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Abstract

We study the class of vacuum (Ricci flat) six-dimensional spacetimes admitting a non-degenerate multiple Weyl
aligned null direction ℓ, thus being of Weyl type II or more special. Subject to an additional assumption on the
asymptotic fall-off of the Weyl tensor, we prove that these spacetimes can be completely classified in terms of the two
eigenvalues of the (asymptotic) twist matrix of ℓ and of a discrete parameter U0 = ±1/2, 0. All solutions turn out to
be Kerr-Schild spacetimes of type D and reduce to a family of “generalized” Myers-Perry metrics (which include limits
and analytic continuations of the original Myers-Perry black hole metric, such as certain NUT spacetimes). A special
subcase corresponds to twisting solutions with zero shear. In passing, limits connecting various branches of solutions
are briefly discussed.
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1 Introduction

1.1 Background

In the context of exact solutions to Einstein’s equations, the study of algebraically special spacetimes has been a fruitful
line of research for many years. Most notably, it led to the discovery of the Kerr metric [1]. In the vacuum case, the
Goldberg-Sachs [2] theorem is a milestone for the integration of the Newman-Penrose equations [3], and enables one to
classify algebraically special solutions as either diverging (ρ 6= 0) or non-diverging (ρ = 0, i.e., Kundt). In both cases, all
algebraically special types (i.e., type II or more special) can occur (cf. [4] and references therein). The Kerr black hole
and its generalizations belong to the subfamily of diverging type D vacua. Remarkably, all type D vacua can be fully
classified and integrated, and the general metric contains only constants of integration [5].

An extension of the Petrov classification to higher dimensions has been put forward in [6] (cf. [7] for a review). In
arbitrary dimensions, the type II condition of [6] can be expressed as [8]

ℓ[eCa]b[cdℓf ]ℓ
b = 0, (1)

where ℓ is a null vector field. The null direction defined by ℓ is a multiple Weyl aligned null direction (mWAND).
Generalizations of the Schwarzschild and Kerr solutions to arbitrary dimensions have been known for some time [9, 10],
and they are of type D [11–13] (i.e., they admit two distinct mWANDs). One might hope that, similarly as in four
dimensions, all type D vacua can be found in any dimensions. More generally, it appears of interest to study and classify
all vacuum solutions of type II or more special, i.e., those satisfying (1).

In five dimensions, a first step in this direction was an extension of the Goldberg-Sachs theorem [11, 14, 15].1 This
defines three branches of non-Kundt solutions [15], according to the possible rank (3, 2, or 1) of the optical matrix (defined
below in (2)). All such solutions (including a cosmological constant) have been fully classified in [18–20] (see also [21,22]
for earlier results in special cases). In particular, in the full-rank case [18], they essentially reduce the Myers-Perry black
hole solution with a cosmological constant [23] and certain limits thereof, thus being of type D and specified just by a
few parameters. This is in contrast with the existence of diverging solutions of type II, III and N in four dimensions.

In more than five dimensions, a complete extension of the Goldberg-Sachs theorem has not yet been achieved (see,
however, [11,14,24–26]). Moreover, there exist a qualitative difference between n = 4, 5 and any higher dimensions in the
structure of the Weyl tensor, amounting to new “degrees of freedom” in the purely spatial components Cijkl [13, 27].

2

1Only one direction of the Goldberg-Sachs theorem has been investigated systematically in higher dimensions, that is, what the existence of
a mWAND implies in a vacuum spacetime. This is the only part of the theorem relevant to this paper, and hereafter this will be understood.
It should also be noted that a different formulation of the higher-dimensional Goldberg-Sachs theorem has been studied in [16,17].

2As a consequence, for example, for n ≥ 6 there exist static vacuum black holes with horizons of non-constant curvature [28].
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This means that the integration of the Newman-Penrose equations is in general more complicated, and may require new
techniques. However, earlier results in various special cases [11, 25, 26, 29] indicate that a “uniqueness” result similar
to that of [18] may hold also in more than five dimensions dimensions, when the optical matrix has full-rank. This
is what we will prove in this paper in six dimensions, under an additional assumption explained below (eq. (6)). We
believe that, together with [18], the methods and the results of this paper will give enough insight to tackle the case
of general dimensions, at least in the full-rank case. Further motivation for studying six dimensional spacetimes is that
only even dimensions allow for shearfree WANDs with non-zero twist [30]. Since the Myers-Perry metric is shearing for
n ≥ 5 [10,13,24,31], this might thus lead to new solutions not present in five dimensions. We will find that such solutions
indeed exist, but they turn out not to be new (section 5.1).

In the remaining part of this section we describe the assumptions made in the present paper and we summarize
our results, which will be proved in the rest of the paper. In section 2, the r-dependence of the non-zero Newman-
Penrose quantities is obtained (in some cases only asymptotically, which suffices for our purposes), together with the
“transverse” equations, to be employed subsequently (the results of sections 2 and 3.1 are given in arbitrary dimension
n > 4, since no significant simplification would be achieved by fixing a particular value of n). In section 3 we define
adapted coordinates (not completely specified yet) and a natural parallely transported frame. The complete integration
of the field equations is carried out in sections 4 and 5 for the two possible cases b223 6= b245 and b223 = b245, respectively.
Appendix A describes a family of “generalized” Myers-Perry metrics (giving various coordinate systems and discussing
limits and analytic continuations connecting various branches of the solutions). Appendix B summarizes the higher
dimensional Newman-Penrose formalism used throughout the paper.

1.2 Assumptions

Let us consider a vacuum (Ricci flat) n-dimensional spacetime of type II or more special (n > 4). In a spacetime admitting
a mWAND, there always exists a geodesic mWAND [14]. With no loss of generality we can thus assume ℓ to satisfy (1)
and to be geodesic and affinely parametrized, i.e., ℓa;bℓ

b = 0. This implies (cf. section 2.2 of [30]) that the rank the optical
matrix

Lij = ℓa;bm
a
(i)m

b
(j), (2)

is a frame-independent property, for any choice of a frame adapted to ℓ (the n frame vectors m(a) consists of two
null vectors ℓ ≡ m(0), n ≡ m(1) and n − 2 orthonormal spacelike vectors m(i), with a, b . . . = 0, . . . , n − 1 while
i, j . . . = 2, . . . , n− 1 [6, 7]).

In this paper we focus on the non-degenerate (i.e., full-rank) case, namely we assume hereafter

detL 6= 0. (3)

Thanks to [11,32], this implies that the Weyl type can only be II or D (or O, in the trivial case of Minkowski’s space).
For convenience, throughout the paper we take our frame to be parallelly propagated along ℓ [30] (cf. (B2)), and we

define an affine parameter r such that
ℓ = ∂r. (4)

Under the above assumptions, the higher-dimensional Sachs equation DL = −L2 [11, 30] fixes the r-dependence of L
as [24,25] (cf. [3] in 4D)

L−1 = rI − b, (5)

where I is the identity matrix, and the “integration matrix” b satisfies Db = 0. Without loss of generality, we can restrict
ourselves to the case b 6= 0, for the case b = 0 reduces to the Robinson-Trautman metrics, already studied in [29].

As an additional assumption, we further require that the fall-off behaviour of the spatial part of the Weyl tensor for
large r be “fast enough”, namely

Cijkl = o(r−2). (6)

The motivation for this choice is twofold. From a physical viewpoint, such a fall-off is necessary for asymptotic flatness
[25,33], and is thus a natural condition to consider.3 Additionally, it allows for a partial extension of the Goldberg-Sachs
theorem to higher dimensions [25], which results in a significant simplification of the Newman-Penrose equations one has
to solve. Namely, from the Bianchi identities it follows [25] that b(ij) ∝ δij , which is equivalent (when (3) holds) to the

3In mathematical terms, imposing (6) means that certain integration functions (when fixing the Weyl r-dependence from the Bianchi
identities) are set to be zero [27] (cf. also, e.g., section 5 of [34] and section 4 of [26]). A price to pay for this simplification is that some
solutions admitting a (geodesic, non-degenerate) mWAND, such as static black holes with a generic Einstein horizon [28] or rotating black
holes with non-zero NUT [35], will be excluded from the spacetimes under consideration (they both violate (6), as follows from [29] and [12],
respectively).
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so called “optical constraint” [24, 26]. By a shift of r one can thus set b(ij) = 0, so that, without loss of generality, from
now on in (5) we take

bij = b[ij] 6= 0. (7)

We observe that b[ij] gives the twist matrix of ℓ at the leading order in 1/r (as follows from (5)).

1.3 Summary of results

We will prove that, in six dimensions, all vacuum spacetimes admitting a geodesic mWAND and further satisfying (3)
and (6) can be fully classified in terms of (the moduli of) the two eigenvalues b23 and b45 of the asymptotic twist matrix
b[ij] (cf. (54)) and of a discrete parameter U0 = ±1/2, 0 (cf. (12), (14)) as follows.

1. If db23 6= 0 6= db45, for U
0 6= 0 the spacetime is equivalent to the doubly spinning Myers-Perry metric with unequal

rotation parameters (A6). In the special subcase U0 = 0, one obtains instead the metric (128).

2. If db23 = 0 6= db45 then

(a) if b23 6= 0, one has the doubly spinning Myers-Perry metric with equal rotation parameters (A22);

(b) if b23 = 0, one has the Myers-Perry metric with a single spin (A41) for U0 6= 0, and its limit (188) for U0 = 0.

3. If db23 = 0 = db45 then two cases arise.

(a) If b223 + b245 6= 0, the NUT metric (A60) (with one or two NUT parameters), first found in [36], is obtained. In
the special case b23 = b45 the NUT parameters coincide and ℓ is shearfree.

(b) If b23 = 0 = b45, one is left with the generalized Schwarzschild-Tangherlini metric (231) with spherical, plane
or hyperbolic symmetry.

It is understood that such results are local. The Myers-Perry metrics referred to above are to be understood in a
“generalized” sense, i.e., some of those are contained in [10] only up to certain analytical continuations (see appendix A
for details and for some comments on the geometrical meaning of the sign of U0). Nevertheless, similarly as in [18], in the
various cases the generalized Myers-Perry metrics can be expressed in a unified form (i.e., with no need of any analytical
continuation) at the price of dressing the line-element with an additional parameter ǫ (which we rescale to ±1).

The various line-elements will be obtained in “Eddington-like” coordinates (u, r, xα), which are natural in the Newman-
Penrose formalism. However, we will present also the corresponding “Boyer-Lindquist” coordinates (t, r, x′α), more
frequently used in the black hole literature.

2 Fixing the r-dependence, and transverse equation (arbitrary n > 4)

2.1 Ricci rotation coefficients and derivative operators

So far, the frame vector n has not been specified, except for the requirement that it be parallely transported along ℓ.
While retaining the latter condition, thanks to (3) we can perform a null rotation which sets (cf. appendix D.2.6 of [24])

Li1 = 0, (8)

and thus uniquely fixes the null direction defined by n. On the other hand, we still have the freedom of r-independent
boosts in the plane of ℓ and n, and r-independent spatial rotations of the m(i) – this will be useful in the following.

The r-dependence of the non-zero Ricci rotation coefficients is fully determined (recalling (5)) by the Ricci identi-
ties (11b), (11n), (11a), (11j), (11m) and (11f) of [30], and reads [37] (see also appendix D of [24])

L1i = Ljil1j ,
i

M jk = Llk
i

mjl , (9)

L11 =
1

n− 2
L−1
ji Φij + l11, Nij = Lkj

(

nik −
∫

L−1
lk Φlidr

)

,
i

M j1 = −2

∫

ΦAijdr +
i

mj1 , (10)

Ni1 =

∫

Ψidr + ni1, (11)
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where lowercase Latin letters denote (for now arbitrary) integration functions that do not depend on r, with
i

mjk = − j
mik

and
i

mj1 = − j
mi1 . (To express L11, we used the equation (n− 2)Φ = −D(L−1

ji Φij), which follows from (B.5, [11]).)
Taking the affine parameter r as one of the coordinates, we can write the basis vectors as

ℓ = ∂r, n = U∂r +XA∂A, m(i) = ωi∂r + ξAi ∂A, (12)

where U , XA, ωi and ξ
A
i are spacetime functions (to be determined), ∂A = ∂/∂xA, and the xA represent any set of (n−1)

scalar functions such that (r, xA) is a well-behaved coordinate system. The r-dependence of the functions in (12) can be
determined using the commutators (B12) and (B13), and reads [37]

ωi = −L1ir + Ljiω
0
j , ξAi = Ljiξ

A0
j , (13)

XA = XA0, U = −l11r −
1

n− 2

∫

L−1
ji Φijdr + U0, (14)

where a superscript 0 denotes r-independent quantities.
Clearly, the r-dependence of (10), (11) and the second of (14) is, at this stage, determined only implicitly, since some

Weyl components appear there – their r-dependence will be given below (at least at the leading order in 1/r). Let us also
observe that the above result holds also without the assumption (6), and can be easily extended to include a cosmological
constant [27,37].

2.2 Weyl components of boost weight zero

Using now also assumption (6), the r-dependence of the Weyl b.w. 0 components has been already studied in [25, 27]4.
At the leading order in 1/r it reads

ΦSij =
Φ0

n− 2

[

δij
rn−1

+
n− 1

2(n− 3)

bklblkδij + 2bikbkj
rn+1

]

+O(r−n−3), ΦAij =
(n− 1)Φ0

(n− 2)(n− 3)

b[ij]

rn
+O(r−n−2), (15)

Cijkm =
4Φ0

(n− 2)(n− 3)

δi[mδk]j

rn−1
+O(r−n−1), (16)

where Φ0 6= 0 is an integration function independent of r (for Φ0 = 0 all the b.w. 0 components vanish [25, 37] and the
spacetime is flat). For our purposes, terms of higher order are not needed. It is just important to observe that these can
be determined recursively to any desired order once the leading terms in (15), (16) are known [37], and do not involve
any integration functions other that Φ0 and bij . This implies (cf. (12) with (5), (13) and (14)) that the full spacetime
metric is uniquely determined by knowing bij, l1i, l11, ω

0
i , ξ

A0
i , XA0, U0 and Φ0.

By a suitable (r-independent) rescaling of the affine parameter r and a corresponding rescaling (boost) of ℓ, such that
ℓ = ∂r and (8) are preserved, one can always set (cf., e.g., [5, 18])

Φ0 = const 6= 0. (17)

This choice simplifies considerably several expressions to be obtained in the following.

2.3 Weyl components of negative boost weight

In the present class of spacetimes, the Weyl components of negative b.w. fall off as r1−n or faster [25, 27]. Using the
Bianchi identities (B7) and (B8) (with (5), (9), (13) and (15)), at the leading order one finds (n−3)Ψi = −[(n−1)l1iΦ0+
ξA0
i Φ0,A]r

1−n +O(r−n) and (n− 2)Ψijk = δk[jΨi] +O(r−n). However, from Ψi = 2Ψijj with (17) one arrives at

l1i = 0, (18)

so that, in fact, Ψijk = O(r−n) and L1i = 0. To proceed, it is useful to employ also the Ricci identities (B16) and (B17),
which give (with (8) and (18))

ξA0
[j| bi|k],A = ω0

[jδk]i + bil
l

m[jk] + bl[j|
l

mi|k] , (19)

XA0bij,A = U0δij − nij − l11bij − bkj
k
mi1 − bik

k
mj1 . (20)

4In [25] it was assumed that positive powers of r vanish, however this assumption is not necessary [27].
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Using (19), one obtains from (B7) and (B9)

Ψi =
n− 1

n− 2

Φ0ω
0
i

rn
+O(r−n−1), Ψijk =

1

n− 3
Ψ[iδj]k +O(r−n−1). (21)

Comparing the latter with (B8) leads to

ξA0
j bik,A = 2ω0

[iδk]j + 2bs[i
s

mk]j , (22)

which will be useful for later calculations.
Next, at the leading order (B10) (with (5), (9), (10), (13)–(15)) gives

l11 = 0, (23)

while at the subleading order (using (20) and Ψ[ij] = 0) one finds

nij = n(ij) = U0δij , (24)

XA0bij,A = 2bk[i
k
mj]1 , (25)

along with Ψij = O(r−n). At the next order, comparing (B10) with the trace of (B11) (recalling (15), (16), (21), (24),
(25)), one arrives at

ξA0
[i ω

0
j],A = 2U0bij + ω0

k

k
m [ij] , (26)

ξA0
(j ω

0
i),A + ω0

s

s
m(ij) = 0. (27)

The latter also implies that, in fact,
Ψij = O(r−n−1). (28)

Similarly as for components of b.w. 0, also negative b.w. components (21) and (28) can be determined to any desired
order, without involving any new integration functions [37] (the explicit form of Ψijk and Ψij will not be needed in what
follows).

Using the above results and (15), we are thus able to summarize the leading-order r-dependence of all the Ricci
rotation coefficients (9)–(11)

L1i = 0,
i

M jk =

i
mjk

r
+O(r−2), L11 =

1

n− 2

Φ0

rn−2
+O(r−n), (29)

Nij = U0

(

δij
r

+
bij
r2

)

+O(r−3),
i

M j1 =
i

mj1 +O(r1−n), Ni1 = ni1 +O(r1−n), (30)

and of the derivative operators (13), (14)

ωi =
ω0
i

r
+O(r−2), ξAi =

ξA0
i

r
+O(r−2), XA = XA0, U = U0 +

Φ0

(n− 2)(n− 3)

1

rn−3
+O(r1−n). (31)

Recall, however, that the r-dependence of all the metric coefficients, except for grr = 2U + ωiωi, is also known in closed
form, thanks to (12) with (5), (13) and (14).

2.4 Further transverse equations from commutators and Ricci identities

The remaining commutators (B14) and (B15) (with L1i = 0, as obtained above) applied on r and xA give the following
set of equations (at the leading and, in the case of (33), subleading order)

ni1 = 0, (32)

XA0ω0
i,A − ξA0

i U0
,A = − j

mi1 ω
0
j , (33)

ξB0
i XA0

,B −XB0ξA0
i,B =

j
mi1 ξ

A0
j , (34)

ξB0
[i ξ

A0
j],B = XA0bij + ξA0

k

k
m [ij] . (35)
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Using (24) and (32), the Ricci identities (B18)–(B21) give, respectively,

XA0U0
,A = 0, (36)

ξA0
i U0

,A = 0, (37)

XA0 i
mjk,A − ξA0

k

i
mj1,A = −2

s
m[i|1

s
m|j]k − i

mjs
s

mk1 , (38)

ξA0
[k|

i
mj|l],A = 2U0δi[lδk]j + bkl

i
mj1 − i

ms[k|

j
ms|l] +

i
mjs

s
m[kl] . (39)

Note, in particular, that (36) and (37) imply
U0 = const. (40)

3 Adapted coordinates and preferred frame

3.1 Coordinates (r, u) in the 2-plane spanned by ℓ and n and scaling freedom

Recall that we have ℓ = ∂r and n = U∂r+X
A∂A (eq. (12)). The commutator (B12) implied (first of (14)) that XA = XA0

is independent of r. We thus have
[∂r, X

A∂A] = 0, (41)

so that there exist a function u that can be used as a coordinate together with r and such that XA∂A = ∂u. In other
words, we have now a coordinate system (r, xA)=(r, u, xα) (the (n− 2) coordinates xα will be specified in the following)
such that

XA = δAu , (42)

i.e.,
n = U∂r + ∂u. (43)

Eqs. (33) (with (40)), (34), (35), (25) and (38) thus simplify to

ω0
i,u = − j

mi1 ω
0
j , (44)

ξA0
i,u = − j

mi1 ξ
A0
j , (45)

ξB0
[i ξ

u0
j],B = bij + ξu0k

k
m [ij] , ξB0

[i ξ
α0
j],B = ξα0k

k
m [ij] , (46)

bij,u = 2bk[i
k
mj]1 , (47)

i
mjk,u − ξA0

k

i
mj1,A = −2

s
m[i|1

s
m|j]k − i

mjs
s

mk1 . (48)

Let us further note that a coordinate transformation

r′ = λ−1r, u′ = λu, (49)

where λ 6= 0 is a constant, accompanied by a boost

ℓ′ = λℓ = ∂r′ , n′ = λ−1n = λ−2U∂r′ + ∂u′ , (50)

produces the following rescaling (cf. (2), (5), (31))

b′ij = λ−1bij , U0′ = λ−2U0, Φ′
0 = λ1−nΦ0, ω0

i
′
= λ−2ω0

i , ξu0i
′
= ξu0i , ξα0i

′
= λ−1ξα0i . (51)

This freedom will be useful in the following.

3.2 Choice of the vectors mi

The results presented so far hold in any number of dimensions n > 4. However, from now on, we restrict ourselves to the
case n = 6.
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In order to conveniently specify the spatial part of our frame, we shall use the remaining freedom of r-independent
spatial rotations (“spins”), i.e., mi 7→ Xi

jm
j with DXi

j = 0 (the Xi
j are 4× 4 orthogonal matrices). Under these one

has5

bij 7→ Xi
kX

j
lbkl, (52)

i
mj1 7→ Xi

kX
j
l

k
ml1 +Xj

kX
i
k,u. (53)

(Note that
i

mj1 does not transform homogeneously under an r-independent but u-dependent spin.) Now, thanks to (52),
we can adapt the spacelike frame vectors to an “eigenframe” of the antisymmetric matrix bij (cf., e.g., cap. IX of [38]),
i.e., without loss of generality from now on we can take

b = diag

([

0 b23
−b23 0

]

,

[

0 b45
−b45 0

])

. (54)

Then the l.h.s. and the r.h.s. of (47) must vanish separately, i.e.,

bij,u = 0, bk[i
k
mj]1 = 0 (when (54) holds). (55)

We have now to distinguish between two different cases:

(i) b45 6= ±b23 (“generic case”): from the second of (55) it follows immediately that

2
m41 =

2
m51 =

3
m41 =

3
m51 = 0, (56)

i.e.,
2

m31 and
4

m51 are the only non-zero components of
i

mj1 . However, a spin in the plane (23) by an angle θ, while
preserving (54), produces the transformation (cf. (53))

2
m31 7→ 2

m31 + θ,u, (57)

which can be used to arrive at
2

m31 = 0 (the remaining
i

mj1 are unchanged thanks to (56)). Similarly, a spin in the

plane (45) can be used to set
4

m51 = 0, so that in the frame in use we finally have
i

mj1 = 0.

(ii) b45 = b23( 6= 0): due to the degeneracy in the eigenvalues of b, one can now only conclude that

2
m41 =

3
m51 ,

2
m51 = − 3

m41 . (58)

On the other hand, here the canonical form (54) with b45 = b23 is invariant under a larger set of spins,6 which

can be used to arrive again at (56) – one can then proceed as in case (i) to set
i

mj1 = 0 in a suitable eigenframe
of b. Let us also observe that the present case coincide with ℓ being shearfree and twisting (and thus necessarily
expanding [30]), since here b2 = f0I (with f0 = −b223 = −b245), which with (5) implies

L =
1

r2 − f0
(rI + b). (59)

(The case b45 = −b23 corresponds to simply relabeling the frame vectors and need not be discussed separately).

Without loosing generality, from now on we can thus employ a parallelly transported frame such that, in both cases (i)
and (ii),

i
mj1 = 0. (60)

With (44) and (45), this gives
ω0
i,u = 0, ξA0

i,u = 0, (61)

5Eqs. (52) and (53) follow from the transformation properties of the Ricci rotation coefficients given in [30], which also ensure that r-
independent spins are indeed compatible with the various frame choices made previously.

6Namely, a spin (25) followed by a spin (34) with an opposite angle, and a spin (24) followed by a spin (35) with the same angle.
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while eqs. (48) and (39) reduce to

i
mjk,u = 0, (62)

ξA0
[k|

i
mj|l],A = 2U0δi[lδk]j −

i
ms[k|

j
ms|l] +

i
mjs

s
m[kl] . (63)

Let us now consider eq. (22). Using (54), this can be written explicitly as

ω0
2 = ξA0

3 b23,A = b23
3

m44 + b45
2

m54 = b23
3

m55 − b45
2

m45 , (64)

ω0
3 = −ξA0

2 b23,A = −b23
2

m44 + b45
3

m54 = −b23
2

m55 − b45
3

m45 , (65)

ω0
4 = ξA0

5 b45,A = −b23
3

m42 − b45
2

m52 = b23
2

m43 − b45
3

m53 , (66)

ω0
5 = −ξA0

4 b45,A = −b23
3

m52 + b45
2

m42 = b23
2

m53 + b45
3

m43 , (67)

ξA0
4 b23,A = 0 = ξA0

5 b23,A, ξA0
2 b45,A = 0 = ξA0

3 b45,A, (68)

b45
2

m53 = −b23
3

m43 , b45
3

m52 = b23
2

m42 , b45
2

m43 = b23
3

m53 , b45
3

m42 = −b23
2

m52 , (69)

b45
2

m55 = −b23
3

m45 , b45
2

m44 = b23
3

m54 , b45
3

m55 = b23
2

m45 , b45
3

m44 = −b23
2

m54 . (70)

Further consequences of (64)–(69), however, need again to be studied separately in the two possible cases (i) (section 4)
and (ii) (section 5) defined above.

4 Complete integration: generic case (b45 6= ±b23)

We still have a residual freedom of r- and u-independent spins in the planes (23) and (45). This leaves (54) and (60)
unchanged, while

ω0
i 7→ Xi

jω
0
j . (71)

Since ω0
i,r = 0 = ω0

i,u, this can be used to set

ω0
3 = 0, ω0

5 = 0. (72)

With this choice, and assuming b45 6= 0 (without loosing generality since we have bij 6= 0), eqs. (64)–(70) reduce to

ω0
2 = ξA0

3 b23,A =
b223 − b245
b45

2
m45 , ξA0

2 b23,A = ξA0
4 b23,A = ξA0

5 b23,A = 0, (73)

ω0
4 = ξA0

5 b45,A =
b223 − b245
b45

2
m52 , ξA0

4 b45,A = ξA0
2 b45,A = ξA0

3 b45,A = 0, (74)

3
m53 =

2
m52 ,

2
m54 = − 2

m45 , − 3
m42 =

2
m43 =

b23
b45

2
m52 ,

3
m55 =

3
m44 =

b23
b45

2
m45 , (75)

3
m52 =

2
m42 =

2
m53 =

3
m43 =

2
m44 =

3
m54 =

2
m55 =

3
m45 = 0. (76)

Since bij,r = 0 = bij,u, eqs. (73), (74) mean that

b23 = const ⇔ ω0
2 = 0, b45 = const ⇔ ω0

4 = 0. (77)

Next, (27) together with (26) leads to (using (72), (75) and (76))

ξA0
3 ω0

2,A = −ω0
2

2
m32 , ξA0

5 ω0
2,A = ω0

4

2
m45 , ξA0

2 ω0
2,A = 0 = ξA0

4 ω0
2,A, (78)

ξA0
5 ω0

4,A = −ω0
4

4
m54 , ξA0

3 ω0
4,A = −ω0

2

2
m43 , ξA0

4 ω0
4,A = 0 = ξA0

2 ω0
4,A, (79)

ω0
2

2
m33 = 0, ω0

2

2
m35 = 0, ω0

4

4
m55 = 0, ω0

4

4
m53 = 0, (80)

ω0
2

2
m52 + ω0

4

4
m52 = 0, ω0

2

2
m34 − ω0

4

3
m44 = 0, (81)

2U0b23 = ω0
2

2
m32 + ω0

4

2
m43 , 2U0b45 = ω0

4

4
m54 − ω0

2

2
m45 . (82)
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Let us now consider the second of (46), which, thanks to (61), reduces to ξβ0[i ξ
α0
j],β = ξα0k

k
m [ij] . Using (75) and (76),

this reads

2ξβ0[2 ξ
α0
3],β = −ξα02

2
m32 − ξα03

2
m33 − 2ξα04

2
m43 , (83)

2ξβ0[2 ξ
α0
4],β = 2ξα03

3
m[24] + 2ξα05

5
m[24] , (84)

2ξβ0[2 ξ
α0
5],β = −ξα02

2
m52 − ξα03

2
m35 + 2ξα04

4
m[25] , (85)

2ξβ0[4 ξ
α0
3],β = ξα04

3
m44 − ξα05

4
m53 + 2ξα02

2
m[43] , (86)

2ξβ0[3 ξ
α0
5],β = ξα02

2
m35 − ξα03

3
m53 − ξα04

4
m53 − ξα05

3
m55 , (87)

2ξβ0[4 ξ
α0
5],β = 2ξα02

2
m45 − ξα04

4
m54 − ξα05

4
m55 . (88)

Applying these to b23,α and b45,α (using (73), (74), (78)–(80)) one further obtains

ω0
2

3
m[24] = 0, ω0

2

2
m[34] = 0, (89)

ω0
4

5
m[24] = 0, ω0

4

4
m[25] = 0. (90)

(These are not all independent due to (75).)
For further analysis it will be necessary to distinguish among various subcases, depending on the possible vanishing

of ω0
2 and ω0

4 .

4.1 Case db23 6= 0 6= db45: general doubly-spinning Myers-Perry metric

Since neither b23 nor b45 are constant (thus, in particular, b23 6= 0 6= b45), because of (77) here we have ω0
2 6= 0 6= ω0

4 .
Eqs. (80), (89) and (90) thus give

2
m33 =

2
m35 =

4
m55 =

4
m53 = 0, (91)

3
m[24] =

2
m[34] =

5
m[24] =

4
m[25] = 0, (92)

thanks to which (83)–(88) reduce to (recall also (75))

2ξβ0[2 ξ
α0
3],β = −ξα02

2
m32 − 2ξα04

2
m34 , 2ξβ0[2 ξ

α0
4],β = 0, 2ξβ0[2 ξ

α0
5],β = −ξα02

2
m52 , (93)

2ξβ0[4 ξ
α0
3],β = ξα04

3
m44 , 2ξβ0[3 ξ

α0
5],β = −ξα03

2
m52 − ξα05

3
m44 , 2ξβ0[4 ξ

α0
5],β = 2ξα02

2
m45 − ξα04

4
m54 . (94)

These relations suggest how to define commuting vector fields ξ̂2, ξ̂3, ξ̂4 and ξ̂5 spanning the subspace of the xα.
Namely, choosing

ξ̂2 ≡
[

ω0
2(αb

2
45 + β)ξα02 + ω0

4(αb
2
23 + β)ξα04

]

∂α, ξ̂3 ≡ 1

ω0
2

ξα03 ∂α, (95)

ξ̂4 ≡
[

ω0
2(γb

2
45 + δ)ξα02 + ω0

4(γb
2
23 + δ)ξα04

]

∂α, ξ̂5 ≡ 1

ω0
4

ξα05 ∂α, (96)

where α, β, γ, δ are arbitrary constants such that αδ − βγ 6= 0 (a convenient choice will be specified later), one can use
(93), (94) with (73)–(75), (78), (79) and (81) to verify that [ξ̂i, ξ̂j ] = 0 and [ξ̂i, ∂r] = 0 = [ξ̂i, ∂u] for any choice of
i, j = 2, 3, 4, 5. One can thus define the adapted “transverse” coordinates xα = (y1, φ1, y2, φ2) via

∂φ1
≡ ξ̂2, ∂y1 ≡ ξ̂3, ∂φ2

≡ ξ̂4, ∂y2 ≡ ξ̂5. (97)

With these, by (73) and (74) one has b23,y1 = 1 = b45,y2 , b23,y2 = b23,φ1
= b23,φ2

= 0, b45,y1 = b45,φ1
= b45,φ2

= 0, so that
one can always choose (y1, y2) such that

y1 ≡ b23, y2 ≡ b45. (98)

(The coordinates φ1 and φ2 can be combined linearly in an arbitrary way, amounting to a redefinition of α, β, γ, δ in (95),
(96).)
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In these coordinates, we can integrate (78) and (79) using (82) (and a subset of (73)–(75)) to obtain the explicit form
of ω0

2 and ω0
4 (up to a sign), namely,

(ω0
2)

2 =
2U0y41 − c0y

2
1 − d0

y22 − y21
, (ω0

4)
2 =

2U0y42 − c0y
2
2 − d0

y21 − y22
, (99)

where c0 and d0 are integration constants (such that (ω0
2)

2 > 0, (ω0
4)

2 > 0 for a suitable range of (y1, y2)).
7 Furthermore,

inverting (95), (96) (with (97)) gives the components ξα0i , i.e.,

ξα02 ∂α =
ω0
2(βγ − αδ)−1

2U0y41 − c0y21 − d0

[

−(γy21 + δ)∂φ1
+ (αy21 + β)∂φ2

]

, (100)

ξα04 ∂α =
ω0
4(βγ − αδ)−1

2U0y42 − c0y22 − d0

[

−(γy22 + δ)∂φ1
+ (αy22 + β)∂φ2

]

, (101)

ξα03 ∂α = ω0
2∂y1 , ξα05 ∂α = ω0

4∂y2 . (102)

Next, we can determine the remaining components ξu0i using the first of (46) (with (54), (75), (76), (91) and (92)).
Let us first consider its ij = 35 component, which gives

ω0
2ξ
u0
5,y1 − ω0

4ξ
u0
3,y2 = −ξu03

2
m52 − ξu05

3
m44 . (103)

Thanks to (78), (79), (92) and (81), this can be rewritten as

(

ξu03
ω0
2

)

,y2

=

(

ξu05
ω0
4

)

,y1

. (104)

This can be used to show that, without loss of generality, we can always set ξu03 = 0 = ξu05 . Namely, under a coordinate
transformation

u 7→ u+ V (y1, y2, φ1, φ2), (105)

one has (with (102))

ξu02 7→ ξu02 + ξα02 V,α, ξu03 7→ ξu03 + ω0
2V,y1 , ξu04 7→ ξu04 + ξα04 V,α, ξu05 7→ ξu05 + ω0

4V,y2 . (106)

(The ω0
i , ξ

α0
i and XA = δAu are unchanged.) One can thus choose V so that, simultaneously, ξu03 + ω0

2V,y1 = 0 =
ξu05 + ω0

4V,y2 in (106), since the corresponding integrability condition is clearly (104) and thus identically satisfied. After
the transformation (105), from now on we shall thus have

ξu03 = 0, ξu05 = 0. (107)

This choice simplifies the remaining components of the first of (46). The components ij = 25, 23, 34, 45 now take the
form

ξu02,y2 = − y2
y22 − y21

ξu02 , −(ω0
2ξ
u0
2 ),y1 = 2y1 + 2ξu04 ω0

4,y1 , (108)

ξu04,y1 = − y1
y21 − y22

ξu04 , −(ω0
4ξ
u0
4 ),y2 = 2y2 + 2ξu02 ω0

2,y2 . (109)

These can be integrated to obtain (recall (99))

ξu02 =
y41 − e0y

2
1 − f0

2U0y41 − c0y21 − d0
ω0
2 , ξu04 =

y42 − e0y
2
2 − f0

2U0y42 − c0y22 − d0
ω0
4 , (110)

where e0 = e0(φ1, φ2) and f0 = f0(φ1, φ2) are integration functions. Using (110) and (100), (101), the component ij = 24
of the first of (46) becomes a constraint on e0 and f0, i.e.,

(e0δ − f0γ),φ1
= (e0β − f0α),φ2

. (111)

7All the
i

mjk are thus now also determined. In particular, for later calculations it is useful to observe that (cf. (78), (79))
2

m32 = −ω0

2,y1
,

2
m45 = ω0

2,y2
,

2
m43 = −ω0

4,y1
and

4
m54 = −ω0

4,y2
.
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Under a coordinate transformation (105), (106) with V,y1 = 0 = V,y2 (which preserves (107)), one finds (using (100),
(101)) that in (110)

e0 7→ e0 +
γ

βγ − αδ
V,φ1

− α

βγ − αδ
V,φ2

, f0 7→ f0 +
δ

βγ − αδ
V,φ1

− β

βγ − αδ
V,φ2

. (112)

This can be used to assign to e0 and f0 an arbitrary constant value, since (111) makes sure that the corresponding
integrability condition is satisfied. A convenient choice of these constants will differ in the two possible cases U0 6= 0 and
U0 = 0, as we now discuss.

4.1.1 Subcase U0 6= 0

First, let us use the freedom (112) to choose e0, f0 in (110) such that 2U0(s4 − e0s
2 − f0) = 2U0s4 − c0s

2 − d0, so that

2U0ξu02 = ω0
2 , 2U0ξu04 = ω0

4 . (113)

Next, since both functions in (99) must be strictly positive, it follows that c0 and d0 must be such that the polynomial
appearing in the numerators of (99) can be factorized as

2U0s4 − c0s
2 − d0 = 2ǫ|U0|(s2 − s1)(s

2 − s2), (114)

(with s1 6= s2 and at least one of s1, s2 strictly positive for ǫ = −1, both strictly positive for ǫ = +1), which we will use
henceforth, and where we have defined

ǫ ≡ sign(U0) = ±1. (115)

Further, using the scaling freedom (51) accompanied by an additional parameter redefinition

s′1 =
s1
λ2
, s′2 =

s2
λ2
, α′ = λ5α, γ′ = λ5γ, β′ = λ3β, δ′ = λ3δ, (116)

with
λ =

√

2|U0|, (117)

we can set 2U0′ = ǫ. Apart from this simplification, the expressions (99), (100)–(102) retain their form, with the
factorization (114). Finally, if we choose α′ = (s′1 − s′2)

−1, γ′ = (s′2 − s′1)
−1, β′ = s1(s

′
2 − s′1)

−1, δ′ = s2(s
′
1 − s′2)

−1, we
arrive at the following simplified expressions for the asymptotic quantities (all primes will be dropped hereafter)

(ω0
2)

2 = ǫ
(s1 − y21)(s2 − y21)

y22 − y21
, (ω0

4)
2 = ǫ

(s1 − y22)(s2 − y22)

y21 − y22
, ω0

3 = 0 = ω0
5 , (118)

ξu02 = ǫω0
2 , ξu04 = ǫω0

4 , ξu03 = 0 = ξu05 , (119)

ξα02 ∂α = −ǫω0
2

(

1

s1 − y21
∂φ1

+
1

s2 − y21
∂φ2

)

, ξα03 ∂α = ω0
2∂y1 , (120)

ξα04 ∂α = −ǫω0
4

(

1

s1 − y22
∂φ1

+
1

s2 − y22
∂φ2

)

, ξα05 ∂α = ω0
4∂y2 , (121)

U0 =
ǫ

2
, XA0 = δAu , (122)

with the conditions mentioned above on s1 and s2. This shows (recall the comments following (16)) that the present
solution describes the (generalized) doubly-spinning Myers-Perry metric with unequal spins of appendix A.1 (using the
fact that φ1 and φ2 can be multiplied by an arbitrary non-zero constant – see also the comments following (A7)).

4.1.2 Subcase U0 = 0

In this case, we necessarily have c0 > 0 and d0 < 0 in (99). Using (112), let us now make the simplifying choice
e0 = −d0/c0, f0 = 0 in (110). Using the scaling freedom (51) similarly as above, and choosing conveniently the arbitrary
constants α, β, γ, δ (we now skip these details and again drop the primes of the rescaled quantities), without loss of
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generality one can write the asymptotic quantities in the form

(ω0
2)

2 =
a2 − y21
y22 − y21

, (ω0
4)

2 =
a2 − y22
y21 − y22

, ω0
3 = 0 = ω0

5 , (123)

ξu02 = −y21ω0
2 , ξu04 = −y22ω0

4 , ξu03 = 0 = ξu05 , (124)

ξα02 ∂α = −ω0
2

(

∂φ1
+

1

y21 − a2
∂φ2

)

, ξα03 ∂α = ω0
2∂y1 , (125)

ξα04 ∂α = −ω0
4

(

∂φ1
+

1

y22 − a2
∂φ2

)

, ξα05 ∂α = ω0
4∂y2 , (126)

U0 = 0, XA0 = δAu , (127)

where the constant a2 corresponds to a redefinition of the rescaled d0.
It is then not difficult to determine the exact form of the coefficients of the frame vectors in (12) using (13) and (14)

with (5) and (54) (recall (98)).8 These determine the contravariant form of the metric, which can be inverted to obtain

ds2 = 2dr
[

du+ (a2 − y21 − y22)dφ1 + (a2 − y21)(a
2 − y22)dφ2

]

+ (r2 + y21)
y22 − y21
a2 − y21

dy21 + (r2 + y22)
y21 − y22
a2 − y22

dy22

+ 2dudφ1 + (r2 + a2 − y21 − y22)dφ
2
1 − (r2 + a2)(a2 − y21)(a

2 − y22)dφ
2
2

+
µr

ρ2
[

du+ (a2 − y21 − y22)dφ1 + (a2 − y21)(a
2 − y22)dφ2

]2
, (128)

with
ρ2 = (r2 + y21)(r

2 + y22). (129)

This spacetime is manifestly of the Kerr-Schild form (being flat for µ = 0). It can be verified that the 4-spaces of constant
r and u become flat asymptotically for r → ∞.

Defining new coordinates (t, ψ1, ψ2)

du = dt+
r2(r2 + a2)

r2 − µr + a2
dr, dφ1 = dψ1 −

r2 + a2

r2 − µr + a2
dr, dφ2 = dψ2 +

1

r2 − µr + a2
dr, (130)

one obtains an alternative Boyer-Lindquist form of the metric (128)

ds2 =
µr

ρ2
[

dt+ (a2 − y21 − y22)dψ1 + (a2 − y21)(a
2 − y22)dψ2

]2
+ (r2 + y21)

y22 − y21
a2 − y21

dy21 + (r2 + y22)
y21 − y22
a2 − y22

dy22

+
ρ2

r2 − µr + a2
dr2 + 2dtdψ1 + (r2 + a2 − y21 − y22)dψ

2
1 − (r2 + a2)(a2 − y21)(a

2 − y22)dψ
2
2 . (131)

This metric is not included in the metrics of [10] (where U0 = 1/2), but is contained in (48) of [35] (without using
their (49), and choosing their parameters to be g = L1 = L2 = C0 = 0, C1 = 1, C2 = a2 – and up to appropriate linear
redefinitions of the time and angles coordinates). The Kretschmann scalar diverges for r2 + y21 = 0 or r2 + y22 = 0. In
these coordinates, ℓ±a dx

a = dt± ρ2(r2 −µr+ a2)−1dr+(a2 − y21 − y22)dψ1 +(a2 − y21)(a
2 − y22)dψ2 define the two multiple

WANDs [13,24] (so that the Weyl tensor is of type D).

4.2 Case db23 = 0 6= db45: special Myers-Perry metrics

Here b23 is a constant, but not b45, so that ω0
2 = 0 6= ω0

4 . Therefore (73) and (75) give

2
m45 =

2
m54 =

3
m44 =

3
m55 = 0. (132)

Eqs. (80), (81) and (82) (using also the third of (75)) further give

4
m55 =

4
m53 =

4
m52 = 0, (133)

b23(ω
0
4)

2 = 2b23U
0(b223 − b245), (134)

8To be precise, the exact form of U in (14) is not yet known at this stage, since we have not explicitly determined Φij . This can be done [37],
but an alternative easy way to find U consists in writing it in terms of an unknown function ρ(r, y1, y2) [37] as U = −µrρ−2/2 (with µ =const)
and then solving the vacuum Einstein equations for the metric (128), which gives (129). (The fact that Φij , and thus U , are independent of
(u, φ1, φ2) follows from (15) and the comments following it.)
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while (89) and (90) are satisfied identically.
The components ijkl = 2345 and ijkl = 2435 of (63) read

ξα04

2
m35,α − ξα05

2
m34,α = − 2

m34
4

m54 , ξα05

2
m43,α =

2
m43

2
m52 , (135)

where
4

m54 ,
2

m43 and
2

m52 can be obtained from (82), (75) and (74).
Further, we observe that here we still have a freedom of r- and u-independent (23)-spins (thanks to ω0

2 = 0 = ω0
3).

Under these, one has, in particular [30]

2
m34 7→ 2

m34 + ξα04 θ,α,
2

m35 7→ 2
m35 + ξα05 θ,α. (136)

This can be used to set simultaneously
2

m[34] = 0,
2

m35 = 0, (137)

since the integrability condition following from the two equations (136) is identically satisfied thanks to (135) with (88).
Thanks to the above simplifications, eqs. (83)–(88) now reduce to (recall (75))

2ξβ0[2 ξ
α0
3],β = −ξα02

2
m32 − ξα03

2
m33 − 2ξα04

2
m43 , 2ξβ0[2 ξ

α0
4],β = 0, 2ξβ0[2 ξ

α0
5],β = −ξα02

2
m52 , (138)

2ξβ0[3 ξ
α0
4],β = 0, 2ξβ0[3 ξ

α0
5],β = −ξα03

2
m52 , 2ξβ0[4 ξ

α0
5],β = −ξα04

4
m54 . (139)

This shows that the distribution {ξα04 ∂α, ξ
α0
5 ∂α} is integrable. It is spanned by the two commuting vector fields (recall

(79) with ω0
2 = 0)

ξ̂4 ≡ ω0
4ξ
α0
4 ∂α, ξ̂5 ≡ 1

ω0
4

ξα05 ∂α, (140)

which can thus be used to define two coordinates (y2, φ2) via

∂φ2
≡ ξ̂4, ∂y2 ≡ ξ̂5. (141)

Here one can choose (cf. the first of (74))
y2 ≡ b45. (142)

Then (79) and (82) give
(ω0

4)
2 = p0 − 2U0y22 , (143)

where p0 is a constant such that (cf. (134))

b23(p0 − 2U0b223) = 0, p0 − 2U0y22 > 0. (144)

(This implies that when b23 6= 0 one has (ω0
4)

2 = 2U0(b223 − y22) > 0 and therefore U0 6= 0.)
The remaining non-trivial components of (63) now reduce to

2
m32,y2 =

y2
b223 − y22

2
m32 ,

2
m33,y2 =

y2
b223 − y22

2
m33 , (145)

2
m32,φ2

= 0,
2

m33,φ2
= 0, (146)

ξα03

2
m32,α − ξα02

2
m33,α = (

2
m32 )

2 + (
2

m33 )
2 +

10U0b223 − p0
b223 − y22

. (147)

Now, (138) and (139) show that also the distribution {ξα02 ∂α, ξ
α0
3 ∂α, ξ

α0
4 ∂α} is integrable. Furthermore, the vectors

ξ̂2 ≡
√

|b223 − y22 |ξα02 ∂α, ξ̂3 ≡
√

|b223 − y22 |ξα03 ∂α, (148)

commute with ξ̂4 and ξ̂5, but not among themselves. We can thus complete our coordinate system xα = (z, z̄, y2, φ2) by
defining a pair of complex conjugate coordinates (z, z̄) such that (cf., e.g., (4.32) of [39])

ξ̂2 + iξ̂3 = P (∂z +Q∂φ2
), (149)
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where P = P (z, z̄) and Q = Q(z, z̄) are complex functions.
Then, from (145) one obtains

2
m32 + i

2
m33 =

D0
√

|b223 − y22 |
, (150)

where D0(z, z̄) is a (complex) function of integration. Substituting (149) and (150) into the first of (138) gives

D0 = −iP P̄,z
P̄

, (151)

Q̄,z −Q,z̄ = i
4ǫb23
PP̄

, (152)

where the definition (115) is used,9 while (147) becomes (using also (151))

PP̄ (lnPP̄ ),zz̄ = K, (153)

with K given by (recall (144))

K = 2p0 (if b23 = 0), (154)

K = 16|U0|b223 > 0 (if b23 6= 0). (155)

It is not difficult to see that (153) is equivalent to requiring that the following auxiliary 2-dimensional metric

ds2(2) =
2dzdz̄

P P̄
, (156)

has constant Gaussian curvature K. A redefinition of the coordinate z 7→ z′(z) thus always exists such that (cf., e.g.,
eq. (2.55) of [40] or (7.2) of [39])

P = P̄ = 1 +
K

2
zz̄, (157)

where we dropped the prime over z. (A (23)-spin may also be necessary to preserve the form (149) with P real.)
One can now also solve (152) to find (up to using a coordinate transformation φ2 7→ φ2 + Z(z, z̄)) [18, 40]

Q = 0 (if b23 = 0), (158)

Q =
1

4U0b23

i

zP
(if b23 6= 0). (159)

The last step consists now in determining the components ξu0i . First, it is useful to observe that, under a coordinate
transformation (V is a real function)

u 7→ u+ V (z, z̄, y2, φ2), (160)

one has (using (140), (141), (148), (149))

ξu02 + iξu03 7→ ξu02 + iξu03 +
P

√

|b223 − y22 |
(V,z +QV,φ2

), (161)

ξu04 7→ ξu04 +
1

ω0
4

V,φ2
, ξu05 7→ ξu05 + ω0

4V,y2 . (162)

Since ω0
4 6= 0, one can always choose a function V such as to set

ξu05 = 0. (163)

Using this simplification, the components ij = 25, 35 and ij = 45 (recall (143)) of the first of (46) can be written as

(

ξu02 + iξu03
)

,y2
=

y2
b223 − y22

(

ξu02 + iξu03
)

, (164)

(ω0
4ξ
u0
4 ),y2 = −2y2. (165)

9Here for b23 6= 0 one has also ǫ = sign(b2
23

− y2
2
), cf. (134), (142).
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Eq. (165) immediately gives ξu04 =
[

g0(z, z̄, φ2)− y22
]

/ω0
4 , where g0 is an integration function. However, one can use a

transformation (160) with V,y2 = 0 (thus preserving (163)) to assign an arbitrary constant value to g0 (cf. (162)) – for
later convenience we choose to set g0 = p0

2U0 if U0 6= 0, and g0 = 0 if U0 = 0 (in which case p0 > 0 by (143)), so that

ξu04 =
1

2U0

√

p0 − 2U0y22 if U0 6= 0, (166)

ξu04 = − y22√
p0

if U0 = 0. (167)

The components ij = 24, 34 of the first of (46) then simply give

(

ξu02 + iξu03
)

,φ2

= 0, (168)

which with (164) leads to

ξu02 + iξu03 =
P

√

|b223 − y22 |
h0(z, z̄), (169)

where h0 is an integration function.
The component ij = 23 reads (using (166), (167), (169), (150), (151))

h̄0,z − h0,z̄ = 0. (170)

This condition ensures that we can use a transformation (160) with V,y2 = 0 = V,φ2
(thus preserving (163) and (166),

(167)) to set (cf. (161))
h0 = 0. (171)

4.2.1 Subcase b23 = 0: Myers-Perry metric with a single spin, and a limit thereof

1. U0 6= 0: let us define a rescaled parameter p̃0 = p0/[4ǫ(U
0)2], and perform a transformation (49)–(51) accompanied

by a further coordinate rescaling (z, z̄, y2, φ2) 7→ (ζ, ζ̄, y2, χ)

ζ = λ2z, χ = λ3φ2, (172)

with
λ =

√

2|U0|. (173)

Dropping the primes in (49)–(51) and redefining
y2 7→ y, (174)

the result for this case (cf. (140), (141), (143), (148), (149), (157), (158), (166), (169), (171)) can be thus summarized
as follows (up to rescaling m2 + im3 7→ sign(y)(m2 + im3))

ω0
2 = ω0

3 = ω0
5 = 0, ω0

4 =
√

ǫ(p̃0 − y2), (175)

ξu02 = ξu03 = ξu05 = 0, ξu04 = ǫ
√

ǫ(p̃0 − y2), (176)
(

ξα02 + iξα03

)

∂α =
P

y
∂ζ , (177)

ξα04 ∂α =
1

√

ǫ(p̃0 − y2)
∂χ, ξα05 ∂α =

√

ǫ(p̃0 − y2)∂y, (178)

U0 =
ǫ

2
, XA0 = δAu , (179)

where
ǫ = ±1, P = 1 + ǫp̃0ζζ̄. (180)

It follows that this solution corresponds to the Myers-Perry metric with a single spin of appendix A.3 (after
identifying p̃0 = a2).
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2. U0 = 0: here necessarily p0 > 0 (cf. (143)). For simplicity, let us relabel

y2 7→ y, φ2 7→ χ. (181)

The result for this case (cf. (140), (141), (143), (148), (149), (157), (158), (167), (169), (171)) can be thus summarized
as follows (up to rescaling m2 + im3 7→ sign(y)(m2 + im3))

ω0
2 = ω0

3 = ω0
5 = 0, ω0

4 =
√
p0, (182)

ξu02 = ξu03 = ξu05 = 0, ξu04 = −y2/√p0, (183)
(

ξα02 + iξα03

)

∂α =
P

y
∂z, (184)

ξα04 ∂α = (1/
√
p0)∂χ, ξα05 ∂α =

√
p0∂y, (185)

U0 = 0, XA0 = δAu , (186)

where
P = 1 + p0zz̄ (p0 > 0). (187)

(The parameter p0 could be normalized to 1 using (49)–(51) and a further rescaling of (z, z̄, y, χ), but we prefer
not to do so for dimensional reasons.) Similarly as in section 4.1.2, one can use the above asymptotic quantities to
arrive at the full metric as follows

ds2 = 2dr
(

du+ y2dχ
)

− 2p0dudχ+ (r2 + y2)
dy2

p0
+ p0(r

2 − y2)dχ2 + r2y2
4dzdz̄

P 2
+
µr

ρ2
(

du+ y2dχ
)2
, (188)

with (187) and
ρ2 = r2(r2 + y2). (189)

The 4-spaces of constant r and u become flat asymptotically for r → ∞.

One can define new coordinates (t, ψ) using

du = dt+
r2

p0 − µ
r

dr, dχ = dψ +
1

p0 − µ
r

dr, (190)

so that the metric (188) takes the Boyer-Lindquist form

ds2 =
1

r2 + y2

[

−
(

p0 −
µ

r

)

(

dt+ y2dψ
)2

+ p0
(

dt− r2dψ
)2
]

+ (r2 + y2)

(

dr2

p0 − µ
r

+
dy2

p0

)

+ r2y2
4dzdz̄

P 2
. (191)

This is metric (2.33) of [41] (specialized to six dimensions and with a vanishing cosmological constant). At r = 0
there is a curvature singularity (where the Kretschmann scalar diverges), while p0r = µ represents a Killing horizon

of the Killing vector field µ2∂t+p
2
0∂ψ. In these coordinates, ℓ±a dx

a = dt± r(r2+y2)
p0r−µ

dr+y2dψ define the two multiple

WANDs [13,24] (so that the Weyl tensor is of type D).

It may be interesting to observe that metric (191) can be obtained from the single-spin Myers-Perry metric (A56)
(dropping the tildes) by rescaling t 7→ λt, r 7→ λ−1r, y 7→ λ−1y, ψ 7→ λ3ψ, ζ 7→ λ2ζ, a 7→ λ−2a, µ 7→ λ−5µ and then
taking the limit λ→ 0.

4.2.2 Subcase b23 6= 0: Myers-Perry metric with equal spins

Here p0 = 2U0b223 6= 0 and ǫ = sign(U0) (cf. (143), (144), (115)). Let us perform a transformation (49)–(51) accompanied
by a further rescaling (z, z̄, y2, φ2) 7→ (ζ, ζ̄, y, χ) to dimensionless coordinates

y =
y2
|b23|

, ζ = λ|b23|z, χ = λ2b23φ2, (192)

with
λ =

√

2|U0|. (193)
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Dropping the primes in (49)–(51), the result for this case (cf. (140), (141), (143), (148), (149), (157), (159), (166),
(169), (171)) can be thus summarized as follows (up to rescaling m4 7→ sign(b23)m4)

ω0
2 = ω0

3 = ω0
5 = 0, ω0

4 = b23
√

ǫ(1− y2), (194)

ξu02 = ξu03 = ξu05 = 0, ξu04 = ǫb23
√

ǫ(1− y2), (195)

(

ξα02 + iξα03

)

∂α =
P

√

ǫ(1− y2)

(

∂ζ +
ǫi

2ζP
∂χ

)

, (196)

ξα04 ∂α =
1

√

ǫ(1− y2)
∂χ, ξα05 ∂α =

√

ǫ(1− y2)∂y, (197)

U0 =
ǫ

2
, XA0 = δAu , (198)

where
ǫ = ±1, P = 1 + 4ζζ̄. (199)

After relabeling the only remaining integration constants as

b23 = a, Φ0 = −6µ, (200)

this shows that the present solution describes the Myers-Perry metric with equal spins of appendix A.2 (after performing

a spin in the plane (23) to get rid of the extra phase ǫi
(

ζ/ζ̄
)1/2

in the first of (A35)).

4.3 Case db23 = 0 = db45: NUT metric with unequal NUTs

Since both b23 and b45 are constant (with b23 6= b45 6= 0) one has ω0
2 = 0 = ω0

4 , so that, from (73)–(75),

2
m45 =

2
m54 =

3
m44 =

3
m55 = 0, (201)

2
m52 =

3
m53 =

3
m42 =

2
m43 = 0, (202)

while (82) gives
U0 = 0. (203)

The component ijkl = 2345 of (63) read

ξα04

2
m35,α − ξα05

2
m34,α = − 2

m34
4

m54 − 2
m35

4
m55 . (204)

We can now use a r-and u-independent (23)-spin (136) (which does not affect (201), (202), (76)) to set

2
m34 = 0,

2
m35 = 0, (205)

since the integrability condition following from the two equations (136) is identically satisfied thanks to (204) with (88).
Similarly, a (45)-spin (which does not affect (205), (201), (202), (76)) can be used to set

4
m52 = 0,

4
m53 = 0, (206)

thanks to the component ijkl = 4523 of (63) and (83).
The above frame choice produces a drastic simplification of eqs. (83)–(88), which thus read

2ξβ0[2 ξ
α0
3],β = −ξα02

2
m32 − ξα03

2
m33 , 2ξβ0[4 ξ

α0
5],β = −ξα04

4
m54 − ξα05

4
m55 , (207)

2ξβ0[2 ξ
α0
4],β = 0, 2ξβ0[2 ξ

α0
5],β = 0, 2ξβ0[3 ξ

α0
4],β = 0, 2ξβ0[3 ξ

α0
5],β = 0, (208)

while the remaining non-trivial components of (63) reduce to

ξα04 (
2

m32 + i
2

m33 ),α = 0, ξα05 (
2

m32 + i
2

m33 ),α = 0, ξα03

2
m32,α − ξα02

2
m33,α = (

2
m32 )

2 + (
2

m33 )
2, (209)

ξα02 (
4

m54 + i
4

m55 ),α = 0, ξα03 (
4

m54 + i
4

m55 ),α = 0, ξα05

4
m54,α − ξα04

4
m55,α = (

4
m54 )

2 + (
4

m55 )
2. (210)
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Eqs. (207), (208) show that the distributions {ξα02 ∂α, ξ
α0
3 ∂α} and {ξα04 ∂α, ξ

α0
5 ∂α} are both integrable and that, fur-

thermore, one can introduce two pairs of complex coordinates (z, z̄) and (w, w̄) such that (ξα02 + iξα03 )∂α = P (z, z̄)∂z and
(ξα04 + iξα05 )∂α = S(w, w̄)∂w (up to a spin (23) independent of (r, u, w, w̄) and a spin (45) independent of (r, u, z, z̄), thus

preserving (205) and (206)). The first of (207) now gives
2

m32 + i
2

m33 = −iP P̄,z/P̄ , which, plugged into the last of (209),
gives PP̄ (lnPP̄ ),zz̄ = 0. This means that the auxiliary 2-dimensional metric (156) is flat. Since, by construction, the
vectors ξα02 ∂α and ξα03 ∂α represent an orthonormal frame of (156), one can always replace the complex coordinates (z, z̄)
by a real pair (y1, φ1) (more suitable for our purposes) such that (again up to a (23)-spin independent of (r, u, w, w̄)),
ξα02 ∂α and ξα03 ∂α take the form

ξα02 ∂α =
1

y1
∂φ1

, ξα03 ∂α = ∂y1 . (211)

Analogously, one can define (y2, φ2) such that, up to a (45)-spin (independent of (r, u, y1, φ1)),

ξα04 ∂α =
1

y2
∂φ2

, ξα05 ∂α = ∂y2 . (212)

In this new frame, (207) gives
2

m32 = −1/y1,
2

m33 = 0,
4

m54 = −1/y2,
4

m55 = 0. This will be used in the last step,
which consists in determining the components ξu0i using the first of (46).

Under a coordinate transformation
u 7→ u+ V (y1, φ1, y2, φ2), (213)

one has (with (211), (212))

ξu02 7→ ξu02 +
1

y1
V,φ1

, ξu03 7→ ξu03 + V,y1 , ξu04 7→ ξu04 +
1

y2
V,φ2

, ξu05 7→ ξu05 + V,y2 . (214)

The component ij = 35 of the first of (46) gives ξu05,y1 − ξu03,y2 = 0, which ensures that one can always find a function V
such as to set simultaneoulsy

ξu03 = 0, ξu05 = 0. (215)

Thanks to this, the remaining components of the first of (46) reduce to

(y1ξ
u0
2 ),y1 = −2b23y1, (y2ξ

u0
4 ),y2 = −2b45y2, (216)

ξu02,y2 = 0, ξu04,y1 = 0, y2ξ
u0
4,φ1

− y1ξ
u0
2,φ2

= 0. (217)

These can be easily integrated to get y1ξ
u0
2 = −b23y21 + g1(φ1, φ2), y2ξ

u0
4 = −b45y22 + g2(φ1, φ2), with g2,φ1

− g1,φ2
= 0.

The latter condition ensures that we can use a transformation (213), (214) with V,y1 = 0 = V,y2 (thus preserving (215))
to set g1 = 0 = g2, so that finally

ξu02 = −b23y1, ξu04 = −b45y2. (218)

Summarizing, we have found that (cf. (215), (218), (211), (212), (203))

ω0
i = 0, ξu02 = −b23y1, ξu04 = −b45y2 ξu03 = 0 = ξu05 , (219)

ξα02 ∂α =
1

y1
∂φ1

, ξα03 ∂α = ∂y1 , ξα04 ∂α =
1

y2
∂φ2

, ξα05 ∂α = ∂y2 , (220)

U0 = 0, XA0 = δAu , (221)

which shows that this solution corresponds to the NUT metric with two distinct NUT parameters of appendix A.5 (with
b23 = a1, b45 = a2), first found in [36] in different coordinates (cf. appendix A.5 for details).

5 Special case b45 = b23 (shearfree solutions)

5.1 Subcase b45 = b23 6= 0 (shearfree, twisting solutions): NUT metric with equal NUTs

Let us define
a ≡ b45 = b23 6= 0. (222)

In this case (69) and (70) can be written compactly as

3
m5k =

2
m4k ,

3
m4k = − 2

m5k (k = 2, 3, 4, 5), (223)
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so that (64)–(68) give
ω0
2 = ω0

3 = ω0
4 = ω0

5 = 0, a = const. (224)

Using (26) this implies
U0 = 0. (225)

The vectors ξα0i ∂α span a four-dimensional space and can be used to define an Euclidean (contravariant) metric

ξα0i ξβ0i ∂α∂β there (recall that ξα0i,r = 0 = ξα0i,u, cf. (31) and (61)). The inverse of this auxiliary metric enables one to define

the corresponding 1-forms ηiα0dx
α, such that

ξα0i ηjα0 = δji . (226)

Using the second of (13) (recall also (4), (43), (59) and the orthonormality relations of the frame vectors {ℓ,n,mi}),
it is easy to see that (m

(2)
a + im

(3)
a )dxa = (r + ia)(η2α0 + iη3α0)dx

α and (m
(4)
a + im

(5)
a )dxa = (r + ia)(η4α0 + iη5α0)dx

α. By
considering the coefficient of the terms dxα ∧ dxβ in the 2-form dmi at the leading order in r (with the definitions of the

Ricci rotation coefficients
i

M jk of the full spacetime (B1) and of their leading terms
i

mjk , (9) or (29)), one concludes that

dηi0 = − i
mjk η

j
0 ∧ ηk0 . (227)

This is the first Cartan equation in the auxiliary four-dimensional space, determining the connection 1-forms there in

terms of the asymptotic rotation Ricci coefficients
i

mjk . Thanks to this, one can use (63) (with (225)) to evaluate the
Ricci identity in the auxiliary four-dimensional space, which implies that this space is flat.

The simplest choice is thus now to define adapted Cartesian coordinates such that (up to an r and u-independent
4-rotation of the vectors ξα0i ∂α)

ξα0i ∂α = ∂xi
. (228)

This choice ensures that
i

mjk = 0, which simplifies the first of (46). It is easy to see that, using an appropriate
transformation u 7→ u+ V (x2, x3, x4, x5), the solution to the latter can always be written as

ξu02 = −2ax3, ξu04 = −2ax5, ξu03 = 0 = ξu05 . (229)

Similarly as in section 4.1.2 (and 4.2.1, case 2), one can use the above asymptotic quantities to arrive at the following
line-element

ds2 = 2dr[du+ 2a(x3dx2 + x5dx4)] + (r2 + a2)(dx22 + dx23 + dx24 + dx25) +
µr

(r2 + a2)2
[du+ 2a(x3dx2 + x5dx4)]

2. (230)

For µ 6= 0, a transformation (A71) shows that this metric is equivalent to the doubly NUT metric with equal NUT
parameters (49) of [36] (setting their λ = 0 and n1 = n2), in turn equivalent to our line-element (A72) with a1 = a2 (see
appendix A.5 for more details).

5.2 Subcase b45 = b23 = 0 (shearfree, twistfree solutions): Schwarzschild-Tangherlini met-
ric

When b45 = b23 = 0, the geodesic null congruence defined by ℓ is expanding, shearfree and twistfree (cf. (5) with (54)), i.e.,
one has a Robinson-Trautman spacetime. This case has been excluded from the analysis of the previous sections, where
we assumed b[ij] 6= 0. However, it was already fully explored in [29]. Thanks to the assumption (6), the corresponding
line-element can thus be written as [29]

ds2 = −
(

2U0 − µ

r3

)

du2 + 2dudr + r2hαβ(x)dx
αdxβ , (231)

where hαβ(x) is the metric of a four-dimensional space of constant curvature having a Ricci scalar R = 24U0, and
2U0 = 0,±1 (see also (A22) with a = 0 and (A60) with a1 = 0 = a2). The case 2U0 = 1 corresponds to the static,
spherically symmetric Schwarzschild-Tangherlini black hole [9].

For completeness, let us mention that, in this case, the extra assumption (6) can be dropped in the following sense
(see section 8 of [26] and section 5 of [22]): all vacuum spacetimes admitting a twistfree, non-degenerate mWAND in six
dimensions belong to the Robinson-Trautman family (and are thus of type D). Such a result holds also in the presence of
a cosmological constant [22, 26] (see [29] for the corresponding line-element) and also in five dimensions [15], but not for
n > 6 (counterexamples being known [26]).
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A Myers-Perry metrics in six dimensions

Let us consider the following six-dimensional metric in the “Eddington-like” coordinates (u, r, µ1, µ2, φ1, φ2)

ds2 = −ǫdu2 + 2dr(du+ ǫa1µ
2
1dφ1 + ǫa2µ

2
2dφ2) + (r2 + a21)(dµ

2
1 + µ2

1dφ
2
1) + (r2 + a22)(dµ

2
2 + µ2

2dφ
2
2) + ǫr2dµ2

3

+
µr

ρ2
(du+ ǫa1µ

2
1dφ1 + ǫa2µ

2
2dφ2)

2, (A1)

where a1, a2 and µ are constants, and

ρ2 = ǫµ2
1r

2(r2 + a22) + ǫµ2
2r

2(r2 + a21) + µ2
3(r

2 + a21)(r
2 + a22), (A2)

µ2
3 = 1− ǫ(µ2

1 + µ2
2), ǫ = ±1. (A3)

The six-dimensional Myers-Perry metric corresponds to the case ǫ = +1 (cf. eq. (3.20) of [10], after defining u = t+r).
From this, the metric with ǫ = −1 (still a vacuum solution, not considered in [10]) can be obtained by the complex
coordinate transformation u 7→ iu, r 7→ −ir, µ1 7→ iµ1, µ2 7→ iµ2 along with the rescaling a1 7→ ia1, a2 7→ ia2, µ 7→ −iµ
(a similar transformation works in any even dimension). For r → ∞, the parameter ǫ specifies the norm of the Killing
vector field ∂u, as well as the sign of the curvature of 4-spaces of constant r and u (cf. [5] and section IV of [42] in four
dimensions).

The line-element (A1) is manifestly of the Kerr-Schild form, and the Kerr-Schild geodesic null vector ℓadx
a = du +

ǫa1µ
2
1dφ1 + ǫa2µ

2
2dφ2 is a multiple WAND [24]. One can check that the corresponding contravariant vector is simply

(cf. [10])
ℓ = ∂r, (A4)

affinely parametrized by the coordinate r.

A.1 Generic case: two unequal spins (a21 − a22 6= 0 6= a1a2)

In this case it is useful to replace the coordinates (µ1, µ2) with (y1, y2) via (similarly as in [35])

µ2
1 = ǫ

(a21 − y21)(a
2
1 − y22)

a21(a
2
1 − a22)

, µ2
2 = ǫ

(a22 − y21)(a
2
2 − y22)

a22(a
2
2 − a21)

. (A5)

This transformation diagonalizes the “µi-part” of the generalized Myers-Perry metric (A1), which thus becomes

ds2 = −ǫdu2 + 2dr(du+ ǫa1µ
2
1dφ1 + ǫa2µ

2
2dφ2) + (r2 + y21)g1dy

2
1 + (r2 + y22)g2dy

2
2 + (r2 + a21)µ

2
1dφ

2
1 + (r2 + a22)µ

2
2dφ

2
2

+
µr

ρ2
(du+ ǫa1µ

2
1dφ1 + ǫa2µ

2
2dφ2)

2,(A6)

with

g1 =
ǫ(y22 − y21)

(a21 − y21)(a
2
2 − y21)

, g2 =
ǫ(y21 − y22)

(a21 − y22)(a
2
2 − y22)

, ρ2 = (r2 + y21)(r
2 + y22). (A7)

This spacetime is known to be of Weyl type D [12, 13] and not purely electric (i.e., ΦAij 6= 0) [24, 43]. It follows [44] (see
also Remark 3.15 of [43]) that it admits precisely two distinct multiple WANDs (of course, one of these is parallel to ℓ),
which possess the same optical properties (thanks to the reflection symmetry argument of [13], related to a comment in
footnote 3 of [5]). It can also be observed that if one rescales φ1 7→ a1φ1, φ2 7→ a2φ2, then for ǫ = −1 one can replace a21
(or a22, but not both, since g1 and g2 in (A7) must be both positive for a Lorentzian signature) in the above metric by an
arbitrary parameter which can have any sign, or vanish, still giving rise to a vacuum solution.
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Together with (A4), a frame parallely transported along ℓ is given by

n = ∂u +
ǫρ2 − µr

2ρ2
∂r, (A8)

m2 =
1√
g1

r

r2 + y21

(

ǫ∂u + ∂r −
y1
r
∂y1 −

ǫa1
a21 − y21

∂φ1
− ǫa2
a22 − y21

∂φ2

)

, (A9)

m3 =
1√
g1

y1
r2 + y21

(

ǫ∂u + ∂r +
r

y1
∂y1 −

ǫa1
a21 − y21

∂φ1
− ǫa2
a22 − y21

∂φ2

)

, (A10)

m4 =
1√
g2

r

r2 + y22

(

ǫ∂u + ∂r −
y2
r
∂y2 −

ǫa1
a21 − y22

∂φ1
− ǫa2
a22 − y22

∂φ2

)

, (A11)

m5 =
1√
g2

y2
r2 + y22

(

ǫ∂u + ∂r +
r

y2
∂y2 −

ǫa1
a21 − y22

∂φ1
− ǫa2
a22 − y22

∂φ2

)

. (A12)

The asymptotic quantities (cf. (31) with n = 6) are thus given by

ω0
2 =

1√
g1
, ω0

4 =
1√
g2
, ω0

3 = 0 = ω0
5 , (A13)

ξu02 = ǫω0
2 , ξu04 = ǫω0

4 , ξu03 = 0 = ξu05 , (A14)

ξα02 ∂α = −ǫω0
2

(

a1
a21 − y21

∂φ1
+

a2
a22 − y21

∂φ2

)

, ξα03 ∂α = ω0
2∂y1 , (A15)

ξα04 ∂α = −ǫω0
4

(

a1
a21 − y22

∂φ1
+

a2
a22 − y22

∂φ2

)

, ξα05 ∂α = ω0
4∂y2 , (A16)

U0 =
ǫ

2
, Φ0 = −6µ, XA0 = δAu . (A17)

One can also verify that b23 = y1, b45 = y2.
A Boyer-Lindquist form of metric (A6) can be obtained by defining new coordinates (t, ψ1, ψ2)

du = dt+
(r2 + a21)(r

2 + a22)

ǫ(r2 + a21)(r
2 + a22)− µr

dr, dφ1 = dψ1−
a1(r

2 + a22)

ǫ(r2 + a21)(r
2 + a22)− µr

dr, dφ2 = dψ2−
a2(r

2 + a21)

ǫ(r2 + a21)(r
2 + a22)− µr

dr,

(A18)
so that

ds2 = −ǫdt2 + ρ2

ǫ(r2 + a21)(r
2 + a22)− µr

dr2 + (r2 + y21)ǫ
y22 − y21

(a21 − y21)(a
2
2 − y21)

dy21 + (r2 + y22)ǫ
y21 − y22

(a21 − y22)(a
2
2 − y22)

dy22

+ (r2 + a21)ǫ
(a21 − y21)(a

2
1 − y22)

a21(a
2
1 − a22)

dψ2
1 + (r2 + a22)ǫ

(a22 − y22)(a
2
2 − y21)

a22(a
2
2 − a21)

dψ2
2

+
µr

ρ2

[

dt+
(a21 − y21)(a

2
1 − y22)

a1(a21 − a22)
dψ1 +

(a22 − y21)(a
2
2 − y22)

a2(a22 − a21)
dψ2

]2

.(A19)

For ǫ = +1, metric (A19) coincides with metric (45) of [35] (apart from a trivial rescaling of ψ1 and ψ2, and after
setting g = L1 = L2 = 0 in [35]; a transformation to the alternative metric form (48) of [35], which allows also for ǫ = −1,
requires instead linear redefinitions of the Killing coordinates similar to (47) of [35]). In these cooordinates,

ℓ±a dx
a = dt± ρ2

ǫ(r2 + a21)(r
2 + a22)− µr

dr +
(a21 − y21)(a

2
1 − y22)

a1(a21 − a22)
dψ1 +

(a22 − y21)(a
2
2 − y22)

a2(a22 − a21)
dψ2, (A20)

define the two multiple WANDs.

A.2 Two equal spins (a21 = a22)

Clearly one cannot use (A5) when a1 = a2 ≡ a. Let us now define, instead, the dimensionless coordinates (y1, y2) via

µ2
1 = ǫ(1− y22)y

2
1 , µ2

2 = ǫ(1− y22)(1− y21), (A21)
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such that µ2
3 = y22 . Metric (A1) becomes

ds2 = −ǫdu2 + 2dr
[

du+ ǫa(µ2
1dφ1 + µ2

2dφ2)
]

+ (r2 + a2y22)
ǫdy22
1− y22

+ (r2 + a2)

[

ǫ(1− y22)
dy21

1− y21
+ µ2

1dφ
2
1 + µ2

2dφ
2
2

]

+
µr

ρ2
[

du+ ǫa(µ2
1dφ1 + µ2

2dφ2)
]2
,(A22)

with
ρ2 = (r2 + a2)(r2 + a2y22). (A23)

(Let us note that metric (A22) can also be obtained from (A6) by replacing y1 7→
√

a21 − (a21 − a22)y
2
1 , y2 7→ a1y2, and

then taking the limit a2 → a1 ≡ a.)10

A frame parallely transported along ℓ is given by (A4) with

n = ∂u +
ǫρ2 − µr

2ρ2
∂r, (A24)

m2 =
r

r2 + a2

√

1− y21
ǫ(1− y22)

(

−ǫa
r
∂y1 −

y1
1− y21

∂φ1
+

1

y1
∂φ2

)

, (A25)

m3 =
r

r2 + a2

√

1− y21
ǫ(1− y22)

[

ǫ∂y1 +
a

r

(

− y1
1− y21

∂φ1
+

1

y1
∂φ2

)]

, (A26)

m4 =
ra
√

ǫ(1− y22)

r2 + a2y22

[

ǫ∂u + ∂r −
y2
r
∂y2 −

ǫ

a(1− y22)
(∂φ1

+ ∂φ2
)

]

, (A27)

m5 =
a2y2

√

ǫ(1− y22)

r2 + a2y22

[

ǫ∂u + ∂r +
r

a2y2
∂y2 −

ǫ

a(1− y22)
(∂φ1

+ ∂φ2
)

]

. (A28)

From this and (31) one can read off the following asymptotic quantities

ω0
2 = ω0

3 = ω0
5 = 0, ω0

4 = a
√

ǫ(1− y22), (A29)

ξu02 = ξu03 = ξu05 = 0, ξu04 = ǫa
√

ǫ(1− y22), (A30)

ξα02 ∂α =
1

√

ǫ(1− y22)

(

− y1
√

1− y21
∂φ1

+

√

1− y21
y1

∂φ2

)

, ξα03 ∂α = ǫ

√

1− y21
ǫ(1− y22)

∂y1 , (A31)

ξα04 ∂α = − 1
√

ǫ(1− y22)
(∂φ1

+ ∂φ2
) , ξα05 ∂α =

√

ǫ(1− y22)∂y2 , (A32)

U0 =
ǫ

2
, Φ0 = −6µ, XA0 = δAu . (A33)

It is useful to observe that the complex coordinate transformation (y1, φ1, φ2) 7→ (ζ, ζ̄, χ) defined by

ζ = −1

2
eǫi(φ1−φ2)

√

1− y21
y1

, χ = −φ1, (A34)

allows one to rewrite (the remaining quantities being unchanged)

(

ξα02 + iξα03

)

∂α =
ǫi
(

ζ/ζ̄
)1/2

P
√

ǫ(1− y22)

(

∂ζ +
ǫi

2ζP
∂χ

)

, ξα04 ∂α =
1

√

ǫ(1− y22)
∂χ, (A35)

where

P ≡ 1

y21
= 1 + 4ζζ̄. (A36)

10Slightly different coordinates for metric (A22) with ǫ = +1 were employed in appendix C of [45] (after setting λ = 0 there). The only
non-obvious transformation required to map these two coordinate systems into each other involves a redefinition of φ1 and φ2 as in (3.22)
of [10] with µ = 0.
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Here one has b23 = a, b45 = ay2. For a = 0, the twist and shear of ℓ vanish and (A22) becomes the 6D Schwarzschild-
Tangherlini metric [9] with a transverse space of positive (ǫ = +1) or negative (ǫ = −1) constant curvature, written in
Robinson-Trautman coordinates [29].

Boyer-Lindquist coordinates may be defined by

du = dt+
(r2 + a2)2

ǫ(r2 + a2)2 − µr
dr, dφ1 = dψ1 −

a(r2 + a2)

ǫ(r2 + a2)2 − µr
dr, dφ2 = dψ2 −

a(r2 + a2)

ǫ(r2 + a2)2 − µr
dr, (A37)

which gives

ds2 = −ǫdt2 + ρ2

ǫ(r2 + a2)2 − µr
dr2 +

µr

ρ2
[

dt+ a(1− y22)y
2
1dψ1 + a(1− y22)(1− y21)dψ2

]2

+ (r2 + a2y22)ǫ
dy22

1− y22
+ (r2 + a2)ǫ(1− y22)

[

dy21
1− y21

+ y21dψ
2
1 + (1− y21)dψ

2
2

]

. (A38)

This metric form is not contained in (48) of [35], since there both twist eigenvalues b23 and b45 are used as coordinates,
which is not possible here (but see the comments above for the limit from (A6) to (A22), and for the relation between
the Boyer-Lindquist form of the former, i.e., (A19), and (48) of [35]). This spacetime is of Weyl type D and, in the
cooordinates (A38), the unique [43,44] two multiple WANDs are given by (cf. [13, 24])

ℓ±a dx
a = dt± ρ2

ǫ(r2 + a2)2 − µr
dr + a(1− y22)y

2
1dψ1 + a(1− y22)(1− y21)dψ2. (A39)

A.3 Single spin (a1 6= 0, a2 = 0)

When a2 = 0, let us relabel a1 ≡ a and replace the coordinates (µ1, µ2, φ1, φ2) with (y, χ, ζ, ζ̄) via

φ1 = −aχ, e−2ǫiφ2 = ζ/ζ̄, µ2
1 = ǫ

a2 − y2

a2
, µ2

2 = y2
4ζζ̄

P 2
, P ≡ 1 + ǫa2ζζ̄. (A40)

Metric (A1) becomes

ds2 = −ǫdu2 + 2dr
(

du− ǫa2µ2
1dχ

)

+ (r2 + y2)
ǫdy2

a2 − y2
+ (r2 + a2)a2µ2

1dχ
2 + r2y2

4dζdζ̄

P 2
+
µr

ρ2
(

du− ǫa2µ2
1dχ

)2
,(A41)

with
ρ2 = r2(r2 + y2). (A42)

(Metric (A41) can also be obtained from (A6) by replacing y2 7→ a2y2, taking the limit a2 → 0, and then defining
ζ = a−1

1 e−iǫφ2

√

ǫ(1− y2)(1 + y2)−1, χ = −a−1
1 φ1 – similar limits have been recently considered in [46]). We observe that,

in these coordinates, the parameter a can also be purely imaginary when ǫ < 0, i.e., values a2 ≤ 0 are permitted. For
ǫ = +1, (A41) equals metric (3.1) of [10] after defining y = a cos θ and trivially rescaling χ.

A frame parallely transported along ℓ is given by

n = ∂u +
ǫρ2 − µr

2ρ2
∂r, (A43)

m2 + im3 =
1

r

P

y
∂ζ , (A44)

m4 =
r

r2 + y2

√

ǫ(a2 − y2)

(

ǫ∂u + ∂r −
y

r
∂y +

ǫ

a2 − y2
∂χ

)

, (A45)

m5 =
y

r2 + y2

√

ǫ(a2 − y2)

(

ǫ∂u + ∂r +
r

y
∂y +

ǫ

a2 − y2
∂χ

)

, (A46)
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from which one extracts the asymptotic quantities (cf. (31))

ω0
2 = ω0

3 = ω0
5 = 0, ω0

4 =
√

ǫ(a2 − y2), (A47)

ξu02 = ξu03 = ξu05 = 0, ξu04 = ǫ
√

ǫ(a2 − y2), (A48)
(

ξα02 + iξα03

)

∂α =
P

y
∂ζ , (A49)

ξα04 ∂α =
1

√

ǫ(a2 − y2)
∂χ, ξα05 ∂α =

√

ǫ(a2 − y2)∂y, (A50)

U0 =
ǫ

2
, Φ0 = −6µ, XA0 = δAu . (A51)

One finds b23 = 0, b45 = y.
Defining new coordinates (t, ψ) [10]

du = dt+
r2 + a2

ǫ(r2 + a2)− µ
r

dr, dχ = dψ +
1

ǫ(r2 + a2)− µ
r

dr, (A52)

one obtains from (A41) a Boyer-Lindquist form of the metric

ds2 = −ǫdt2 + (r2 + y2)

[

dr2

ǫ(r2 + a2)− µ
r

+
ǫdy2

a2 − y2

]

+ (r2 + a2)ǫ(a2 − y2)dψ2 + r2y2
4dζdζ̄

P 2
+
µr

ρ2
[

dt− (a2 − y2)dψ
]2
,(A53)

This is cf. (3.5a) of [10] (with y = a cos θ) for ǫ = +1, and (2.5) of [41] (with y = a cosh θ) for ǫ = −1 (after rescaling
ψ 7→ ψ/a, specializing [10, 41] to six dimensions, and setting the cosmological constant to zero in [41]). In both cases, at
r = 0 there is a curvature singularity (where the Kretschmann scalar diverges). This spacetime is of Weyl type D and, in
the cooordinates (A53), the unique [43,44] two multiple WANDs are given by (cf. [13, 24])

ℓ±a dx
a = dt± r2 + y2

ǫ(r2 + a2)− µ
r

dr − (a2 − y2)dψ. (A54)

Another useful parametrization is obtained by defining a new time coordinate t̃

dt = dt̃+ a2dψ, (A55)

which gives

ds2 =
1

r2 + y2
[

−∆r(dt̃+ y2dψ)2 + ǫ(a2 − y2)(dt̃− r2dψ)2
]

+ (r2 + y2)

[

dr2

∆r
+

ǫdy2

a2 − y2

]

+ r2y2
4dζdζ̄

P 2
, (A56)

with
∆r = ǫ(r2 + a2)− µ

r
. (A57)

For ǫ = +1, (A56) corresponds to the line-element (5.16), (5.17) of [46] (in the case of vanishing cosmological constant
and NUT parameter).

A.4 Non-spinning metric (a1 = 0 = a2)

For a1 = a2 = 0, metric (A1) reduces to the Schwarzschild-Tangherlini solution [9] in Robinson-Trautman coordinates [29]
(dµ2

1 + µ2
1dφ

2
1 + dµ2

2 + µ2
2dφ

2
2 + ǫdµ2

3, with (A3), being the metric of a 4-space of constant curvature with sign ǫ = ±1, 0).
This is the only case when ℓ is twistfree. For ǫ = ±1, different forms of the metric can be obtained by setting a = 0 in
(A22) or (A38), while, for ǫ = 0, by setting a1 = 0 = a2 in the metric (A60) or (A72) given below. These spacetimes are
also of Weyl type D.

A.5 The NUT limit and metrics with a shearfree ℓ

A different vacuum solution can be obtained as a limit of (A1). Performing the coordinate and parameters rescaling

r = λ−1r′, u = λu′, µ1 = λy1, µ2 = λy2, (A58)

a1 = λ−1a′1, a2 = λ−1a′2, µ = λ−5µ′, (A59)
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and then setting λ = 0, one arrives at the line-element (dropping the primes)11

ds2 = 2dr(du+ a1y
2
1dφ1 + a2y

2
2dφ2) + (r2 + a21)(dy

2
1 + y21dφ

2
1) + (r2 + a22)(dy

2
2 + y22dφ

2
2)

+
µr

ρ2
(du+ a1y

2
1dφ1 + a2y

2
2dφ2)

2, (A60)

with
ρ2 = (r2 + a21)(r

2 + a22). (A61)

A frame parallely transported along ℓ is given by (A4) with

n = ∂u −
µr

2ρ2
∂r, (A62)

m2 =
r

r2 + a21

(

−a1y1∂u −
a1
r
∂y1 +

1

y1
∂φ1

)

, (A63)

m3 =
a1

r2 + a21

(

−a1y1∂u +
r

a1
∂y1 +

1

y1
∂φ1

)

, (A64)

m4 =
r

r2 + a22

(

−a2y2∂u −
a2
r
∂y2 +

1

y2
∂φ2

)

, (A65)

m5 =
a2

r2 + a22

(

−a2y2∂u +
r

a2
∂y2 +

1

y2
∂φ2

)

. (A66)

This gives the asymptotic quantities

ω0
2 = ω0

3 = ω0
4 = ω0

5 = 0, (A67)

ξu02 = −a1y1, ξu04 = −a2y2, ξu03 = 0 = ξu05 , (A68)

ξα02 ∂α =
1

y1
∂φ1

, ξα03 ∂α = ∂y1 , ξα04 ∂α =
1

y2
∂φ2

, ξα05 ∂α = ∂y2 , (A69)

U0 = 0, Φ0 = −6µ, XA0 = δAu . (A70)

Note that here b23 = a1, b45 = a2. Therefore ℓ is shearfree iff a2 = a1. It is, additionally, twistfree iff a2 = a1 = 0, in
which case (A60) becomes the 6D Schwarzschild-Tangherlini metric with a flat transverse space [9, 29].

It may be useful to give the line-element (A60) also in Boyer-Lindquist coordinates. Defining t via

du = dt− ρ2

µr
dr, (A71)

one obtains

ds2 =
µr

ρ2
(dt+ a1y

2
1dφ1 + a2y

2
2dφ2)

2 − ρ2

µr
dr2 + (r2 + a21)(dy

2
1 + y21dφ

2
1) + (r2 + a22)(dy

2
2 + y22dφ

2
2), (A72)

so that the Killing vector field ∂t is timelike for µr < 0. The apparent singularity at r = 0 (not present in the coordinates
(A60)) is a Killing horizon of ∂t (with flat spatial sections). (For µ = 0 these coordinates are singular, but in that case
(A60) is just Minkowski spacetime and n becomes covariantly constant.) Metric (A72) is equivalent to the NUT solution
(49) of [36] if the cosmological constant is set to zero there (after defining Cartesian coordinates in each of the two 2-planes
(y1, φ1), (y2, φ2) and after a simple shift of t). A 4D analog of (A72) is given by the NUT metric with a flat transverse
space [40] (cf. also section 12.3.2 of [47]).

In these coordinates, ℓadx
a = dt− ρ2

µrdr+a1y
2
1dφ1+a2y

2
2dφ2 and nadx

a = µr
2ρ2 (dt+

ρ2

µrdr+a1y
2
1dφ1+a2y

2
2dφ2). Since

(A72) is invariant under t 7→ −t, φ1 7→ −φ1, φ2 7→ −φ2, it follows [13] that n points along a second multiple WAND,
with the same optical properties of ℓ. In particular, the Weyl tensor is thus of type D and not purely electric [24, 43]. It
follows [43, 44] that ℓ and n define the unique pair of multiple WANDs. Different type D vacuum solutions admitting a
pair of shearfree mWANDs are contained in [36, 48], as discussed in [26] – they do not belong to the class studied in the
present paper because they violate the assumption (6).

11After the limit, the sign of ǫ has no meaning (just redefine φ1 7→ ǫφ1 and φ2 7→ ǫφ2) so we can set ǫ = 1. Alternatively, one can arrive at
(A60) by substituting r = λ−1r′, u = λu′, y2

1
= a2

1
(λ−2 − y′2

1
), y2

2
= a2

2
(λ−2 − y′2

2
), a1 = λ−1a′

1
, a′

2
= λ−1a′

2
, µ = λ−5µ′ in (A6) and then

setting λ = 0.
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B Newman-Penrose formalism when ℓ is a non-degenerate mWAND

Here we summarize the notation and the equations of the Newman-Penrose formalism needed in the present paper. The

Ricci rotation coefficients Lab, Nab and
i

Mab are defined by [11]

Lab = ℓa;b, Nab = na;b,
i

Mab = m
(i)
a;b, (B1)

and satisfy the identities L0a = N1a = N0a +L1a =
i

M0a +Lia =
i

M1a +Nia =
i

M ja +
j

M ia = 0. As in the main text, ℓ is
a geodesic and affinely parametrized mWAND, and we use a frame parallelly transported along ℓ, so that the following
quantities vanish identically

Li0 = 0, L10 = 0,
i

M j0 = 0, Ni0 = 0. (B2)

Moreover, thanks to (3), we can set (cf. (8))
Li1 = 0. (B3)

Covariant derivatives along the frame vectors are denoted as

D ≡ ℓa∇a, △ ≡ na∇a, δi ≡ ma
(i)∇a. (B4)

For the non-vanishing frame components of the Weyl tensor (i.e., those of non-positive b.w.) we define the symbols
[11, 13]

Φij = C0i1j , ΦSij = Φ(ij), ΦAij = Φ[ij], Φ = Φii, (B5)

Ψi = C101i, Ψijk =
1

2
C1kij , Ψij =

1

2
C1i1j , (B6)

which satisfy the identities C01ij = 2C0[i|1|j] = 2ΦAij , 2C0(i|1|j) = 2ΦSij = −Cikjk, 2C0101 = −Cijij = 2Φ, Ψi = 2Ψijj ,
Ψ{ijk} = 0, Ψijk = −Ψjik, Ψij = Ψji, and Ψii = 0. Throughout the paper, the vacuum Einstein equations Rab = 0 hold,
so that Rabcd = Cabcd.

Under the above conditions, the Bianchi equations (B.1), (B.6), (B.9) and (B.4) of [11] (cf. also (16)-(18), (22) of [25])
take the simplified form

DΨi = −2ΨsLsi + δiΦ, (B7)

2DΨijk = −2ΨijsLsk −ΨiLjk +ΨjLik − 2δkΦ
A
ij − 4ΦA[i|s

s

M |j]k, (B8)

DΨjki = 2Ψ[k|siLs|j] +ΨiL[jk] − δ[kΦj]i +Φ[k|s

s

M i|j] −Φsi
s

M [jk], (B9)

2DΨij = −2ΨisLsj + δjΨi +ΨiL1j +Ψs
s

M ij

+∆Φji +ΦNij − 2ΦAisNsj +ΦsiNsj +Φjs
s

M i1 +Φsi
s

M j1, (B10)

while (B.13, [11]) becomes

−△ Cijkm + 4δ[k|Ψij|m] = 2ΨimLjk + 4Ψ[j|kL|i]m − 2ΨjmLik + 4Ψ[i|sk

s

M |j]m +4Ψij[k|L1|m]

+ 4Ψ[j|sm

s

M |i]k +4Ψijs
s

M [km] +2Cij[k|s
s

M |m]1 +2C[i|skm

s

M |j]1

− 4ΦAijN[km] + 2Φ[i|mN|j]k + 2Φ[j|kN|i]m + 2Cij[k|sNs|m]. (B11)

The commutators [49] read

∆D −D∆ = L11D, (B12)

δiD −Dδi = L1iD + Ljiδj , (B13)

δi∆−∆δi = Ni1D − L1i∆+ (Nji +
j

M i1)δj , (B14)

δ[iδj] = N[ij]D + L[ij]∆+
k

M [ij]δk. (B15)
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The Ricci identities (11k), (11i), (11h), (11l), (11o) and (11p) of [30] take the form12

δ[j|Li|k] = L1[j|Li|k] + Lil
l

M [jk] + Ll[j|
l

M i|k], (B16)

△Lij = L11Lij − Lkj
k

M i1 − Lik(Nkj +
k

M j1)− Φij , (B17)

△Nij − δjNi1 = −L11Nij + 2Ni1L1j +Nk1
k

M ij −Nkj
k

M i1 −Nik(Nkj +
k

M j1)− 2Ψij , (B18)

δ[j|Ni|k] = −L1[j|Ni|k] +Ni1L[jk] +Nil
l

M [jk] +Nl[j|
l

M i|k] −Ψjki, (B19)

△
i

M jk − δk
i

M j1 = Nj1Lik − LjkNi1 +
i

M j1L1k +
i

M l1

l

M jk −
i

M lk

l

M j1 −
i

M jl(Nlk +
l

Mk1)− 2Ψijk, (B20)

δ[k|
i

M j|l] = Ni[l|Lj|k] + Li[l|Nj|k] + L[kl]

i

M j1 +
i

Mp[k|

p

M j|l] +
i

M jp

p

M [kl] − 1
2Cijkl. (B21)
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[11] V. Pravda, A. Pravdová, A. Coley, and R. Milson. Bianchi identities in higher dimensions. Class. Quantum Grav.,
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[46] P. Krtouš, D. Kubizňák, V. P. Frolov, and I. Kolář. Deformed and twisted black holes with NUTs. Class. Quantum
Grav., 33:115016, 2016.
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