1 < 1 and

P̃2, P̃3, p4 < 0, or 0 < p2 < 1 and p1, P̃3 < 0, p4 < 0, or 0 < p3 < 1 and

p1, P2, p4 < 0 or 0 < p4 < 1 and p1, P2, P3 < 0.

6.2 The pseudo means of Alzer. A particular case of Theorem 5 has been

studied by Alzer under the name of pseudo-means, [3; 6, pp. 171–173].

Corollary 10. If f is convex on I and pi, 1 6 i 6 n, are positive weights with

Pn = 1 then

f

(

1

p1

(

a1 −
n

∑

i=2

piai

))

>
1

p1

(

f(a1) −
n

∑

i=2

pif(ai)

)

,

provided ai, 1 6 i 6 n, p1
−1

(

a1 −
n
∑

i=2

p1a1

)

∈ I.

A particular case when f(x) = xs/r, 0 < r < s, x > 0, leads to the inequality

(

1

p1

(

as1 −
n

∑

i=2

pia
s
i

))1/s

>

(

1

p1

(

ar1 −
n

∑

i=2

pia
r
i

))1/r

.

A related topic is the Aczél-Lorenz inequalities; [2; 6, pp. 198–199; 19, pp. 124–126].

6.3 The inverse means of Nanjundiah. Nanjundiah devised some very inge-

nious arguments using his idea of inverse means, [5, pp. 136–137,226; 13]. In the case

of r > 0 Nanjundiah’s inverse r-th power mean of order n is defined as follows: let

a,w, be two sequences of positive numbers then

N
[r]
n (a;w) =

(Wn

wn
arn −

Wn−1

wn
arn−1

)1/r

.

An immediate consequence of Theorem 2 with f(x) = xs/r, 0 < r < s, x > 0, is the

inequality

N
[r]
n (a;w) > N

[s]
n (a;w).

6.4 Comparable means. If ϕ is a strictly increasing function then a quasi-

arithmetic mean is defined as follows:

Mϕ(a;w) = ϕ−1

(

1

Wn

n
∑

i=1

wiϕ(ai)

)

.
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An important question is when two such means are comparable, that is: when is

it always true that:

Mϕ(a;w) 6 Mψ(a;w)

Writing ϕ(ai) = bi, 1 6 i 6 n, this last inequality:

ψ ◦ ϕ−1

(

1

Wn

n
∑

i=1

wibi

)

6
1

Wn

n
∑

i=1

wiψ ◦ ϕ−1(bi),

showing, from (Jn), that the means are comparable exactly when ψ◦ϕ−1 is convex, [6,

pp. 273–277]. Using Theorem 7 we can now allow negative weights in the comparison

and by using Theorem 5 or 9 get the opposite comparison; [1].

Daróczy & Páles, [7], have defined a class of general means that they called L-

conjugate means :

LM1,...,Mn

ϕ (a;u;v) = Lϕ(a;u;v) = ϕ−1

( m
∑

i=1

uiϕ(ai) −
n

∑

j=1

vjϕ ◦ Mj(a)

)

where Um−Vn = 1, ui > 0, 1 6 i 6 m, vj > 0, 1 6 j 6 n,Mj , 1 6 j 6 n, are means

on ntuples and ϕ is as above.

Now suppose we wish to compare two L-conjugate means:

Lϕ(a;u;v) 6 Lψ(a;u;v),

Using the above substitution, ϕ(ai) = bi, 1 6 i 6 m, and writing Nj = ϕ ◦ Mj this

last inequality becomes

ψ ◦ ϕ−1

( m
∑

i=1

uibi −
n

∑

j=1

vjNj(b)

)

6

m
∑

i=1

uiψ ◦ ϕ−1(bi) −
n

∑

j=1

vjψ ◦ ϕ−1 ◦ Nj(b)

which, from Theorem 8 in the case k = 1, holds if ψ ◦ ϕ−1 is convex, as for the

quasi-arithmetic means; [11].

In this sense this result of Pečarić gives a property of convex functions analogous

to that of Jensen’s inequality but useful for these means whereas Jensen’s inequality

is useful for the classical quasi-arithmetic means.

It should be remarked that extensions of this comparison result can be obtained

allowing the weights u,v to be real and using Theorem 7; see [1].

6.5 Cases of equality. Clearly the function D of (1) is zero if either t = 0, t = 1

or x = y; if otherwise D < 0 then f is said to be strictly convex. If this is the case

then Jensen’s inequality, (Jn), is strict unless a1 = . . . = an.
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It follows easily from the proof of Theorem 5 that (∼ Jn) holds strictly for strictly

convex functions under the conditions of that theorem unless a1 = . . . = an.

In Theorem 7, Steffensen’s extension of Jensen’s inequality, the same is true by a

consideration of proof (ii); see [1].

6.6 Integral results. Most if not all of the above results have integral analogues

but a discussion of these would take us beyond the bounds of this paper; [6, p. 371;

15; 19, pp.45–47, 84–87].
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[15] Pečarić, Josip E.: A new proof of the Jensen-Steffensen inequality. Mathematica Rév.

Anal. Num. Théorie Appr. 23 (1981), 73–77. zbl
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[19] Pečarić, Josip E., Proschan, Frank, Tong, Y. L.: Convex Functions, Partial Orderings

and Statistical Applications. Academic Press, New York, 1992. zbl

445

http://www.emis.de/MATH-item?1066.26012
http://www.emis.de/MATH-item?0767.26013
http://www.emis.de/MATH-item?0097.26502
http://www.emis.de/MATH-item?0989.26014
http://www.emis.de/MATH-item?1035.26024
http://www.emis.de/MATH-item?0990.26018
http://www.emis.de/MATH-item?0010.10703
http://www.emis.de/MATH-item?0437.26007
http://www.emis.de/MATH-item?1147.26012
http://www.emis.de/MATH-item?0771.26009
http://www.emis.de/MATH-item?0486.26010
http://www.emis.de/MATH-item?0487.26010
http://www.emis.de/MATH-item?0567.26014
http://www.emis.de/MATH-item?0538.26009
http://www.emis.de/MATH-item?0749.26004


[20] Roberts, A.Wayne, Varberg, Dale E.: Convex Functions. Academic Press, New York,
1973. zbl

[21] Steffensen, J. F.: On certain inequalities and methods of approximation. J. Inst. Actuar.
51 (1919), 274–297.
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