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Many of the outstanding discoveries in the history of physics were closely tied to fundamental

linguistic innovations, which made them possible. There is an extensive literature discussing
the scientific achievements of Galileo, Descartes, and Newton from various perspectives. The
aim of the present paper is to contribute to these discussions with an analysis of the linguistic
tools, by means of which these three authors made their scientific discoveries. We will focus
on the main linguistic innovations contained in their works. Thus we will discuss not only the
contributions of Galileo, Descartes, and Newton to the development of physics, but we will
analyze also the linguistic tools by means of which they formulated these contributions. More
specifically, in galileo we will focus on the innovations that he introduced into the experimen-
tal method and thus fundamentally changed the way how the expressions of the language of
physics are related to reality. Since Galileo the majority of term that occur in physical for-
mulas have an indirect, instrumentally mediated reference. Similarly in Descartes we will
focus on the theoretical models, which he introduced into physics in order to explain vari-
ous phenomena. For Descartes, and since Descartes for great part of physics, to understand
a phenomenon means to construct its theoretical model, which by means of unobservable
quantities and objects explains the observed phenomenon. In our exposition we will focus on
the linguistic tools, by means of which these models are constructed. And finally in Newton
we will focus on his description of interaction. For Newton, and since Newton for the entire
physics, the description of reality consists in the representation of the temporal evolution of
the state of the system. We will discuss the series of linguistic innovations that Newton had
to introduce in order to create this way of representing reality.
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Introduction

The Scientific Revolution of the 17th century was undoubtedly one of the most important events
forming the Western civilization. About the Scientific Revolution and its principal actors we
can find numerous books and papers written by historians of science, philosophers, scientists, as
well as popular writers. The present paper tries to contribute to the discussions of the Scientific
Revolution by a new interpretation describing this revolution as a linguistic event, as the creation
of a formal language of a new kind. This new language is the language of modern physics that
assigns to a physical system its sfate and then by means of a differential equation enables us
to determine the temporal development of the system. We will try to show how the concept of
state, the first differential equation, as well as the entire linguistic framework to which these two
concepts belong, was created.

We will base our interpretation of the scientific revolution as a linguistic event on the anal-
ysis of idealization in Edmund Husserl’s book Die Krisis der Europdischen Wissenschaften und
die Transzendentale Phdnomenologie (Husserl 1954; hereinafter referred to as Krisis). At first
glance, such a choice may seem surprising, at least to the advocates of analytic philosophy.
Analytic philosophy is the dominant current in the philosophy of science, and it also domi-
nates the contemporary literature on the Scientific Revolution. Therefore, it might seem more
natural to choose as the basis of our interpretation the methods of analytic philosophy instead
of phenomenology. Analytic philosophy of science, however, considers science as a natural
continuation of ordinary experience and common sense, and therefore it is blind to the radical
discontinuity introduced by the emergence of modern science. It was Husserl who, thanks to
the elaboration of the theme of lifeworld (Lebenswelt) in his Krisis, was able to see clearly the
radical discontinuity that separates the lifeworld from the world of “European sciences”. Even
though contemporary phenomenology to a large extent abandoned Husserl’s interest in science,
there are still a number of philosophers who are dedicated to the analysis of science from the
phenomenological perspective. Therefore, the choice of Husserl’s phenomenology as a basis for
the analysis of the process of creation of the language of science is not as strange as it may appear
at first glance.

Husser!’s interpretation of Galilean physics in the Krisis was highly original and attracted
a stream of interest of philosophers (see Gurwitsch 1967, Garrison 1986, Heelan 1987, Soffer
1990, Mormann 1991, Drummond 1992). Nevertheless, Husserl’s interpretation did not become
the standard interpretation of Galileo’s work. Thus it still holds what Gurwitsch said some forty
years ago in his paper Galilean physics in the light of Husserl’s phenomenology: “[...] you must
forgive me also for saying in conclusion, that notwithstanding the voluminous recent literature
on the philosophy of science (whose value I do not in the least belittle), we do not yet possess a
philosophy of science in a truly radical sense. Husserl’s analysis of Galileo’s physics indicates
the direction in which a radical (i.e. a properly rooted) philosophy of science must develop”
(Gurwitsch 1967, p. 401). We believe that the source of problems with Husserl’s interpretation
of Galilean physics is that his interpretation is original but incomplete. It seems that, instead of
an analysis of real physics, Husserl offered an analysis of the picture of physics as it was reflected
in the German philosophical tradition, mainly under the influence of Kant and the neo-Kantians.
For understanding physics it is not sufficient to analyze Galileo, as Husserl did, but it is necessary
to analyze in a similar way also the works of Descartes and Newton. As Rupert Hall remarked:
“It is hardly too much to say that Newton had to write the Principia because Descartes had
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corrected Galileo’s notion of inertia.” (Hall 1967, p. 78).

Descartes and Newton corrected several of Galileo’s errors and changed the direction which
the program of mathematization of nature should take. Though Galileo’s scientific ideas played
a fundamental role in the rise of modern science, the form in which they were incorporated into
the foundations of modern science differs in many respects from Galileo’s original views. So,
for instance, inertial motion is not the Galilean circular motion but the motion in a straight line.
Modern science does not describe isolated natural phenomena, but it searches for universal laws.
These laws are formulated not by means of triangles and circles, but by differential equations.
Nevertheless, the idea of an inertial motion in a straight line, the idea of a universal natural law,
as well as the notion of a differential equation, were absolutely alien to Galileo’s views. They
originated in the works of Descartes and Newton. Husserl’s analysis of the birth of modern sci-
ence is problematic because instead of three constitutive moments—the Galilean, the Cartesian,
and the Newtonian—Husserl discussed only one. He then drew conclusions which simply do not
hold. Husserl’s analysis is not an analysis of physics, but only of a fragment thereof.

The question why Husserl confined his analysis of science to Galileo has an interesting an-
swer. Even though Husserl’s analysis was a criticism of positivist philosophy of science, he
unwittingly remained in the framework in which positivism used to discuss science. According
to positivism, the central issue in philosophy of science is to explain the relation of scientific the-
ories to experience. According to positivism, scientific theories are based on accumulation and
inductive generalization of empirical statements derived directly from neutral sense data. Husserl
overthrew this picture, showing, that there is nothing like neutral sense data, and that from the
very beginning we are dealing with an interpreted world, which he called lifeworld (Lebenswelt).
Further, Husserl showed that science does not form its theories by accumulation and inductive
generalization of empirical experience. On the contrary, the rise of modern science consisted in a
very radical shift away from experience. Husserl called this radical shift idealization. Neverthe-
less, even though Husserl had overthrown the positivist philosophy of science, he still remained
within the framework of positivist philosophy reducing the discussion of scientific theories to the
question of their relation to experience.

A radical rejection of positivism requires rejecting not only what positivists say about science,
but also the framework in which their theory of science is formulated. The positivist philosophy
of science consists not only of all that that the positivists said about science, but also of all those
aspects of science which they excluded from consideration. Modern science is based not only on
Galilean empiricism which the positivists liked to contemplate. It is equally based on Cartesian
and Newtonian metaphysics which the positivists passed over in silence and which, therefore,
also Husserl did not analyze. Thus the difficulties with the phenomenological analysis of mod-
ern science lie in the fact that Husserl accepted the framework in which positivism discussed
science. The foundations of modern physics lie besides the concept of experiment, a penetrating
philosophical analysis of which was given by Husserl, also on the concept of the state of a sys-
tem and the concept of the temporal evolution of the state, described by means of a differential
equation. Therefore, we believe that Husserl’s attempt to explain the relation of modern science
to the lifeworld is interesting and original, but it is an analysis only of a fragment of physics.

The aim of the present paper is to supplement Husserl’s analysis of Galileo by a similar
analysis of Descartes and Newton. Husserl’s achievement was the insight that the subject matter
of physics is formed by intentional objects that are constituted in the process of idealization, in
which some aspect of the lifeworld is replaced by a mathematical ideality. We do not believe,
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however, that the process of idealization in physics can be reduced to the analysis of Galileo. A
fuller understanding of idealization requires complementing the analysis of Galileo’s works by a
similar analysis of the works of Descartes and Newton. Only these three layers of language—the
Galilean, the Cartesian, and the Newtonian—taken together constitute the intentional objects of
physics.

Although Galileo was the originator of the program of mathematization of nature, the tools
by means of which he wanted to carry out this program (the triangles and circles, by means of
which the book of nature is allegedly written) are too simple to be able to express universal laws
of nature. In order to be able to express such laws, it was first necessary to create an entirely new
mathematics. Descartes had to invent analytic geometry with the idea of a coordinate system, and
Newton had to develop the differential and the integral calculus and to introduce the notion of a
differential equation in order to be able to mathematically describe motion. Only on this level
was it possible to accomplish Galileo’s program of mathematization. Although Husserl correctly
identified in Galileo the author of the intention of mathematization of nature, this intention could
be fulfilled only by means of a radically new mathematics. So in the second and the third chapter
we will complement Husserl’s interpretation of Galilean physics by an analogous interpretation
of the Cartesian and the Newtonian ones.

Idealization is not a single act, but rather a gradual process. Galileo, Descartes, and New-
ton brought three representations of reality that together laid the foundations of modern physics.
The following theory of idealization is thus compatible with the concept of the fine structure of
scientific revolutions, according to which every scientific revolution consists of a sequence of
epistemic ruptures of smaller order (see Kvasz 1999, pp. 225-227). Thus an idealization consists
of a sequence of three representations.! Koyré characterized the birth of modern science as a “ge-
ometrization of space and the dissolution of the Cosmos” (Koyré 1939, p. 3). This means that in
terms of the classification of epistemic ruptures Koyré interpreted the emergence of modern sci-
ence as a representation. We do not deny that this representation accompanied the rise of modern
science, but we believe that the emergence of modern science was a more fundamental change,
namely an idealization. In its course besides the ideal objects of ancient science (i.e. geometric
forms and numerical ratios), ideal objects of an entirely new kind—dynamic systems—were cre-
ated. Therefore Koyré’s analysis, however interesting and stimulating, describes only a marginal
aspect of the rise of modern science. At the heart of this process was not geometrization, but ‘dy-
namization’. It was not about space or Cosmos, but about motion and interaction. In its course,
the geometric principles used in the ancient description of the world were replaced by dynamic
principles.

Koyré’s view that Aristotelian physics is non-geometrical is based on the analysis of the
manifest aspects of this theory. It is true that Aristotle did not use in his description of motion
geometry (unlike Archimedes). On the other hand, Aristotle’s theory of local motion is undeni-
ably geometrical—it describes motion using directions like downwards and upwards, it speaks
about the centre of the universe. Aristotle’s physics is geometrical not apparently, because of its
language, but inherently, because of the categories it uses. To characterize motions by means
of the points towards which they are oriented is to characterize them geometrically, indicating
the end-points of their trajectories. Therefore, the claim that geometrization of space occurred

I A short description of the classification of epistemic ruptures and a characterization of idealizations, representations,
and objectivization can be found in (Kvasz 2008b, pp. 91-95).
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only in modern times is incorrect. The term ‘geometrization’ can have different meanings. It is
true that Aristotle did not use geometry as a tool for the formulation of his theory, but, neverthe-
less, on the level of representation and idealization his theory is a geometrical theory. Koyré’s
mistake is rooted in the fact that he understands geometry in a narrow sense: he restricts it to
the level of the explicit linguistic formulation of a theory. Aristotle, nevertheless, based his ex-
planation of local motion on an ideal geometrical structure of the universe, towards particular
points of which the motion is directed. The change of the structure of the universe during the
scientific revolution is, in our view, more accurately described by Vladimir I. Arnold, one of the
leading mathematicians of the twentieth century: “Formerly, the universe was provided not with
an affine, but with a linear structure (the geocentric system of the universe)” (Arnold 1974, p.
5). According to Arnold, also the Aristotelian universe had a geometrical structure. Unlike the
universe of modern physics, however, it was a linear structure, and not an affine one.2

While nobody would really question the value of Galileo’s contributions to the development
of modern science, things are not nearly so simple with respect to Descartes. It is sufficient to
quote the words of Stephen Gaukroger: “With the exception of the work in optics, his contri-
bution to the development of classical physics is minimal. Insofar as kinematics is concerned,
Cartesian physics accomplishes considerably less than had been achieved by Galileo in his Two
New Sciences, and insofar as Descartes’ physics can be considered a dynamical theory it is often
hopelessly confused, particularly in comparison with Newtonian dynamics.” (Gaukroger 1980b,
p- 123). The views of Daniel Garber are similar: “Descartes’ intellectual program failed, of
course; while pieces of the program may have proved important inspirations to later thinkers,
as an approach toward understanding the natural world Descartes’ program turned out to be a
dead end. But while the design may have been faulty, and the edifice doomed from the start, it
is fascinating to contemplate the entire structure as the architect planned it ...” (Garber 1992a,
p- 2). We will try to show that these judgments can be challenged. The fact that in kinematics
“Cartesian physics accomplishes considerably less than had been achieved by Galileo” is its
merit, because Galileo’s kinematics was misguided. Descartes realized the fundamental mistake
in the orientation of Galileo’s research, something that reveals the depth of his insight. Similarly,
we would like to show that the “confusion of Descartes’ physics” is not so hopeless. On the con-
trary, several of the ingredients of Newtonian physics have their origin in Descartes. Therefore,
we think neither that “Descartes’ intellectual program failed” nor that it “turned out to be a dead
end”, but that the Cartesian program was a bridge connecting Galileo and Newton.

A fragment of Cartesian physics is still included in the standard courses of mechanics. It
is sufficient to open the classical textbook Mechanics (Landau and Lifshitz 1957). The first
fifty pages of the book, devoted to an exposition of the Lagrangian formalism, are followed by
a chapter on particle collisions, in which the Lagrangian function is not mentioned at all, no
differential equations are solved, and the collisions are described entirely in the Cartesian spirit
using conservation laws. Of course, besides the Cartesian law of conservation of momentum the
law of the conservation of energy is used as well. Momentum, furthermore, is considered not as
a scalar quantity, as the Cartesians would have it, but as a vector quantity. But these are technical
details. The approach of the chapter differs so much from everything that precedes it as well as
from what follows that we can in good conscience declare it to be a Cartesian relict. Thus the

2 A linear space has a special point—the origin of the coordinate system. In an affine space there is no such point—all
its points are equivalent.
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evaluation of Cartesian physics by historians of science is not in accordance with the practice of
the scientists, who still include a part of it into their textbooks.

In our paper Kuhn'’s Structure of Scientific Revolutions between sociology and epistemology
(Kvasz 2013), we propose to distinguish three types of scientific revolutions. The stimulus for the
introduction of these distinctions was that the Einsteinian revolution was fundamentally different
from the Scientific Revolution in the 17th century. After the triumph of the Einsteinian physics,
the old Newtonian paradigm was not so radically rejected as the Aristotelian paradigm had been
after the triumph of Newton (see Gillies 1992, p. 5). So the degree of incommensurability
between the Aristotelian and the Newtonian physics must be greater than between the Newtonian
and the Einsteinian physics. The fact that in Landau’s textbook on mechanics we can find a
fragment resembling the Cartesian way of describing collisions suggests that the transition from
Descartes to Newton was similar to the transition from Newton to Einstein, where at least parts
of the old paradigm are incorporated into the new one.

The tension between the evaluation of Descartes’ scientific work by historians of science
and its use by the scientific community shows the necessity of a reinterpretation of Descartes’
scientific work. There are several possibilities how to reconstruct history of science. It can be
reconstructed as a succession of experimental discoveries interpreted from the point of view of
contemporary science. This approach is in the background of the above quoted citation from
Stephen Gaukroger, who is willing to acknowledge only Descartes’ contribution to the discovery
of the law of refraction, denying at the same time the scientific value of the Cartesian system.
Another possibility is to reconstruct the history of science on the conceptual level as changes of
the fundamental categories and explanatory principles that scientists use to conceptualize their
empirical data. This approach is in the background of the views of Daniel Garber, who inter-
prets Descartes’ physics as a metaphysical system. In his book Descartes’ metaphysical physics
(Garber 1992a) he offers a thorough reconstruction of the Cartesian system, describing it as a
mistaken, but nevertheless outstanding, speculative achievement. A third possibility is to recon-
struct the history of science on the level of metaphors, as a succession of visions and metaphors
that form the basis of the conceptual schemes. This approach is in the background of the recon-
structions by Koyré, who described the rise of modern science as the transition from the ordered
cosmos to the infinite universe (Koyré 1957). But even for Koyré the transition from the Galilean
mathematical physics to the purely verbal descriptions of the Cartesian system seemed to be a
step in the wrong direction. Thus even if Descartes brought a new vision of the universe, Koyré
did not take into account the connection between this vision and the universe of modern science.
Husserl’s reconstruction of Galilean physics, if we are prepared to interpret it radically enough,
permits us to understand the positive side of Descartes’ achievements. Husserl introduced the
fourth level of reconstruction of the history of science, namely the level of idealization, by show-
ing how physics systematically replaces various aspects of the lifeworld by mathematical ideali-
ties. This level of reconstruction opens the possibility of understanding Descartes’ work and the
role it played in the history of physics.

Adopting Husserl’s approach we will try to interpret Descartes’ contribution to physics as
an idealization. Nevertheless, the Cartesian idealization was not an idealization of isolated phe-
nomena, as was the case of Galileo, but it was an idealization of the ontological foundations of
the lifeworld. The lifeworld has, beside its phenomenal level, also an ontological level. We un-
derstand the objects of our everyday experience, despite the great variety of phenomenal aspects
we perceive in them, as possessing an ontological unity. We will interpret Descartes’ contri-



Introduction 527

bution to the rise of modern science as the replacement of the objects of the lifeworld by their
mathematical representation—extended bodies. Daniel Garber came close to this interpretation,
when he remarked: “The bodies Descartes shuffles out of his world in Meditation I, bodies which
come up from time to time in the course of the first three Meditations, are the bodies of common
sense, bodies known to me through my senses, and, like the piece of wax examined so carefully in
Meditation II, endowed with scents, tastes, and tactile qualities. But when in Meditation VI the
existence of bodies is proved, and the furniture removed by hyperbolic doubt in Meditation I is
replaced, it has undergone a significant transformation. The sensual bodies we started with have
been replaced by the lean, spare objects of geometry.” (Garber 1992a, p. 75). Garber dedicated
the next eighteen pages of his book to a reconstruction of Descartes’ argument only to reach
the conclusion that Descartes’ arguments are insufficient to justify the replacement of sensory
bodies by geometrical objects. In his reconstruction, however, Garber did not ask the question
what objective does Descartes pursue by this replacement? If we interpret Garber’s words in the
light of Husserl’s analysis of Galileo, we see that Descartes’ replacement is a further step in the
process of mathematization of nature. Just as Galileo had replaced the particular phenomena by
mathematical quantities, Descartes replaced sensory bodies by geometrical objects.

When we, at variance with the practice of historians of science, integrate Descartes’ physics
into the mainstream of the history of physics, it creates a new perspective on the work of New-
ton. Many historians admit that Newton held during his youth a variant of Cartesian physics (see
Cohen 1970 or Herivel 1970). Nevertheless, since Cartesian physics is not considered an integral
part of the history of physics, its formal and conceptual structure has not been thoroughly studied.
(An exception to this trend is the work of Alan Gabbey— see Gabbey 1980, 1985, and 2002.) In
the third chapter of the present paper we will try to interpret Newton’s physics against the foil
of Cartesian physics as its wide-ranging and radical reconstruction. Similarly to Galileo, who
brought idealization of the phenomena of the lifeworld, and to Descartes, who brought idealiza-
tion of the ontology of the lifeworld, Newton’s contribution can be interpreted as idealization
of interaction. Further we will try to show that several aspects of the formal tools by means of
which Newton achieved his idealization have their roots in Cartesian physics.
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1 Galilean physics

There is a number of conflicting interpretations of the role of Galileo in the history of modern sci-
ence (Mach 1883, Tannery 1901, Koyré 1939, Husserl 1954, Drake 1978, Naylor 1980, Wallace
1984, Wisan 1984, Hill 1988, Naylor 1990, De Caro 1993). Historians differ in their interpre-
tations of the core of the Galilean project. Some of them see the main contribution of Galileo
in his experimental method (Settle 1967, Drake 1978, Hill 1988), others in his mathematical
Platonism (Koyré 1939, De Caro 1993), still others stress his use of the Aristotelian deductive
method (Wallace 1984) or of a combination of experiment and deduction (Wisan 1984, Naylor
1990). An effort to present a more balanced picture of Galileo’s achievements led the editors
of the three collections: Galileo, Man of Science (McMullin, ed. 1967), New Perspectives on
Galileo (Butts and Pitt, eds. 1978), and The Cambridge Companion to Galileo (Machamer, ed.
1998). Our aim is not to choose one of these interpretations, because we are convinced, that they
do not exclude each other but rather represent different aspects of Galileo’s work, which existed
side by side and complemented each other, or perhaps they belong to different consecutive stages
of the development of his thought.

The interpretation of Galileo as a Platonic is not convincing. Koyré bases his opinion on
the argument that: “No one could believe that there could be such a direct correlation between
experiment and predictions! Indeed, despite the Galilean claim one has the temptation to doubt,
for the simple reason: strict compliance as this is strictly impossible.” (Koyré 1939, p. 107).
In fact, Galileo’s experiments were repeated and the obtained results are in good concordance
with Galileo’s own notes recording his observations (see Drake 1973, Naylor 1980, and Naylor
1990). In addition, anyone who has spent even a few hours in a laboratory knows that in each
experiment there are measurement errors. This trivial fact was surely known to Galileo. To reject
the experimental method for this trivial reason is ridiculous. Koyré is, of course, right in saying
that the laws of physics cannot be derived directly from the experimental data, as some naive
supporters of empiricism may think. But philosophical argument with empiricism should not
be confused with history of science. We cannot understand Galileo if we try to interpret him
as a pure empiricist, but similarly we cannot understand him if we interpret him as a Platonist.
It cannot be denied that several Platonic themes permeate Galileo’s work just like the themes
of empiricism and Aristotelianism. We contend, however, that Platonism, as well as any other
—ism, was just a marginal aspect of Galileo’s achievements in physics. If we want to understand
Galileo as one of the founders of modern science, we must first of all understand what was new
in his work, i.e. how and why did he transcend Platonism, empiricism and Aristotelianism. In
our view, the radically new element in Galileo’s work was his understanding of motion as a
geometric flow, which is an idea foreign to Platonism, empiricism, or Aristotelianism. When we
say that Galileo was a Platonic or an Aristotelian, we say nothing about what was new in his
work, and therefore important for the rise of modern science, but we just describe what persisted
in his work from the past. Neither Plato nor Aristotle created the theory of the free fall and
Galileo differs from both of them precisely in creating such a theory. In history of science it is
doubtlessly useful to distinguish between different traditions of thought—the Pythagorean, the
Platonic, the Aristotelian, the Archimedean or the atomistic. But such distinctions themselves do
not explain anything. We have to understand not only to what tradition someone belongs, but also
to see in what directions he transcends each of these traditions. In our view, Galileo was first of
all the founder of a new tradition, the tradition of modern physics, leading to Newton, Einstein,



Galilean physics 529

and Heisenberg. This tradition overcame Platonism. It replaced the ideas of the motionless
Platonic ideal world by bodies in perpetual inertial motion.

Galileo Galilei (1564-1642) started his career as an adherent of Aristotelian philosophy at
the University of Pisa, where between the years 1589 and 1592 he wrote the manuscript De Motu.
In this work he tried to develop further the Aristotelian theory of motion by incorporating into it
certain aspects of Archimedean hydrostatics as well as the scholastic conception of the impressed
force. At that time Galileo accepted the division of motions into natural and non-natural ones.
Nevertheless, in the case of the natural motions he replaced the Aristotelian division of elements
into heavy (which naturally move downwards) and light (which naturally move upwards) by its
Archimedean relativization, according to which an element is not light or heavy in an absolute
sense, but only in relation to the surrounding medium. Thus for instance wood is heavy in the
air and therefore it falls downwards, while in water it is light, and therefore it floats on the
surface. Galileo explained the non-natural motions with the help of the scholastic concept of
virtus impressa (impressed force). When one lifts a heavy body upwards, it receives lightness. If
one drops it, the body starts to fall downwards and the inserted lightness is gradually diminishing,
which manifests itself in acceleration of the motion. In the end, after all the impressed lightness
is spent, the body acquires a uniform motion with a speed proportional to its specific weight.

In De Motu Galileo maintains that a body with a double weight would fall at a double speed.
In that context he performed experiments with dropping bodies from a tower. The experiments
did not confirm the proportionality of the speed to weight, but Galileo found an ingenious Aris-
totelian explanation of these negative results using the concept of impressed force. While one is
holding a body on the top of the tower, his hand inserts some impressed lightness into the body.
Now a body twice as heavy will receive twice as much of this lightness. Therefore if one drops
two bodies having different weights, before the bodies reach their uniform motion, in which the
twice-heavier body will move with double speed, there is a transitory period of accelerated mo-
tion, during which the bodies are losing their impressed lightness. Because the heavier body
has more of the impressed lightness, it takes longer to get rid of it. The reason why we can not
observe that a twice-heavier body falls with a double speed lies, according to Galileo, in that we
do not have at our disposal a tower of a sufficient height so that the bodies could overcome the
transitory phase of accelerated motion.> In 1604 Galileo in a letter to Paolo Sharpi held a totally
different theory of motion. He was convinced that acceleration was a property of the free fall
itself and not only of its transitory phase connected with losing the impressed lightness. Galileo
turned to motion in the vacuum and formulated his law of the free fall.

In 1609 Galileo constructed a telescope through which he made a series of astronomical dis-
coveries, which shook the Aristotelian theory of the universe. He published his astronomical
discoveries in 1610 in his famous book The Starry Messenger (Galilei 1610). In 1613 he pub-
lished his Letters on Sunspots, where he argued that sunspots appear and disappear directly on
the surface of the Sun, which contradicted the Aristotelian doctrine of perfection and immutabil-
ity of heaven. In 1623, Galileo published another astronomical treatise, The Assayer (Galilei
1623), in which he attacked peripatetic physics. While the book was being printed, Cardinal
Barberini was elected as Pope Urban VIII. In 1624 Galileo came to Rome to ask the Pope for
permission to publish a book dedicated to the discussion of the different theories of the struc-
ture of the universe. The Pope permitted him to discuss the theories only hypothetically. With

3 An analysis of De Motu can be found in (Settle 1967).
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this permission Galileo returned to Florence and started to write his Dialogue Concerning the
Two Chief World Systems—Ptolemaic and Copernican, which appeared as (Galilei 1632). Pre-
sumably he was convinced that he fulfilled his promise given to the Pope, but many high rank
representatives of the Church were of different opinion. Therefore Galileo was invited to Rome
in 1633 to appear before the Holy Inquisition, where he was sentenced to home imprisonment
(see McMullin 2009). In the solitude of his home imprisonment he wrote his most important
work Discorsi e Dimonstrazioni Matematiche, Intorno d Due Nuove Scienze (Galilei 1638).

From this brief outline it can be seen, that the development of Galileo’s thought followed
basically the line of objectivization, representation, and idealization (see Kvasz, 1999, pp. 220-
222).# Galileo started his career with an objectivization of the medium and an objectivization
of the inertia. Thus at that time he was trying to preserve the general Aristotelian picture of the
universe. He only wanted to introduce some new elements into this system and to relativize some
of its distinctions in order to be able to explain the free fall and the projectile motion, which the
Aristotelian theory could not explain in a satisfactory way. The failure of his attempts to develop
a theory of these phenomena by introducing some new elements into the Aristotelian theory led
Galileo to a radicalization of his views.

Around 1604 he abandoned the Aristotelian world picture and his effort to reform the Aris-
totelian theory through an objectivization. Now Galileo’s aim was to replace the whole Aris-
totelian theory by a new representation. The series of astronomical discoveries opened the
possibility that the Copernican astronomy could become the core of a new, non-Aristotelian
world-view. Therefore the next more than 20 years Galileo devoted to the development of the
Copernican theory. During this period his aim was not just to introduce some new objects or
distinctions, which would fit into the global picture of the world, as he had wanted earlier. The
change brought about by the acceptance of the Copernican astronomy was much more radical.
It became absolutely impossible to explain motion of bodies on the Earth as a motion towards
some natural places, because all places are in constant motion around the Sun. Therefore the
Aristotelian theory of motion could not be saved by some new kind of impressed force. The
whole Aristotelian idea of motion as a motion towards a place lost its meaning. The whole
conceptual framework of the Aristotelian physics disintegrated.

For some time Galileo tried simply to replace the old crumbling Aristotelian representation
of the world as an orderly system of natural places by the new Copernican representation of
the world as a hierarchical system of circular motions. It is not the final rest in a natural place,
but the eternal rotation in a circle, which is the principle of the construction of the universe.
Nevertheless, there remained some tension in Galileo’s work, because he conducted in fact two
representations at the same time. The first of them was a representation of the terrestrial motion,
according to which motion is not a transition to a given endpoint, but an inertial flow. In parallel
to this radical change of the understanding of motion another representation took place, the
representation of the universe, according to which the universe is formed not from some eternal
changeless quintessence, as Aristotle claimed, but it is made of the same matter as the Earth.
Earthly and celestial phenomena should therefore follow the same laws. Several aspects of these

4 In our book on the development of mathematics (Kvasz 2008) we changed this terminology and instead of objec-
tivization we used the term ‘relativization’ and instead of representation the term ‘re-coding’. Here it is perhaps not
the appropriate place to introduce the technical terminology of (Kvasz 2008), and so we have decided to use the terms
objectivization and representation.
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two representations were in Galileo frequently in conflict.’ In his theory of terrestrial motion
Galileo declared circular motion as inertial. In his defense of the possibility of the motion of the
Earth he said that when a ship is moving with inertial motion, a passenger locked in his cabin
cannot determine experimentally whether the ship is moving or whether it is anchored in the
harbor. On the other hand, in his theory of the tides he forgot about the inertial character of the
circular motion and about his argument with the passenger locked in the cabin and he tried to
explain the tidal wave as a consequence of the composition of two circular motions (the Earth’s
rotation and its revolution around the Sun), which does not make sense (see McMullin 1978).

If circular motion was really inertial then its existence should not manifest itself in any tidal
wave. If we imagine a passenger locked in a cabin of a small ship, which is located inside a
huge tanker half filled with water so that the small ship can float, the passenger locked in the
cabin of the small ship cannot determine whether the ship or the tanker are moving. And this
is exactly what happens to us on the Earth—at least according to Galileo: we are exposed to
the composition of two inertial circular motions. Thus, the argument that Galileo considered a
definitive proof of the motion of the Earth was at odds with his own theory of inertia. The error
of Galileo’s theory of the tides was noticed already by Descartes (see Shea 1978, p. 140). In his
struggle with the tensions between his theory of motion and his theory of celestial phenomena
Galileo probably realized that what is needed in order to build a consistent theory of motion is a
more radical change. It is necessary to pass from the attempts to build a new representation of
motion to its idealization.

About two generations later Newton solved the conflict between the representation of the
universe and our earthly experience with motion. He created a new picture of the universe as
a centerless system of mutually interacting bodies. He replaced both the geocentric system of
the Aristotelian physics and the heliocentric system of the Copernican astronomy by this picture.
Galileo’s views were far remote from this Newtonian picture and in several respects they were
closer to Aristotle than to Newton. Galileo searched for a harmonic order of the universe, not
for its dynamic laws; his universe had a fixed center, and there was no interaction between its
bodies. On the other hand, it cannot be denied that Galileo opened many of the central issues
of idealization of motion, as for instance the principle of inertia or the principle of relativity.
Therefore we can say that with Galileo the process of idealization of motion started.

1.1 Galileo’s instrumental idealization of motion

In a similar way, in which the notions objectivization, representation, and idealization character-
ize the different stages of Galileo’s scientific development, we can use them to classify different
interpretations of Galileo’s work. Historians differ according to whether they interpret Galileo’s
contribution as an objectivization, a representation, or an idealization. In the following text we
will concentrate upon the process of idealization. We will follow Husserl’s interpretation from
his Krisis. Husserl showed in his analysis of Galileo that there is an important epistemologi-

3 The first of these representations could be characterized as the transference of the inertial motion from the Heavens
to the Earth (in Aristotelian physics the heavenly bodies are in eternal, uniform, circular motion, and one could say that
Galileo transferred this kind of motion onto the Earth by his principle of inertia), while the second one could be perhaps
characterized as the transference of matter from the Earth to the Heavens (in Aristotelian physics the Earthly bodies
consist of different matter to the Heavenly bodies, and one could say that Galileo, due to his astronomical discoveries
transferred the Earthly matter onto the Moon and other heavenly bodies).
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cal shift which separates the world of physics from the lifeworld. Therefore even though from
the perspective of a science historian some of Husserl’s statements are problematic, his draw-
ing attention to the difference between the lifeworld and the world of science is of fundamental
philosophical importance. Science historians usually ignore this difference, they do not question
the scientific world-picture and present its creation simply as a process of further broadening and
sharpening of our everyday life experience. Thus they generally ignore the process of idealiza-
tion, and they direct our attention to epistemic ruptures of smaller magnitude.

Many confuse idealization with abstraction. This error is caused by the fact that we can
obtain in our imagination a perfect geometric sphere from a real material ball by neglecting the
unevenness and roughness of its surface, the elasticity of its matter, its weight, color, temperature,
and even its taste and smell. What remains is a geometric sphere. Thus, at first glance, it seems
that the perfect sphere is obtained by abstraction from the material ball. But in the process of
abstraction something leads us; we are heading towards the perfect sphere. The perfect sphere
must therefore exist before we start with the process of abstraction, so that we know what we
have to neglect. This will become clear when we compare the geometrical idealization with the
physical one. In the process of the physical idealization the ball retains its weight, hardness, and
elasticity. An idealized physical sphere has weight, hardness, and elasticity, a perfect geometrical
sphere lacks these properties. Thus, what has to be preserved in the process of abstraction is
not arbitrary. The abstract object must fit into the linguistic framework, in our example into
the linguistic framework of geometry or of physics. Abstraction is a linguistic reduction; it
is the replacing of reality by its linguistic representation. The syntax of the language leads us
in the process of abstraction—it determines which properties can be neglected and which not.°
The idealization which we study in this paper consisted in the construction of a new linguistic
framework—the framework of physics. We can later choose this framework to lead us in the
process of abstraction. Nevertheless, abstraction presupposes idealization, therefore it cannot
explain it.

1.1.1 Mathematization of nature as Galileo’s program

Edmund Husserl (1859-1938) described in his book Die Krisis der europdischen Wissenschaften
und transzendentale Phdnomenologie Galileo’s main contribution to the development of Euro-
pean science as a mathematization of nature, as a turning the world of qualitative phenomena
into a universe of mathematical quantities (Husserl 1954, pp. 43-49). In Aristotle’s philoso-
phy the world of celestial bodies was separated from the sublunary world. Aristotle attributed
no change and permanent self-identity to the world of celestial bodies and therefore this world
was the subject of mathematical representation. An example of such representation is Ptolemaic
astronomy. On the other hand, the sublunary world with its characteristic irregularity and perma-
nent change admits no mathematical description, and can be described, according to Aristotle,
only approximately. Galileo set his concept of mathematization of nature against this officially
adopted Aristotelian world-view. In Galileo’s concept, every natural phenomenon is substantially
mathematical. The mathematical essence of some phenomena such as number, length, or shape,

6 People are unaware of the dependence of abstraction on the linguistic framework. They are usually concerned with
abstraction in only one domain (in mechanics, or in geometry) and thus the linguistic framework can remain implicit.
Only when we try to compare different idealizations of the same object, the dependence of idealization on the linguistic
framework becomes obvious.
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is immediately evident. In the case of such phenomena as pressure, heat, or motion, however,
we can perceive no mathematical quantity immediately. But this is not significant. According
to Galileo these phenomena, which Aristotle would never have considered as suitable for math-
ematical description, also have a mathematical essence. The only difference is that this essence
remains hidden from our senses somewhere below the surface of phenomena. This means that
Galileo attributed universal validity to mathematical description thus turning the world into a
mathematical universe. Every phenomenon has an ideal essence, “Philosophy is written in this
grand book, the universe, which stands continually open to our gaze. But the book cannot be
understood unless one first learns to comprehend the language and read the letters in which it is
composed. It is written in the language of mathematics, and its characters are triangles, circles,
and other geometric figures without which it is humanly impossible to understand a single word
of it; without these, one wanders in a dark labyrinth.” (Galileo 1623, pp. 237-238).

1.1.2 The instrumentalization of observation and Galileo’s astronomical discoveries

In the autumn of 1606 Dutch lens makers constructed an instrument which was able to enlarge
distant objects. In January 1610 Galileo constructed a telescope, by the help of which he made
a series of important astronomical discoveries. He discovered mountains on the Moon, the satel-
lites of Jupiter, the phases of Venus, the sunspots, as well as a huge amount of new stars. Thus
in one single month—January 1610—there occurred more changes in astronomy than during the
whole preceding century. Galileo’s discoveries played an important role in the defense of the
Copernican theory (see Swerdlow 1998, Shea 1998). Our aim here is neither the exposition of
these discoveries, nor the discussion of the arguments in favor of Copernicanism. We would
rather like to draw attention to the difference between Galileo’s notion of observation and the
notion of observation used in the academic milieu of his time.”

Galileo published his astronomical discoveries in March 1610 in a small book Sidereus nun-
cius (Galileo 1610). The book created a real storm. The reason for the intense reactions was
not only the novelty and deep significance of the discoveries themselves, but also the fact that he
made them using a telescope. His critics accused Galileo of naivety. At those times the telescope
was considered to be an illusionist toy, which shows the phenomena not as they really are, but
altered. Therefore “observations” with a telescope are unreliable and cannot be a basis for a
serious science. Science has to examine the phenomena as they really are. Galileo’s grounding

7 The Copernican revolution is not the subject of this paper. Therefore, we will not analyze in detail Galileo’s
astronomical discoveries. Very important among them was the discovery of mountains on the Moon, as it showed that the
surface of the Moon resembles the surface of the Earth: it contains mountains and seas. It is thus likely that the Moon
is composed of the same matter as the Earth. That the Moon is up in the sky is thus caused not by the substance from
which it is composed, as Aristotle argued. The Moon is a huge stone, which, according to Aristotle’s physics should
fall to Earth. That it is not falling shows that Aristotle’s theory is not valid. Equally important was the discovery of a
nova, dating back to Galileo’s youth in 1572. At first glance it was a trivial event—to the billions of stars a new one
was added. But if in the translunar region changes can occur, so the possibility to describe it by means of mathematics
is not the consequence of its changelessness, as Aristotle claimed. According to Aristotle the skies can be described
mathematically, because they consist of a special substance, and therefore are changeless. However, when the skies may
change, this means that the possibility to describe them by means of mathematics is unrelated to their changelessness.
Therefore it may be possible to describe mathematically also the terrestrial phenomena. Great importance was also
attached to the discovery of the phases of Venus. The phases of Venus indicate that this planet does not orbit in a circle
around the Earth, as the Ptolemaic system prescribed, but it moves periodically away from and closer to the Earth, as the
Copernican theory maintained.
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scientific theories in ,,observations* made with a telescope was considered to be similarly naive
as trying to develop a theory from “observations” made by a curved mirror. Galileo wanted to
persuade his opponents and therefore he sent them a telescope so that they could see with their
own eyes what he was speaking about. “The majority of the natural philosophers simply did not
think it worthwhile even to look through his telescopes.” (Ronchi, 1967, p. 201). And it was not
by mere reluctance. The book in which the new lenses were mentioned for the first time was pub-
lished by Giovanni Battista Della Porta in 1589 with the title Magia naturalis. Its seventeenth
chapter dealt with optical magic, among other things also with lenses. A lens creates images
which are greater or smaller than the real object observed by the naked eye. The object seems
to be nearer or more distant than it really is and sometimes it is even turned upside down. Thus
the lenses do not show true images of the things we are looking at, but create illusions. In order
to break the resistance of the academic community, Galileo persuaded the Duke of Tuscany to
send a telescope as an official gift to other rulers. He knew that most of the rulers have in their
courts mathematicians or astronomers and these will be assigned to review the new instrument
regardless of whether they like it or not. So in 1610 the German emperor Rudolf II. received in
Prague as a gift a telescope, which he let to be examined by his court mathematician Johannes
Kepler. Kepler saw the satellites of Jupiter and he supported Galileo with his authority in his
Narratio de observatis a se quatuor Jovis satellitibus erronibus ... (see Ronchi 1967, p. 202).

With his telescope Galileo brought a fundamental change in the notion of observation. The
classical astronomical instruments like the sextant or the astrolabe were only put alongside the
axis which connects the eye with the object in the sky. Thus they did not change the way in
which a particular object is disclosed to our view in everyday experience. They modify only the
conditions of its givenness (Art der Gegebenheit) in that with the help of an attached protractor it
becomes possible to determine with a higher precision the position of the particular object in the
sky. Therefore we can say that these classical instruments only sharpen our natural experience.
Their precision has limits given by the resolving power of our eye. These limits were reached by
the outstanding Danish astronomer Tycho Brahe. On the other hand, Galileo’s telescope enters
between us and the object we observe. It makes it possible to see things which, without its
help, we are unable to see, as for instance the satellites of Jupiter or the countless new stars,
whose magnitude is below the threshold of our eye’s sensitivity. Thus the telescope expands
in a fundamental way the scope of our experience; it shifts the visual horizon, and opens new
unseen worlds to our gaze. By further improvements of the lenses of the telescope or changes
in its design in principle it is possible to increase the precision of telescopic observations almost
without limits. The design of increasingly larger and more sophisticated telescopes had a decisive
role in the history of astronomy. In addition to the telescope, Galileo contributed significantly
also to the discovery of the microscope. Altogether he created eight sorts of instruments, which
are discussed in the article The instruments of Galileo Galilei (Bedini 1967).8

8 The importance of instruments is in that they expand, stabilize, and homogenize our experience as well as increase its
precision. Instruments make experience registrable, reproducible, standard, and intersubjective. These aspects, however,
relate to the level of representations. We can say that each representation brings its particular instrumental practice.
From the point of view of idealization, however, the mentioned aspects of the instrumental practice are of secondary
importance, and so we will not analyze them here.
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1.1.3 Experimental mathematization of phenomena and Galileo’s law of free fall

Instruments like the telescope broaden the realm of our experience. Nevertheless, they do not
intervene into the constitution of the observed phenomena. They only change the sharpness and
the resolving power of our sight. There is, however, a whole range of phenomena for grasping
of which the instrumentalization of observation is insufficient. If we take for instance the free
fall, we are not able to see, whether it is uniform or not. The way the free fall is given to us in
the immediate perception is too ambiguous for an exact mathematical description. We are not
able to perceive it as something ideal and perfect. And no instrumentalization of perception can
be of help here, because the problem lies not in the insufficient sharpness or resolving power of
our sight, but in the ambiguity of the perception of motion. Free fall is a motion, and therefore
time enters in a fundamental way into its constitution. Nevertheless, we have no specific organ
for the perception of time, the resolving power of which could be eventually enhanced by some
instrument. Here we need not sharpen our senses, with which we observe the phenomenon. We
have to sharpen the phenomenon itself.

In spite of all this, according to Galileo’s program of mathematization of nature, somewhere
beneath the perceived surface of free fall there are hidden some ideal mathematical objects which
determine this phenomenon in an absolutely precise way. The only problem is to reach them.
Many phenomena, as they are present in nature, are too complex. This complexity is the reason
why we cannot grasp directly the ideal forms which determine them. Therefore, according to
Galileo, it is necessary to create simplified situations in which the phenomenon would disclose
itself in its purity and would reveal its ideal essence. The creation of such simplified situations
requires invention, and Galileo’s analysis of free fall is a beautiful example of such an invention.
For Aristotle free fall and horizontal motion were qualitatively distinct. Free fall was a natural
motion, because the body moved towards its natural position. On the other hand horizontal
motion (in the sublunary region, of course) was an unnatural motion, requiring an external mover.
Galileo’s idea was to consider these two motions from the point of view of the artificial motion on
an inclined plane. Free fall is a motion on a totally inclined (i.e. vertical) plane, while horizontal
motion is a motion on an inclined plane, the inclination of which is zero. So by continuously
changing the inclination of the plane we can pass from free fall to horizontal motion and back.
In this way Galileo’s imagination, using the artificial device of an inclined plane, connected
two phenomena which apparently have nothing in common.® This connection has considerable
technical advantages, because the motion on an inclined plane is relatively slow and therefore it
is more suitable for observation than free fall.

If we draw horizontal lines in constant distances from each other on “an inclined plane,
exquisitely polished and hard, upon which descends a perfectly round ball of some very hard
substance” (Galilei 1632, p. 23), we can observe where the ball will be after the first, second,
third, etc. interval of time. What Galileo discovered was an impressive regularity. The distance
passed by the ball grew as the square of the time. After the first pulse the ball reached the first line,
after the second pulse the fourth, after the third pulse the ninth line. If we increase the inclination

9 For connecting the seemingly unrelated phenomena of free fall and horizontal motion, the experience with
Archimedean relativization of gravity could be of help. There Galileo had to do with two similarly unrelated phenomena
of Aristotelian physics: lightness and heaviness. He connected them with the help of the environment (water) in which a
piece of wood (a heavy object, i.e. an object falling downwards) became light (floating on the surface). The role of water
in the Archimedean relativization resembles the role of the inclined plane.
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of the plane, the motion will accelerate. Nevertheless, the regularity—distance proportional to
the square of the time—will be preserved. From this we can derive the conclusion that in the
limit case of the vertical plane the distance will be still proportional to the square of time. It is
plausible, even if we have no possibility to observe it directly.!”

Thus the experiment, by creating an artificial situation in which the ideal essence of the
phenomenon is accessible to direct observation, sheds light on the natural situations, in which the
ideal essence remains hidden. The motion down an inclined plane made it possible to discover the
law of free fall. In this way we arrive at the concept of experiment, which is the central concept
of the Galilean physics. An experiment consists in inventive disclosing of the ideal essence of
phenomena using artificial situations. It is based on realizing a certain relation, which enables
us to create an artificial situation through which we disclose the ideal essence of the examined
phenomenon. The ideal essence of a phenomenon expressed in the language of mathematics is
an empirical law. Galileo’s law of free fall was thus one of the first laws of modern physics.

1.1.4 Measurement as constitution of phenomena and the notion of atmospheric pressure

The purpose of an experiment is to create by the help of an artificial situation an access to the ideal
essence of phenomena. After achieving that, its task is usually finished. When Torricelli created
a vacuum in a glass tube (and so proved the existence of the empty space which contradicted the
Aristotelian physics), it was not the end of the story. The reason was that the phenomenon of
atmospheric pressure, the ideal essence of which he disclosed in this way, is not accessible in any
other way. In ordinary experience we are not aware of atmospheric pressure, and many cultures
did not even suspect that there existed something like this. In this respect there is a radical
difference between heat and pressure. Heat is disclosed to ordinary perception and therefore the
thermometer can be still interpreted as an instrument which only sharpens the perception of heat.
With the atmospheric pressure the situation is rather different. Without a barometer we have
no idea even of the existence of this phenomenon. That is why Torricelli’s tube did not “end
in a museum” (i.e. did not become of interest only to historians), but was transformed into the
barometer, which is a device opening an access to atmospheric pressure.

This means that measurement is a standardization of experiment. Thus in order to under-
stand what measurement is, one has to remember what an experiment is. An experiment is the
disclosing of the ideal essence of a phenomenon through artificial situations. A measurement
is based on the standardization of the artificial situation of the experiment i.e. of the objects,
relations, and procedures that constitute it. For instance, in the case of the barometer we fix the
diameter and the length of the tube, the amount of mercury. We may also determine the number
scale which we fix to the tube, choose the suitable physical units and determine the scope of tem-

10 The situation with the law of free fall is slightly more complicated. A sphere in its motion on an inclined plane
not only slides but also rotates. Therefore, not only is its translatory motion accelerated, but also its spinning, thus
it increases both its momentum and its angular momentum. If the ball moves without slip, the angular velocity of its
rotation is directly proportional to the velocity of its translatory motion. (In the case of the sliding of a rigid body on an
inclined plane without any rotation its velocity is v = g.t.sin(c). In the case of rotation without slip, due to the losses on
the angular momentum, the body will reach a smaller velocity v = (5/7).g.t.sin(c), which is by almost 30% less.) Galileo,
while watching the second case, believed that he is watching the first one. In the transition to the free fall (sin(a)=1) there
is a problem, because the effect of the acceleration of the body’s rotation is turned off gradually. Fortunately, both cases
accelerate in the same way, so the law path proportional to the square of time is not altered by the presence of rotations.
So the conclusion that Galileo drew from his observation holds, although it should be added that thanks to good luck.
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peratures at which the barometer gives reliable results. In this way we secure the reproducibility
and so the intersubjectivity of the measurement. Thus even if the ideal essence of phenomena
such as pressure is not accessible to us directly, and we can disclose it only with the help of an
artificial situation, by the means of standardization we can minimize the dependence of the phe-
nomena upon the particular situation. The measurement device is thus a tool for the realization
of Galileo’s program of the mathematization of nature.

As long as physics operates in the area of phenomena, to which we have an immediate access
through our senses, it is possible to understand measurement as a process of refinement of the
picture of reality, offered by the senses. For instance in the case of free fall we are not able to
decide by the use of our senses whether it is uniform or accelerated. Nevertheless, we know
free fall from our experience and thus we are inclined to interpret the measurement as a device
which only helps us to determine that free fall is accelerated. In the case of temperature, the
interpretation of measurement as a process of refining the sensory image, which we get by the
immediate contact with the body whose temperature we are measuring, becomes more problem-
atic. The problem is that we are able to measure the temperature of bodies which are so hot
that by touching them directly our hand would be carbonized immediately and so we scarcely
can speak about some sensory image. In the case of the atmospheric pressure it is even worse.
The gradual decrease of pressure manifests itself on the phenomenal level first by an unpleasant
headache, but it ends with the explosion of our organism after the gases dissolved in the body
reach their boiling point. To speak about the measurement of pressure as making our sensory
impressions more precise is impossible. What sensory impression corresponds to the pressure of
0.01 atmospheres? This is absolutely beyond human imagination.

Thus measurement not only increases the precision of the phenomena of ordinary experience,
but it also extends physical reality beyond the boundaries of phenomenal world. The results
of measurements, with which we are confronted, are sometimes quite different from ordinary
experience. The physical world-picture is constantly adapting to the latest results obtained in the
experimental practice, and so it is gradually moving away from the image of the world that we
have created in our lifeworld. At first glance it may seem that sensory experience is in line with
the instrumental reality and is only supplementing it with some subjective aspects. But this is not
the case. Between the phenomenal and the instrumental reality there is a fundamental conflict.
Husserl became aware of this conflict and he showed that the measurement device does not make
the sensory perceptions more precise, but on the contrary, it replaces them by a number, i.e. by a
mathematical ideality, which is something very different from a sensory perception.

A measuring instrument is according to Husserl a technical means which in a standard way
transforms the changes of a phenomenon (such as temperature, atmospheric pressure, or color)
into changes of length. However, length is of ideal nature, successive division of its unit leads in
principle to absolute precision. In this way the measuring instrument replaces the phenomena,
presented to us by our senses as dim, vague, and uncertain perceptions by ideal mathematical
objects. In this way nature, which for the Ancients was a realm of phenomenal contents, be-
comes a universe of physical quantities.'! This universe of physical quantities is the basis for the
mathematization of nature. Thus science does not mathematize the physis of Ancient philosophy.
Phenomena like color or taste, as we perceive them in our ordinary experience, cannot be math-

1 We understand here phenomenal contents as opposed to mathematical quantities (thus for instance the feeling of
heat as opposed to the temperature measured with a thermometer; or the impression of color as opposed to the wavelength
of the light, as measured in optics), and not as a member of the ancient opposition of form and content.
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ematized. Science does not mathematize these phenomena, but only their pictures, obtained in
measurement. The scientists believe, and the phenomenologists doubt, that this mathematization
is faithful.'?

1.1.5 Galileo’s principle of inertia and idealization of motion

In section 1.1.3 we presented Galileo’s theory of free fall, which originated from experimental
investigation of the motion on an inclined plane (as the theory of motion on a totally inclined, i.e.
vertical plane). Let us now turn to the second limit case of Galileo’s experiment, namely to the
horizontal plane. Imagine that the plane is inclined downwards from the left to the right and that
we let a ball roll in the same direction. Obviously, the ball will accelerate. If we gradually dimin-
ish the slope of the plane, passing through the horizontal position to the opposite direction, while
the ball is still moving in the same direction, we will find that by moving upwards its motion
decelerates. That means that the motion downwards is accelerated, while the motion upwards
is decelerated. That is why the horizontal motion should be neither accelerated nor decelerated.
Similar considerations could have led Galileo to his fundamental principle of inertia: “We may
therefore suppose it to be true that in the ordinary course of nature a body with all external
and accidental impediments removed travels along an inclined plane with greater and greater
slowness according as the inclination is less, until finally the slowness comes to be infinite when
the inclination ends by coincidence with the horizontal plane. ... But motion in a horizontal line
which is tilted neither up nor down is circular motion about the center; therefore circular motion
is never acquired naturally without straight motion to precede it; but, being once acquired, it
will continue perpetually with uniform velocity.” (Galilei 1632, p. 28, stress L. K.)

According to Aristotle, every motion must have its motive cause. Aristotle’s basic perception
was thus a perception of rest, motion being conceived as its disturbance, a deviation from rest in
consequence of some cause. Galileo comes forth with a new principle—the principle of inertia:
if a body moving on an absolutely smooth horizontal surface would be left on its own, it would
remain moving infinitely. This is something substantially new—not the motion itself, but only
the change of motion is the point to be explained. We have to explain not why things are moving,
but why they stop. We need not a theory of the “moving cause” (as Aristotle thought), but rather
a theory of the “stopping cause” (i.e. the theory of friction). By his principle of inertia Galileo
changed radically the concept of motion. But we have to remember that he did not discover
inertial motion in ordinary experience, but on a perfectly smooth horizontal surface that was a
component of an artificial experimental situation. We can say that Galileo adapted his under-
standing of motion to the experimental practice. The motion became for him something ideal.
The Greeks were unable to imagine something ideal and at the same time subjected to change.

12 According to Husserl, idealization is the solution of a conflict between the phenomenal reality of ordinary experience
and the instrumental reality of the experimental practice of science. This conflict is perhaps most saliently manifested in
the question of the motion of the Earth, where science teaches us not to believe our own eyes that the Earth is stationary.
We must instead learn to believe that we are constantly driven by the Earth with a velocity of over 10,000 kilometers
per hour. Scientists were led to this idea by astronomical observations. Science has a tendency to suppress this conflict.
She tries to convince us that there is a continuous transition from the phenomena of everyday experience to the scientific
world picture. Therefore, in books on popular science Aristotelian physics is portrayed as a collection of prejudices, while
Galileo and Newton are portrayed as defenders of common sense. But let us not be fooled. It is the Aristotelian physics
that is the physics of ordinary experience and common sense. Modern science has abandoned everyday experience and
common sense in the name of instrumental observations, experiments, and measurements.
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For them ideal meant changeless. This was why Aristotle denied a possibility of mathematical
description of the sublunary world. Galileo was able to imagine idealities subjected to change—
the free fall in a vacuum for instance is something ideal, and therefore subjected to mathematical
description, but at the same time it is a motion, i.e. something subjected to change.

The principle of inertia reminds one in many aspects of the scholastic theory of the impetus.
Nevertheless, there is a basic difference. The aim of the theory of impetus was only to incorporate
the phenomenon of inertia into the Aristotelian world-view, i.e. to explain, why a stone preserves
its direction of motion even after it leaves the hand that threw it.!* Galileo (after years of futile
attempts) came to the conclusion that it is not possible to incorporate this phenomenon into the
Aristotelian system, and that for the sake of this phenomenon (as well as the acceleration of the
free fall), it is necessary to abandon the Aristotelian representation of motion and to replace it by
a new representation, in which inertia becomes one of the fundamental principles. Thus Galileo
raised inertia to a principle. It is not just a marginal phenomenon which we can get rid of by
introducing the impetus. On the contrary, inertia is the central property of motion, around which
a new interpretation of motion should be built. Motion is not a transitory state, through which
bodies reach final rest at their natural places. On the contrary, motion is a fundamental property
of all bodies.

Nevertheless, every motion we encounter on Earth has a natural tendency to stop. Thus,
after Galileo came to the conclusion that motion is inertial and its stopping is only a result of
friction, physics left the realm of natural experience and came into a direct opposition to it. If
a desk moved freely in the room, we would be probably surprised. But according to Galileo,
we should not be surprised, because to move freely is the most natural thing that a desk can
do. But it is surprising that the desk rests in its place. Thus not the motion of the desk, but
rather its motionless rest is something unnatural which we have to explain. The explanation is
that the surface of the room is not ideally smooth and ideally hard, and so it hinders the desk in
manifesting its nature. Thus Galilean physics considers the real nature of bodies (i.e. their inertial
motion) to be something which nobody ever experienced, and the way how bodies appear in our
everyday experience, what happens with them each and every day (i.e. being at rest), is allegedly
something absolutely unnatural. As Koyré said: “Galileo’s physics explains that which is by that
which is not [i.e. real motion by motion in a vacuum].” (Koyré 1939, p. 200).

1.1.6 The distinction between primary and secondary qualities

In his work The Assayer Galileo divided all characteristics we encounter in everyday experience
into primary and secondary qualities: “Hence I think that tastes, odors, colors, and so on are no
more than mere names so far as the object in which we place them is concerned, and that they
reside only in the consciousness. Hence if the living creature were removed, all these qualities
would be wiped away and annihilated.” (Galilei 1623, p. 274). This means that the image of
reality that our senses present to us is not physically real, but only that part of it which we are

13 The medieval theory of impetus was an objectivization of inertia in the framework of Aristotelian physics. Inertia
was objectivized as the impetus, i.e. as a substance that is inserted by the mover into the moving body. Impetus is so
just another element of the Aristotelian universe. The inertia of the projectile motion has, according to the theory of
impetus, nothing to do with the inertia of the motion of the heavenly bodies and is thus limited to a narrow range of
phenomena such as the motion of missiles or of thrown objects. In contrast, Galileo’s principle of inertia is the basis of a
new representation. The inertia of the motion of the earthly bodies and the inertia of heavenly motion is governed by the
same principle.
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able to grasp through measurement. Only that part can become the subject matter of scientific
investigation. In the reduction of reality to the primary qualities we can see, at the one hand,
a forerunner of the mechanistic worldview and, at the other hand, a remote predecessor of the
notion of state of a physical system. Similarly, as in the case of Galileo’s principle of inertia of
circular motion there was a long way to go towards the principle of inertia of modern physics,
also in the case of the reduction of reality to the primary qualities there is still a long way to go
to the concept of state. Moreover, here, unlike in the case of the principle of inertia, Galileo’s
idea of reduction is not related to the idea of the temporal development, which is one of the
most fundamental aspects of the notion of state. But despite these constraints one can not deny
that we are here confronted with the idea of the reduction of phenomena to their mathematical
description, which was the key moment in the further development of physics.

1.1.7 Galileo’s reduction of motion to a geometric flow

As we have already pointed out, in everyday experience we encounter motion as a process that
sooner or later stops. Such motion is the subject of the Aristotelian physics. According to
Aristotle, motion is simply a transition of a body from one place to another. Therefore, it is
determined by two places. On the one hand it is the starting point, i.e. the place where the body
rests before it starts moving. On the other hand motion is determined also by its final point,
i.e. the point, towards which the motion is directed. The motion stops when the body reaches
its final destination. Thus Aristotle’s concept of motion can be characterized as a theory of
geometric transition. It is based on the geometric structure of the universe (the theory of natural
places) and motion is a transition from one place to another.

Galileo’s principle of inertia changes the concept of motion in a fundamental way. Galileo
speaks about the motion which—strictly speaking—nobody ever saw, about motion as an eternal
flow. According to Galileo, motion has no starting point and no destination; it is not a transition
from one place to another. Of course, there are cases where a motion stops. For instance, in the
case of a free fall the body stops when it reaches the surface of the Earth. But this stopping is
only the consequence of hitting an obstacle. Therefore the terminal point does not belong to the
motion itself. In contrast to the Aristotelian theory, according to Galileo, the terminal point of
the motion appears only due to a violent external intervention. The free fall is not directed to any
terminal point. It is only, due to the external circumstances, violently interrupted at the Earth’s
surface. Motion is, according to Galileo, neither a motion from a place nor a motion towards
a place. Motion is a movement alongside a trajectory. Thus Galileo replaced the Aristotelian
concept of motion that we have characterized as a geometric transition by a new concept of
motion as a geometric flow.

We can say that between the two points, by means of which Aristotle explained motion,
Galileo inserted a curve connecting them. The motion passes along this curve, either uniformly
or with acceleration. This concept makes it possible to describe motions that have neither a
beginning nor an end, because the curve also may have no starting point and no endpoint. For
Galileo, the universe is a geometrically ordered system of trajectories. This is an enormous
change, because motion is no more a transitory disturbance of a fundamentally static order of
the universe, as it was in the Aristotelian theory. Motion is an eternal flow, and so the order of
the universe itself becomes a kinematic order. Nevertheless, Galileo’s concept of motion is still
a geometric one, because it represents motion by means of the geometric concept of a trajectory.
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In the Aristotelian world-view each place had its fixed identity, determined by its relation to
the order of the universe. The nature of a motion was determined by the place towards which it
headed—it was a motion downwards, if it was directed towards the center of the universe, and it
was a motion upwards, if it was directed towards the sphere of the stars. Thus Aristotle discerned
different kinds of motion according to the final point towards which they moved. With Galileo,
a motion can no more derive its identity from a place, because in his system there are no fixed
places. Nevertheless, Galileo still discerned different kinds of motions as free fall, projectile
motion, inertial motion etc. The identity of these different kinds of motion was not determined
by the terminal point, but by the geometric form of the trajectory along which they moved.
So for instance free fall was rectilinear, inertial motion was circular, and projectile motion was
parabolic. Thus, even though Galileo changed the Aristotelian way of determining the nature
of a motion, he did not abandon the very idea that there are motions of different kinds. For
Galileo the acceleration of the free fall was a property of that particular kind of motion, just as
the parabolic shape of the trajectory was a property of projectile motions. Therefore Galileo saw
no need to explain why free fall was accelerated. Acceleration was simply a property of this kind
of motion.

Galileo was not yet in possession of sufficient mathematical resources that are necessary for
the development of his new idea of motion. He did not posses analytic geometry that would
allow him to describe trajectories of arbitrary shapes, and so in his theory of motion a dominant
role was still given to circles and parabolas. In addition, he lacked the idea of infinity of space.
Galileo’s universe was still the finite universe of ancient science; his universe ended at the sphere
of the stars. Galileo’s theory resulted in a replacement of the Aristotelian idea of the universe
as a hierarchically ordered system places by the idea of the universe as an ordered system of
circular motions. The basic principle of ancient science that the order of the universe is given
by geometric arrangement is still preserved. Galileo only replaced the static order of places by
a kinematic order of trajectories. But the order of his universe is still a geometrical order, a
harmonious order of trajectories of non-interacting bodies.

Galileo had no concept of gravity (see Koyré 1939, p. 199). He did not see acceleration as
a result of the action of a force, but as a characteristic feature of the free fall, understood as a
special kind of motion. Strictly speaking, at the phenomenal level such a view is understandable;
we do not perceive any action of forces. Galileo described only what he was able to observe; he
reduced physics to phenomenal reality. It was Descartes who expressed the idea that there is no
natural acceleration and that there is only one kind of motion—uniform motion in a straight line.
Free fall must be therefore the result of interaction. The fact that we do not see it is for Descartes
irrelevant. If we do not see interaction, we must postulate it. Accelerated motion must be a result
of interaction, whether we see it or not.

1.2 Shortcomings of Galilean physics

The importance of Galileo’s thoughts for the development of modern science is generally ac-
cepted. But despite his fundamental contributions, Galileo’s ideas had also some deep shortcom-
ings which are the reason why the modern science is not a direct continuation of the Galilean
project. We do not have in mind Galileo’s mistakes (as was his conviction that inertial motion
is circular or his ignorance of Kepler’s discovery of the elliptic shape of the planetary orbits: he
maintained that the orbits are circular). Such mistakes can be easily corrected. Neither have we
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in mind Galileo’s opinion that the universe is finite. This can also be changed. What we have in
mind are problems concerning Galileo’s conceptual understanding of motion. These problems
are the reason why the analysis of Galileo’s work is not sufficient for the understanding of the
structure of modern science.

The shortcomings of Galilean physics are most easily realized when we compare Galilean
physics with the Cartesian one. Such a comparison allows us to understand not only the limits
of Galileo’s conceptual understanding of motion, but also the relation between Galilean and
Cartesian physics. Even if this relation is not very important from the historical point of view (it
seems that Descartes did not study Galileo’s works in detail), it is important for the clarification of
the place of Descartes in the history of physics. Therefore, we will list the deficiencies of Galilean
physics in the order in which their corrections enter into the construction of the Cartesian system.
In focusing on the shortcomings of Galilean physics, our aim is not to lessen Galileo’s merits.
We believe that shortcomings of scientific theories belong to the history of science in the same
way as their successes. The advantage of the analysis of the shortcomings of scientific theories
is that they allow us to see the specific features and the unique character of these theories, by
pointing to their limits.

1.2.1 The circular character of inertial motion

Galileo considered uniform circular motion as inertial. This means that he was unaware of the
centripetal acceleration of circular motion. The uniform circular motion is, according to Galileo,
not the result of the action of a force, but it is inertial. It is obvious that the belief in the inertial
character of circular motion is a remnant of the Aristotelian theory of celestial motion, even
though, unlike Aristotle, Galileo attributed this kind of motion also to the earthly bodies.

1.2.2 Absence of the concept of a state

Galilean physics lacked the concept of state. Although Galileo formulated the idea of reduction
of reality to primary qualities, he was unable to reduce the diversity of different kinds of motion.
This fragmentation in the description of motion is a typical feature of Galilean physics. Aristotle
separated the circular motion, which he considered the principle of motion of heavenly bodies,
from the linear motion, which was the principle of motion of bodies in the sublunar realm.
Galileo eliminated the Aristotelian separation of the heavenly and the sublunar realm when he
discovered that the horizontal motion on the Earth’s surface is inertial, and thus ascribed circular
motion also to earthly bodies. We can say that Galileo homogenized space—he removed its
division into the sublunar and celestial realms—but he did not homogenize motion—he still
distinguished different types of motion. The free fall is a rectilinear motion, inertial motion is
circular, and projectile motion is parabolic. When a body falls down, it is governed by the law of
free fall, when it moves horizontally, it is governed by the law of inertia, and when it is thrown
obliquely upwards, its motion will be governed by the law of projectile motion. According to
Galileo, there exist different kinds of motion (from the empirical point of view they do really
exist), and the task of physics is to find their accurate mathematical description.

It seems that Galileo took the idea of distinguishing different kinds of motion from Aris-
totelian physics. This means that although Galileo rejected the Aristotelian way of classifying
the particular kinds of motion (into natural and non-natural ones), he did not reject the very idea
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of the existence of different kinds of motions. Unlike Galileo, modern physics knows only one
kind of motion—uniform rectilinear motion— everything else is the result of interaction.'* It is
easy to see that this shortcoming of Galilean physics is the result of its too close connection to
experience. In ordinary experience we actually see different kinds of motion. To reduce all of
them to only one, the uniform motion in a straight line, and to attribute all deviations from this
uniform motion to the action of forces, requires a considerable degree of abstraction.

1.2.3 Absence of universal laws

Galilean physics lacked universal laws. Laws discovered by Galileo, such as the law of free fall,
the law of isochrony of the pendulum, or the law of inertia, describe specific phenomena and
so they cannot be applied to other phenomena. The law of free fall describes falling objects but
it does not apply to a pendulum. The law of isochrony of the pendulum describes pendulums
but not falling bodies. Galilean physics thus breaks nature into isolated phenomena, each of
which is described by a special law written in the language of mathematics. Even though the
Galilean mathematization of phenomena was a big step forward, the fragmentation of nature
that it introduces indicates that Galileo did not yet found the optimal way of mathematization.
Modern mathematical science is not a direct continuation of the Galilean project.

The source of this fragmentation of nature seems to have its origin in the experimental
method. An experiment allows us to find for each phenomenon a corresponding mathemati-
cal law, but on the other hand, it isolates the studied phenomenon from all other phenomena.
Galilean physics, due to its too narrow ties to experiment, lost sight of the unity of nature

1.2.4 Absence of the notion of interaction

Galilean physics lacked any description of interactions between bodies. All laws discovered by
Galileo (the law of free fall, the law of inertia, the law isochrony of the pendulum), describe the
motion of a single isolated body. In his investigation of nature Galileo isolated the bodies from
their surroundings and studied their motion separately. Therefore he saw the acceleration of free
fall not as the result of interaction, but is a characteristic feature of this kind of motion—just like
the parabolic shape of the trajectory of projectile motion. Galileo did not see the necessity to
explain how it is possible that free fall is accelerated. For him it was simply a fact that he wanted
to describe as precisely as possible.

It is not difficult to see that the absence of interaction in Galilean physics is closely related
to the geometrical language, by means of which he described motion. When he tried to grasp
motion as a continuous passing along a trajectory, interactions were left out from the picture. An
interaction impairs the given shape of the trajectory, and thus it interferes with the geometrical
framework by means of which Galileo described motion. According to Galileo, the book of
nature is written in the language of mathematics; “its characters are triangles, circles, and other
geometric figures without which it is humanly impossible to understand a single word of it”
(Galilei 1623, p. 238). Thus Galileo choose the wrong mathematics. His geometrization of

14 Tt is surprising that Galileo did not recognize uniform rectilinear motion: all motions that he described differ from
the uniform rectilinear motion. Inertial motion is according to Galileo uniform, but it is circular (i.e. not straight); free
fall is a motion along a straight line, but it is accelerated (i.e. not uniform).
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motion was an important step forward on the road to modern science, but it was only the first
step.””

1.2.5 Absence of the union of several bodies into a mechanical system

As already mentioned, Galilean physics studied the motion of isolated bodies. In addition to
the impossibility of describing interaction among bodies, mentioned in the previous chapter, it
also means the absence of bounds between them. In other words, Galilean physics lacked the
theoretical tools for the description of a mechanical system consisting of several bodies. Of
course, in the study of motion on an inclined plane or of a pendulum we are (from the Newtonian
point of view) dealing with systems with bounds, but Galilean physics did not understand them
this way. It simply neglected the arm of the pendulum or the inclined plane. It required the arm
to be perfectly solid and have zero mass; just as it required the inclined plane to be perfectly hard
and perfectly smooth. These requirements can be summarized into a single condition: the arm
of the pendulum or the inclined plane should not interfere with the motion of the body under
examination.

1.2.6 The openness of the physical description of motion

Galilean physics was not able to describe a closed dynamic system. Galileo’s law of free fall
is one of the first laws of modern physics. But how strange a law it is! In free fall the body
accelerates, thus its momentum and kinetic energy are increasing. Nevertheless, the question
from where are these gains of momentum and energy coming is left by Galileo without any
answer. The systems described by Galilean physics violate the conservation laws; their total
energy and momentum spontaneously grows and falls. This shows that Galilean physics did not
have the concept of a closed physical system.

1.2.7 Summary

Interestingly, the absence of the concept of state, the lack of universal laws, and the lack of
description of interaction is not mentioned in the extensive literature on Galileo’s work. Profes-
sional historians of science probably see comparisons of a theory with later stages in the devel-
opment of the particular discipline as something inappropriate. They call it Whig history and see
it as one of the fundamental methodological errors of their discipline. In our view, however, the
comparison of a theory with the later stages of development can improve our understanding of
the theory. The above listed shortcomings of Galilean physics do not diminish the importance
of Galileo’s contribution to science. Nevertheless, they enable us to understand more clearly
the motives, the contents, and the context of the Cartesian project. If we realize that Galilean
physics lacked the concept of state, the notion of a universal law, and the notion of interaction,
we cannot ignore the role of Cartesian physics, which introduced these elements into the physi-
cal description of nature. We can neither omit Descartes from the history of physics, nor can we
describe him as a strange marginal figure (the author of a metaphysical physics). We have to take

15 The unsuitability of Galilean mathematization was noticed by Wisan: it has been insufficiently noticed that to an
important degree his [Galileos] ‘mathematicism’ consists in the attempt to reduce natural science to the Greek mathe-
matical model in order to achieve the logical certainty of mathematics. (Wisan 1978, p. 3).
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seriously Descartes’ physics despite its many factual and conceptual errors, and integrate it into
the history of physics as a bridge linking Galileo with Newton.

1.3 Husserl’s analysis of Galilean physics

In chapters 1.1.1 — 1.1.6 we tried to show the relevance of Husserl’s interpretation of Galileo.
Nevertheless, the fact that we consider Husserl’s interpretation of modern science to be a relevant
one does not mean that we accept all aspects of his theory. In Husserl’s text there are several
technical faults which do not lessen the importance of his contribution, but their analysis can
give us a better understanding of the limitations of his understanding of modern science. We hope
that on the basis of this understanding we can overcome the limitations of the phenomenological
theory of science.

1.3.1 Some technical comments concerning Husserl’s interpretation of Galileo’s physics

Our first comment concerns Husserl’s understanding of mathematization: “But through Gali-
leo’s mathematization of nature, nature itself is idealized under the guidance of the new mathema-
tics; nature itself becomes—to express it in a modern way—a mathematical manifold” (Husserl
1954, p. 23). From the historical point of view, the mathematization of nature was not so
straightforward. In the way in which Galileo attempted to mathematize nature (with the help
of “triangles, circles and other geometrical figures™) it is simply impossible to get beyond a
mathematical description of simple phenomena. And apart from that, between Galileo’s “mathe-
matized nature” and the “new mathematics” which accompanied the role of its idealization, there
was an important intermediate stage: the Cartesian physics.

Another problem concerns the algebraic language: “Here we must take into account the
enormous effect—in some respects a blessing, in others portentous—of the algebraic terms and
ways of thinking that have been widespread in the modern period since Viete (thus since even
before Galileo’s time)” (Husserl 1954, p. 44). Husserl indicates here that alegraic formulas are
somehow connected with Galileo’s mathematization of nature. Even if he does not say explicitly
that Galileo wrote some formulas, nevertheless he indicates the existence of such a connection.
But Viete’s symbols are rather too complicated and useless for physics. Therefore Galileo did
not use any formulas and he expressed his laws in a purely verbal manner. The transcription of
physical laws into algebraic symbolism was the achievement of the next generation of physicists,
and the author of the algebraic symbolism, with the help of which this transcription was achieved,
was Descartes.

The question of causality remains also unclear: “The formulae obviously express general
causal interrelations, “laws of nature”, laws of real dependencies in the form of the “functional”
dependencies of numbers” (Husserl 1954, p. 41). If we rewrite Galileo’s law of free fall with the
help of algebraic formulas (of course, Galileo used no formulas), we obtain something like:

1
= —gt.
S 2g

It is obvious that this formula does not express any causal relation. It is simply an expression of
a correlation between two aspects of the phenomenon of free fall without any recourse to causes.
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Physics has achieved the level of the description of causal laws, but it was not Galilean physics
but the Newtonian physics. Newton’s law (expressed using modern notation)
d*x

F=mie
is an expression of the change of the momentum of a body due to the action of a force. Nev-
ertheless, it is not an algebraic equation but a differential one. And this question leads us again
to Descartes, who in his physics tried to overcome Galileo’s reduction of physics to the purely
phenomenal level and wanted also causality to be included into our description of nature. In this
way Cartesian physics plays the role of an intermediate state between Galilean physics, which
excluded causality from the description of nature, and the Newtonian physics, which describes
causality through differential equations.

Husserl’s view of ‘algebraization’ (or ‘arithmetization’) of geometry is also problematic:
“This arithmetization of geometry leads by itself in a sense to emptying of its meaning.” (Husserl
1954, p. 44). In our view, algebraic symbolism definitely does not empty the meaning of ge-
ometry, but on the contrary, it raises this meaning to a higher level of fullness. To see this, it is
sufficient to realize why geometry can serve as a tool for (the Galilean) mathematization of nature
in the first place. It is because the language of geometry was the first language that contained the
idea of a variable in the implicit form of the line segment of indefinite length. The language of
algebra brought this idea to an explicit form and thus brought the possibilities, which in geometry
had been present only implicitly, to a much higher level of completion. Algebra brought a radical,
structural deepening of the sense of geometry in the form of Descartes’ analytic geometry.

1.3.2 The relation between Galileo’s physics and Cartesian philosophy

The above mentioned details, in which Husserl’s exposition contradicts the historical facts, lead
us repeatedly to Descartes. At the same time anyone who read Husserl’s Krisis might notice one
remarkable feature of the book. Husserl analyzed thoroughly Galileo’s physics (Husserl 1954,
pp- 20-60) and Descartes’ philosophy (Husserl 1954, pp. 60-85), but the relation between these
theories he only vaguely indicated in three rather shorts notes: “One can truly say that the idea
of nature as a really self enclosed world of bodies first emerges with Galileo. A consequence
of this, along with mathematization, which was too quickly taken for granted, is [the idea of]
a self-enclosed natural causality in which every occurrence is determined unequivocally and in
advance. Clearly the way is thus prepared for dualism, which appears immediately afterward
in Descartes” (Husserl 1954, p. 60, stress L. K.). “After Galileo had carried out, slightly ear-
lier, the primal establishment of the new natural science, it was Descartes, who conceived and
at the same time set in systematic motion the new idea of universal philosophy: in the sense
of mathematical or, better expressed, physicalistic, rationalism—philosophy as universal mathe-
matics” (Husserl 1954, p. 73, stress L. K.). “Is Descartes here not dominated in advance by the
Galilean certainty of a universal and absolutely pure world of physical bodies, with the distinc-
tion between the merely sensibly experienceable and the mathematical, which is a matter of pure
thinking?” (Husserl 1954, p. 79, stress L.K.).

We do not intend to question the importance of the relation between Galileo’s physics and
Descartes’ philosophy which is indicated by Husserl. What is striking is the conceptual vague-

EEINT3

ness of the description of this relation, using the words like “first emerges”, “appears imme-
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diately afterward”, “set in systematic motion”, or “dominated”. It reminds us of a description
of the process of a geological folding, in which mountains emerge, continents appear, and the
whole process is set in motion by tectonic forces. While Husserl offers a thorough intentional
analysis of the works of Galileo and Descartes, the transition from one to the other is left unclear
and has the form of a conceptual sedimentation.

In contrast to the above-mentioned technical comments, a deeper problem manifests itself
in this ambiguity in the interpretation of the relation between Galileo and Descartes. We are
convinced that Descartes’ philosophy cannot be interpreted as an outcome of Galilean physics.
In our view Descartes’ philosophy is an outcome not of Galileo’s but of Descartes’ physics. Thus
we come back to the point we mentioned at the beginning of our paper. Husserl successfully
refuted the positivistic interpretation of the rise of modern science, but at the same time he took
over the framework, in which positivism discussed this question. One characteristic feature of the
positivistic interpretation of the rise of modern science was the omission of Descartes’ physics
(as a metaphysical theory) and the attempt to interpret Newton’s physics as a direct continuation
of Galileo’s intentions.

We believe that the omission of Descartes’ physics from the analysis of the rise of mod-
ern science is the reason why Husserl tries to connect the two incompatible theories. Galileo’s
physics cannot be connected directly with Descartes’ philosophy, because they are separated by
Descartes’ physics. Descartes’ physics brought a radical alteration of the entire Galilean project
of the mathematization of nature, and Descartes’ philosophy was a further radicalization of his
physics.!® Thus even if it is possible to give a clear conceptual explanation of the transition
from Galilean physics to Descartes’ physics, as well as of the transition from Descartes’ physics
to his philosophy, a direct transition from Galileo’s physics to Descartes’ philosophy cannot be
described, because it just did not take place. Descartes went in his physics against the Galilean
program, and so later, when he completed his physics by its philosophical reflection, the Carte-
sian philosophy which so emerged did not have with Galilean physics much in common. That is
in our view the reason why Husserl connected the conceptually clear and precise exposition of
the scientific works of Galileo with an equally clear and precise exposition of the philosophical
works of Descartes in such a vague and obscure manner. An exposition of the rise of modern
science requires first of all clarification of the relation between Galileo’s project of mathema-
tization of nature and Descartes’ philosophy. This clarification has the form of an intentional
interpretation of Cartesian physics, which is the content of the next chapter.

16 Interpretation of Descartes’ philosophy as a deepening of the project of Descartes’ physics is not common. Histo-
rians of philosophy usually ignore Descartes’ physics and try to explain Descartes’ philosophy from purely philosoph-
ical motives (as the confrontation with skepticism). Nevertheless, Gaukroger’s Descartes, An Intellectual Biography
(Gaukroger 1995) is an exception from this trend.
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2 Cartesian physics

Galileo made a series of important scientific discoveries by means of his experimental method.
Nevertheless, Descartes realized the limited scope of the Galilean project of founding science
solely on experiments. In a letter to Mersenne of October 11, 1638 Descartes wrote: “without
having considered the first causes of nature, he [Galileo] has merely looked for the explana-
tions of a few particular effects, and he has thereby built without foundations” (Clarke 1992,
p- 271). In order to make a phenomenon accessible for experimental investigation, Galileo
had to isolate it from the network of its relations with other phenomena. Therefore, the laws
discovered by Galileo, for instance the law of the free fall, the law of the isochrony of the pen-
dulum, the law of the parabolic trajectory of projectile motion, are all laws describing isolated
bodies. Although Galileo succeeded in reducing these phenomena to mathematical relations be-
tween physical quantities, what he achieved was that for each phenomenon there was a specific
law. Therefore even if the laws discovered by Galileo were true, which Descartes doubted, by
Galileo’s method nature would disintegrate into a set of unrelated processes. In opposition to
Galileo, Descartes required that science must go beyond the phenomena and grasp the deeper
ontological unity of nature. Each time we observe motion, it is the motion of a body, when we
perceive a number, it is the number of certain bodies, when we see a shape, it is the shape of a
particular body. Thus from the primary qualities, which were the core of Galilean science, it is
necessary to proceed to their ontological foundations, i.e. to the extended body. Thus the method
of science must be based on an ontological rather than on a merely phenomenal reduction.

Descartes moves from the description of isolated phenomena to the description of the state
of a physical system. Only when we reach this deeper level of description, the unity of the
world reveals itself. The task of physics is to find universal laws describing the changes of the
state and not particular regularities occurring between the parameters characterizing isolated
phenomena. Descartes thus in a fundamental way transgresses the level of generalization which
can be justified by empirical experience. Strictly speaking, however, it is impossible to derive
from any set of experiments that beyond particular phenomena there is an ontological unity
(represented by the notion of state)— just as it is impossible to conclude from any correlation
between experimental data that there are universal laws underlying these correlations. But on
the other hand, we cannot deny that modern physics does precisely this. Instead of parameters
characterizing the experimental behavior of a system, physics postulates its state described by
the Lagrangian or Hamiltonian function. Similarly it tries to derive all observed correlations
between the empirical parameters from some universal law, expressed in the form of Lagrangian
or Hamiltonian equations. In other words, science follows Descartes’ intentions of an ontological
reduction and universal description of nature.

There is no doubt that this idea is a metaphysical one. In justifying his physical laws
Descartes explicitly used metaphysical arguments. It is partially because of this close relation to
metaphysics that positivistic historiography ignored Cartesian physics and that many modern his-
torians tend to interpret it as a metaphysical system and not as a scientific theory. We would like
to show that Cartesian physics is more than a metaphysical system and that it can be interpreted
as a project of mathematical physics. In our view the metaphysical underpinnings of the Carte-
sian system had only an auxiliary role because there was no mathematical language Descartes
could use to work out his project. As soon as Newton created such a language, it became possible
to replace Descartes’ metaphysical principles by mathematical ones and to justify them by their
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success. We see Descartes’ reliance on God in physics as a symptom of the fact that Descartes is
transcending the way in which nature was described by his contemporaries, but he did not have
the mathematical ground on which he could base his new way of describing nature. God has in
Descartes’ system a precise epistemological place.

Once Newton created the differential and integral calculus by means of which a mathematical
description of nature could be successfully completed, large parts of the Cartesian metaphysics
could be omitted and the new physics could be justified by its functioning. What Descartes
grounded on metaphysics, Newton formalized. Metaphysics will be moved elsewhere—it will
be used by Newton for a justification of the infinity of space and of the action at a distance—to
gradually disappear almost completely. But if we want to explain the origins of modern science,
we must not ignore the theological roots. When we look at the elements of Cartesian physics
supported by a theological foundation, we can easily see that they are formal elements. The-
ological passages in scientific works can be seen as indicators of the birth of a new language
(for more details see Kvasz 2008b). The formal aspects of a language consist in everything the
language cannot express (or justify empirically) but only display. And there is no doubt that
experience can not justify the conservation of the quantity of motion or the possibility to reduce
all phenomena to extension and motion. It should be noted, however, that these principles are an
essential part of Descartes’ physics—they constitute the form of its language. The reluctance of
philosophers to appreciate Descartes’ fundamental contribution in the making of modern physics
is understandable. To admit that Descartes could play an important role in the creation of physics
would mean to admit that science is in a fundamental way metaphysical.

The recognition of the metaphysical foundations of modern science is hampered by the fact
that in modern science the metaphysical foundations are operationalized. Scientists are not aware
of the fact that in describing a physical system by its state and the temporal evolution of that state
by a universal law they are using metaphysical principles going back to Descartes. Scientists do
not ponder on such questions, they simply write down the equations and start to solve them. Thus
it seems that Desmond Clarke is not right when he considers Descartes’ requirement, according
to which we have to construct metaphysics before formulating a physical theory, to be an obso-
lete, scholastic trait of Descartes’ thought (see Clarke 1992, p. 272-273). On the contrary, this
feature makes Descartes modern, as he proceeds in agreement with the practice of contemporary
scientists. The only difference is that Descartes is fully conscious of the metaphysics and ex-
plicitly states it, while modern science has a formal metaphysics which is taken for granted and
therefore perceived by nobody. But to write the Lagrangian function L(g, ¢') describing the state
of a system is a metaphysical move. Strictly speaking, there is no reason why a system should
have a state.!”

Thus, we come back to Husserl and his questioning of the obviousness of modern science.
Husserl showed that modern science replaces the phenomena of the life-world by mathematical
quantities. A similar process takes place on the ontological level, where science replaces the
ontology of the life-world by the description of states. The Cartesian rupture which separates
the state of a system from the ontology of the life-world is thus similar to the Galilean rupture
which separates mathematical quantities from the phenomena of the life-world. The similarity

17 To ascribe a state to a system means to assume that its entire future can be determined from its mathematical
description at the present moment of time. It means that we can ignore the entire history of the system, i.e. the trajectory,
along which it reached its current state. All information essential for the future development is present in the mathematical
representation at a single moment in time.
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of these two ruptures can be expressed by the notion of idealization. Thus we would like to
interpret the transition from the Galilean to the Cartesian physics as the transition from the
phenomenal idealization to the ontological idealization. Descartes moved from the Galilean
world of mathematical quantities to the causally determined world of moving extended bodies.

Contemporary history of science has some difficulties in understanding the historical impor-
tance of Cartesian physics not only because of this physics’ metaphysical foundations, but also
because of its rather deep mistakes. Descartes is accordingly omitted in many expositions of
the development of physics and Newton is seen as deriving directly from Galileo. Daniel Gar-
ber has accepted this account when he wrote: “Numerous identified themselves as Cartesians,
and numerous, like Spinoza, Leibniz, and Malebranche, were deeply influenced by the Cartesian
idea of a mechanist system of metaphysics and natural philosophy, while significantly altering
the details. But there was another important trend in seventeenth-century thought, a nonmeta-
physical and problem-oriented conception of natural philosophy. This is found in Descartes’
near contemporary, Galileo, and in his successor, Newton.” (Garber 1992a, p. 307, stress L.
K.). We believe that this interpretation of the rise of modern science is contentious. Excluding
Descartes from the history of science prevents us from understanding the origins of two cen-
tral features of modern physics, namely its ontological homogeneity and descriptive universality.
Modern physics assumes that every system has a state and that there is a differential equation that
describes the temporal evolution of this state. Nevertheless, these assumptions are empirically
unjustifiable. The concept of state is not an empirical concept.

Another aspect of Cartesian physics discouraging its incorporation into the mainstream his-
tory of science is, besides its metaphysical roots, its verbal character. When Descartes arrived
at the idea that physics should offer a universal description of nature, he did not have at his
disposal the mathematics necessary to accomplish this task. Therefore he presented his idea
of the universal description of nature only in a verbal form. Many historians of science might
have been confused by this circumstance. When they compared the verbal and in many respects
totally mistaken Cartesian physics with the Galilean mathematical description of motion, they
came to the conclusion that Descartes was, when compared with Galileo, a step backwards to
metaphysics. But such an interpretation of the relation between Descartes and Galileo is ques-
tionable. Descartes, if he had wanted to, could have worked out the Galilean project much further
than Galileo was able to. Descartes was one of the creators of analytic geometry and he intro-
duced the standard algebraic notation, which is still in use. He was well equipped to develop
the ideas Galileo arrived at through a cumbersome symbolism and a rudimentary idea of a co-
ordinate system in a much more elegant way. Nevertheless, Descartes was not interested in the
motion of isolated bodies as Galileo was, but rather in the interactions among bodies, a phe-
nomenon Galileo never understood. Despite Galileo’s apparent similarity to Newton, due to his
use of mathematical language, he was in fact closer to Aristotle. For all his use of mathematical
language, Galileo was still developing only a geometric theory of motion. On the other hand,
Descartes tried to grasp interactions, and thus despite his verbal formulations he was doing pre-
cisely the same thing that Newton was to do on a higher level, using his new mathematics; he
tried to develop a dynamic concept of motion.

Thus Koyré’s thesis that Descartes “in identifying matter with extension substituted geome-
try for physics” (Koyré 1939, p. 94) is problematic. Descartes did not substitute geometry for
physics, because the Cartesian extended bodies are not geometrical objects—they interact. It is
inconceivable that two geometric triangles could collide or that one circle would rebound from
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another in accordance with the Cartesian laws of impact. The figures of Euclidean geometry
do not have a tendency to move. Euclid never formulated the law of inertia or the law of the
conservation of the quantity of motion for his figures. Nevertheless, these are the two basic laws
obeyed by all Cartesian bodies. What Descartes substituted for physics was definitely not geom-
etry. Rather, Descartes, in contrast to Galileo, tried to incorporate the notion of interaction into
the description of nature. Therefore if one of the above mentioned theories is a geometrical one,
it is the Galilean. Similarly problematic is Koyré’s view that Descartes “substituted his concrete
physics of motion in a plenum for the abstract physics of motion in a vacuum” (Koyré 1939, p.
100). The transition from Galilean physics of motion in a vacuum to Cartesian physics of motion
in a plenum is not a transition from the abstract to the concrete. Descartes was one of the lead-
ing mathematicians of his times and surely did not lack the capacity for abstraction. If he had
wished to, he could have developed the physics of motion in a vacuum to a much higher level
than Galileo could have dreamt of. Why Descartes did not embark on this project is something
Koyré did not understand. The reason is simple—Galilean physics lacks the notion of interac-
tion. Thus the transition from Galileo to Descartes was not a transition from the abstract to the
concrete, but it was rather a transition from the representation of the world without interactions
to a representation of the world in which interactions are incorporated.

We can not agree with the assessment expressed by William Shea, according to which “Carte-
sian motion is neither dynamic (involving consideration of force) nor kinematic (involving only
consideration of space and time), but merely diagrammatic (involving only consideration of
space)” (Shea 1991, p. 272).'% Similarly, we cannot accept the interpretation of Descartes’
scientific work as an attempt to reduce physics to kinematics. This is how Dijksterhuis sees
Descartes’ physics, and he goes further by claiming that Descartes reconstructs all physical phe-
nomena in the language of matter and motion, eliminating in this way the concept of force (see
Dijksterhuis 1961, pp. 403-418). As we will show, Descartes’ physics is a dynamic, and not
a kinematic theory, because it studies interactions between bodies, and it describes these inter-
actions by means of forces. The only difference is that the forces in Cartesian physics are not
forces of interactions, but forces of inertia. This difference, however, does not affect the overall
character of Descartes’ physics.

Already Gaukroger drew attention to the unacceptability of Dijksterhuis’ interpretation, when
he showed that there are forces in Descartes (Gaukroger 1995, p. 247). Soon, however, he
himself gets astray when he writes: “His [Descartes’] aim is not to reduce physics to kinemat-
ics, but rather to model it on hydrostatics... I believe it is this reliance on hydrostatics, rather
than kinematics that explains Descartes’ commitment to the notion of a plenum.” (Gaukroger
1995, p. 247). Gaukroger’s interpretation of Descartes’ hydrostatic works is impressive and it
shows a deep insight into the thinking of the young Descartes. Captured by his interpretation of
Descartes’ hydrostatic work (especially of Descartes’ attempted to explain the hydrostatic para-
dox) Gaukroger began to see the entire physics of Descartes against this background. In our

18 Shea is right that in comparison with Galileo’s kinematic description of motion Descartes lacks the temporal di-
mension. We expressed this lack by calling Descartes’ idea of motion a transition. Nevertheless, this transition is in our
view a dynamic transition. Shea’s term ‘dynamic motion’ corresponds to Newton and thus to what we call a dynamic
flow. Shea’s term ‘kinematic motion’ corresponds to Galileo and thus to our geometric flow. Finally his ‘diagrammatic
motion’ may correspond to Aristotle’s theory of local motion and thus to our geometric transition. Thus we agree with
Shea that Descartes’ theory differs from the Galilean as well as from the Newtonian theory. His conceptualization of the
different theories of motion has many similarities with ours. But we firmly believe that Descartes’ theory of motion was
a dynamic one, and thus we disagree with Shea in his last point.
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view, however, Descartes’ theory of motion is a dynamic theory of motion, and his theory of col-
lisions is a (even though factually incorrect) dynamic theory of collisions. For Descartes’ choice
of plenum we need not invent any hydrostatic justification. The role of the plenum in Cartesian
physics is to transfer action between bodies, and that is a purely dynamic affair, representing one
of the main contributions of Descartes to physics. The plenum will become a marginal historical
episode as soon as Newton replaces it by his forces acting at a distance. Thus the legacy of the
positivist historiography is visible even in Gaukroger. This legacy refuses to give Descartes a
place in mainstream history of physics, so that a historian like Gaukroger, who is well aware
of the qualities of Descartes’ physics, is forced to invent an interpretation, like that with the
hydrostatic model, to find for Descartes at least some place in the history of physics. In the fol-
lowing paragraphs we will try to show that Descartes clearly belongs to the mainstream history
of physics, and thus needs no such apology.

The development of Descartes’ thought is remarkable for its internal coherence. It is from
the beginning marked by the effort to find a new method of scientific research. His journey from
mathematics through physics to metaphysics is an uncovering and clarification of this method.
As Jean-Luc Marion writes: “the starting point of the Meditations—the project of establishing
science by means of hyperbolic doubt—is nothing else than the point reached by the end of the
Regulae, namely science operating on the simple natures, both material and common.” (Marion
1992, p. 123).

Descartes was born in 1596 in La Haye. In 1618 he met the Dutch scholar Isaac Beeck-
man (1588-1637) who awakened in him the interest for mathematics and physics. Beeckman,
who was eight years older than Descartes, presented him with various mathematical and physical
problems and discussed with him their solutions. It is likely that Descartes adopted Beeckman’s
theory of atoms and of empty space, which he later in his philosophical works strongly rejected,
as well as the idea of a mechanical reduction of natural phenomena, to which he adhered through-
out his entire life. The influence of Beeckman on Descartes’ thinking is described in Descartes’
biography (Gaukroger 1995, pp. 68-103).

The decade 1618-1628 following his encounter with Beeckman was perhaps the most cre-
ative period in Descartes’ life. During this period Descartes formulated the basic ideas of his
method, created a new algebraic symbolism, laid the foundations of analytic geometry, and dis-
covered the law of refraction. His attention was focused on mathematics, mainly on the possibil-
ities opened up by the new algebraic language, which allows us to employ in our calculations an
abstract quantity independently of whether it is an arithmetical, geometrical, or physical one.!”
Descartes soon realized that by reaching this level of abstraction it becomes possible to create a
radically new method of pursuing the natural sciences. Science need not be bound to the descrip-

19°A fine exposition of Descartes’ mathematical works can be found in (Shea 1991, pp. 35-92). On page 43 Shea
describes an alleged error of Descartes, consisting in the transition from the equation § = x + 2 to the equation
a3 = x + 2 of a simpler type, which he was able to solve graphically, while he assumed that it [the solution of the
original equation] could be reinstated by a simple multiplication after solving the equation x> = x + 2. There are two
other instances in the Cogitationes Privatae where he makes the same mistake .... Shea’s comments this by saying: These
failings should not blind us to the magnitude of Descartes’ discovery of a practical method of solving cubic equations. It

appears, however, that Descartes is right. If we take the equation 23 = 2 + \% (an equation of the simpler type with

a modified last term) and find its solution ¢, then x = /7t will be the solution of the original equation, which can be
easily checked. So Descartes was right: from a solution of the equation of the simpler type it is possible by a simple
multiplication obtain the solution of the original equation.
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tion of concrete, isolated phenomena, but may seek abstract representation of reality and uni-
versal laws, just like algebra formulates general formulas expressing solutions of whole classes
of algebraic equations, no matter what values their coefficients have and whether they represent
arithmetical, geometrical, or physical quantities (see Schuster 1980). The universality of alge-
braic notation was probably the model for Descartes’ idea that all physical properties can be
reduced to extension and motion. This period culminates by writing the Regulae ad directionem
ingenii, which, however, were published only in 1701. This work is interesting also because it
contains an attempt to apply algebraic operations to geometric line segments. Descartes inter-
preted the product of the segments a and b as the area of the rectangle with the sides a and b.
The idea to interpret the product of the segments a and b as the segment a.b, which is the core of
analytic geometry, was born only after Descartes had written the Regulae.

Descartes’ mature natural philosophy started to crystallize in the years 1629-1633 when he
abandoned the mathematical study of physical phenomena and turned to the development of a
general world-view. Letters from the years 1629 and 1630 suggest that he intensively worked on
the theory of motion, on optics, meteorology, and anatomy. One could say that he was applying
his algebraic method to the world as a whole. This period culminated in 1633 in writing Le
Monde (Descartes 1662), in which he rejected the existence of a vacuum, proposed a mechanical
interpretation of gravity and subscribed to the Copernican theory of Earth’s motion. In Le Monde
Descartes described a model of the world. This model is purely hypothetical, its construction
surpassing the horizon of our experience. Scientific theory thus becomes a hypothetical model
of reality, and it is no longer just its true mathematical description, as it was for Galileo. Using
the words of Desmond Clarke we can say that for Descartes “to explain any natural phenomenon
is equivalent to constructing a model” (Clarke 1992, p. 266). When in 1633 Descartes heard
about the condemnation of Galileo, he decided not to publish his Le Monde. He wrote: “this has
so astonished me that 1 almost resolved to burn all my papers, or at least not to let anyone see
them. For I cannot imagine that Galileo, who is Italian and even well-loved by the Pope, as |
understand, could have been made a criminal for anything other than having wanted to establish
the motion of the earth.” (Ariew 1992, p. 77).

In the years 1634-1637, after realizing that Le Monde may not be published, Descartes re-
turned to the special problems of mathematics and physics and developed several themes of the
Regulae. In 1637 he published three essays—Dioptrics, Meteors, and Geometry—, united into
one volume, and completed by a preface entitled Discourse on Method (Descartes 1637). The
Dioptrics and the Meteors contained a number of important scientific results, such as the law of
refraction, the theory of visual perception, and the theory of the rainbow, which had been, at least
partially, contained already in Le Monde. The Geometry is the birth place of analytic geometry
and it also contained significant advances in algebraic symbolism (see Grosholz 1980, Mancosu
1992). Descartes introduced the convention to use letters from the end of the alphabet (z, ¥, 2...)
for the unknowns, while letters from the beginning of the alphabet (a, b, c ...) for the parameters;
he proposed to use the top right index to indicate powers (2, z*, x° ...). The Discourse on
Method includes an analysis of several problems of methodology, metaphysics, and physics. The
book, however, lacks even a mention of the problem of the Earth’s motion. The book received
positive acceptance, as it contained a number of scientific discoveries, a new algebraic notation,
and analytic geometry. Seeing the success of the Discourse, Descartes decided to publish his
philosophical system.

In the years 1638—1650 Descartes embarked on intensive work. He published his Meditations
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on first philosophy, containing his metaphysical views. He developed his physics on metaphysi-
cal principles, especially on the principle of immutability of God. Soon after the Meditations he
published the Principles of Philosophy (Descartes 1644), a work containing his physical ideas in
a systematic form. This book can be regarded as a Cartesian physics textbook. Descartes wrote
in a letter to Constantijn Huygens, that the Principles are only a translation of Le Monde into
Latin. Indeed, the contents of these two works are in many ways overlapping. Le Monde just like
the Principles contains the theory of collisions, based on three laws of nature; they both base the
description of the solar system on the vortex theory of gravity. However, if we compare these two
works in detail, we see that Descartes changed in the meantime some of his views and clarified
others. His theory of collisions received a more detailed formulation and the Copernican doctrine
receded into the background.

Despite the undeniable differences in detail, however, there is a fundamental similarity be-
tween the Principles of Philosophy (1644) and the Le Monde (1633), just like between the Dis-
course on Method (1637) and the Regulae ad directionem ingenii (1628). This similarity is a
testimony of the internal integrity and coherence of Descartes’ thought. His works were not
written in response to external stimuli, as were several works of Galileo, but in the process of
gradual clarification and refinement of a vision that emerged sometime between 1618—1619 when
Descartes was only twenty years old.

2.1 Descartes’ ontological idealization of state

In section 1.1 we presented an interpretation of Galilean physics as an idealization of motion.
We believe that Descartes made a further important step in the process of idealization by turning
to the idealization of state. Husserl did not study this phase of the process of idealization and
tried to reduce the ideality of modern science to the Galilean idealization. Nevertheless, Galilean
physics was able to idealize only isolated phenomena. If science was based only on observa-
tion, experiments, and measurement, it could never introduce quantities such as force, energy, or
action. It would have no reason to transcend the horizon of phenomenal reality. Science, how-
ever, does surpass this horizon and we believe that this is due to Cartesian physics. Descartes
gave the program of mathematization of nature a much more radical form than Galileo. Accord-
ing to Descartes, mathematization should not just replace isolated phenomena by mathematical
quantities but it should also reduce their ontological substratum to the mathematical notions of
extension and motion, or—using the words of modern science—to the notion of state. Therefore
we will call Descartes’ idealization the idealization of state.

Many historians are not aware of this process. For instance Stephen Gaukroger writes: “Even
if we could establish the essentialist thesis that extension is the only property that we cannot
conceive of matter lacking without its ceasing to be matter, what relevance does this have for
mathematical physics? More specifically, first, why should physics be based on this conception
of matter and not another; second, why must physical concepts be dependent upon an abstraction
argument; and third, why should we want an essentialist physics in the first place?”” (Gaukroger
1980b, p. 132). Obviously Gaukroger did not notice that here Descartes was not concerned with
a metaphysical question, he was not developing any essentialist notion of matter. Descartes’
question was an epistemological one; it was the question of how the quantities determining the
state of a system can be distinguished from the remaining physical quantities. The importance of
this question for mathematical physics is obvious. Only after solving this question can we start to
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develop mathematical physics. Thus the problem here does not concern the idea of matter but the
idea of its description. Descartes’ argument from abstraction, according to which every quantity
we can abstract from a body without destruction of its ontological integrity as a body, does not
belong to the quantities that determine the state, is a reasonable argument. A body’s state is
something it cannot be deprived of. Descartes’ strategy for obtaining the notion of state by a
systematic elimination of all attributes the body can be deprived of at least in principle is not so
misguided. In our imagination, for instance, we can deprive bodies of their colors and therefore
colors do not belong to the quantities determining state. We do not mean to say that Descartes’
solution was correct. Newton showed that although we are able to imagine a body without
mass, the mass must nevertheless participate in the determination of state. Thus Newton changed
the criteria determining the state parameters. But if we want to understand Descartes, it is not
sufficient to say that he embarked on some strange essentialist enterprise completely unrelated to
physics. We must understand the reason why he was pursuing it, namely, in order to introduce
the concept of state. Even if Descartes’ notion of state was abandoned and extension and motion
are no more used as state variables, we should not forget that it was he who introduced the idea of
state into physics for the first time. Therefore, we see Gaukroger’s criticism of Cartesian physics
as unjustified.

In our interpretation of Galileo we mentioned that he did not have analytic geometry at his
disposal, and so his mechanics was only fragmentary, limited to a few isolated phenomena.
Galileo lacked the mathematical language which would enable him to systematically develop his
physical theories. Descartes created such a language in the form of analytic geometry. Therefore,
we might expect that in his interpretation of motion he will utilize this mathematical discovery
and present a theory of motion which would use a much better mathematical apparatus than the
mechanics of Galileo. On the background of such expectations Descartes’ Principles of Philos-
ophy is a disappointment. It seems that Descartes gave up mathematization and returned to the
Aristotelian verbal style of describing motion. But this first impression is misleading. Descartes
gave up only the Galilean way of mathematization of motion as geometric flow, because he re-
alized that it is not possible to incorporate into it the description of interactions among bodies.
This very fact reveals the depth of Descartes’ mathematical insight. He refused to walk along
the Galilean path, because he saw that it does not lead where he wanted to go. Thus, although
he created analytic geometry that would allow bringing Galilean kinematics in unprecedented
perfection, he decided not to use it in his physics. He understood well that analytic geometry
cannot be used to describe interactions. In this he was absolutely right. As it turned out, it was
necessary to create an entirely new mathematics for a mathematical description of interaction, the
differential and integral calculus. Thus Descartes’ resignation to continue in the development of
the Galilean way of mathematization was not a manifestation of some metaphysical inclinations.
On the contrary, it shows an understanding of the problems associated with the mathematical
description of motion as well as a deep insight into the possibilities of mathematics of his days.
Descartes’ refusal to continue the Galilean mathematization of motion is therefore, in our view,
an expression of his philosophical grandeur, his ability to sense the limits of mathematics. The
idealization of interaction had to wait until Newton and Leibniz created the calculus, a tool strong
enough to accomplish this goal.

Descartes’ contribution to physics can be characterized as the idealization of the notion of
state, which entails an ontological homogenization and nomological unification of the world.
Husserl pointed out to a break that separates the phenomena of the life world from the mathemat-
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ical variables by means of which science represents them. Nevertheless, to explain the origin of
the ontological homogeneity and the nomological unity of the world the idealization of isolated
phenomena is not enough. The basis of Cartesian physics is the notion of state. Husserl charac-
terized Galileo’s intention as the program of mathematization of nature. But Galileo’s mathema-
tization of isolated phenomena is not the project of modern mathematical physics. Mathematics
was for Galileo only a language suitable for the description of phenomena. It was Descartes
who first arrived at the idea of a mathematical physics. As we have already explained, it is not
important that Descartes presented his theory only in a verbal form. His theory is a mathemat-
ical theory in a deeper sense, not just in the sense of the language employed. When Descartes
says that everything can be reduced to extension and motion, it means that mathematics is the
ontological foundation of reality. So geometry is not just a language suitable for the description
of phenomena, as it was for Galileo. Reality itself is nothing else but mathematical bodies in
motion. Descartes had probably something like this in mind, when in his letter to Mersenne from
27. July 1637 he wrote: “My entire physics is nothing else than mathematics.”

2.1.1 Descartes’ correction of Galileo’s principle of inertia

The law of inertia is in the literature usually attributed to Galileo. This tradition dates back
to Newton, who attributed the merit of his discovery entirely to Galileo while he did not even
mention Descartes (see Koyré 1939, p. 129). Galileo, however, considered inertial motion as
circular and not rectilinear. In his experiments with the inclined plane he discovered that motion
on a perfectly smooth horizontal plane is inertial. But motion on a horizontal plane is a motion
at a constant height above the Earth’s surface, i.e. a motion in a circle. In this form, the principle
of inertia is of course incorrect. In addition, the principle of inertia applies in Galilean physics
only to a special kind of motion—the motion on a perfectly smooth horizontal surfaces. Other
kinds of motion do not obey the principle of inertia.?”

One of the first thinkers who realized that inertial motion is rectilinear and that the principle
of inertia applies to all motions was Descartes. In the Principles of Philosophy he writes: “The
first law of nature: that each thing, as far as it is in its power, always remains in the same state;

20 Descartes may have realized that it were the instrumental techniques of experimentation and measurement that
divided Galileo’s world into isolated phenomena. Descartes’ method of clara et disctincta perceptione can be seen as an
alternative to Galileo’s method of experimentation and measurement. While in a measurement we isolate the phenomena
from their natural surroundings, in a perception the phenomenon is left as it is, so that we can understand it together
with its ties to its surroundings. However, it is important that this perception was clear (Galileo achieved clarity by
means of the artificial experimental situation that allowed for instance to clarify the character of free fall) and distinct
(Galileo reached distinctness by precise measurement). Descartes seems to be, as concerns the method of clear and
distinct perceptions, inspired by mathematics, and so his abandoning of the experimental method turned out to be a step
backwards. Newton corrected this and returned to the instrumental techniques of experimentation and measurement as
the foundation of physics. Nevertheless, Newton was able to compensate the Galilean isolation of phenomena by his
mathematics. Phenomena, which the instrument isolates, he connected by their mathematical description.

Despite of this it is interesting to notice that in the field of optics Descartes experimented and his theory of the rainbow
is based on experimental investigation of the refraction of light on a spherical glass container filled with water. However,
here Descartes did not go beyond the concept of Galilean experiment. He created an artificial situation, which allowed
him to mathematically describe the rainbow, i.e. the phenomenon that defies direct mathematization—just like Galileo in
his experimental study of the free fall. Shea noted that Descartes in his experiments with the container filled with water
simplified the situation by assuming that the refraction of light on the walls of the container can be neglected (see Shea
1991, p. 206). Neither here, however, did Descartes differ from Galileo, who in his experiments on the inclined plane
neglected the rotational motion of the balls.
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and that consequently, when it is once moved, it always continues to move. ... The second law of
nature: that all movement is, of itself, along straight lines; and consequently, bodies which are
moving in a circle always tend to move away from the center of the circle which they are describ-
ing.” (Descartes 1644, p. 59-60). These two laws can be considered the forerunners of Newton’s
law of inertia: “Every body preserves in its state of being at rest or of moving uniformly straight
forward, except insofar as it is compelled to change its state by forces impressed.” (Newton 1687,
p. 416-417). Newton’s law is a combination of refinement and two Descartes’ laws.

In the question of the relation between Descartes’ first two laws of and Newton’s law of in-
ertia there is no consensus. Some historians point to the contextual and conceptual differences
between them (e.g. Gabbey 1980, p. 286-297). It appears that the way how we see the relation
between two versions of a law depends on the perspective from which we look at it. We can
examine this relation from three perspectives: the perspective of idealizations, of representations
and of objectivizations. From the perspective of idealizations, Descartes’ and Newton’s formu-
lations of the law of inertia are equivalent because they fix in the particular system the ideal
nature of the uniform rectilinear motion. From the perspective of representations some differ-
ences emerge. Descartes described interactions as singular events in which a body can change its
direction of motion without changing its velocity. For example, if we bounce a ball against the
wall, according to Descartes, after hitting the wall the ball instantaneously changes the direction
of its motion, without changing its velocity. Therefore Descartes formulated the conservation of
the state (i.e. of the quantity of motion) in the first law and the conservation of the direction of
motion in the second. In the Cartesian system, the conservation of the velocity and the conser-
vation of the direction are unrelated. When Newton inserted between the Cartesian states before
and after the collision a continuous process which he described by means of a differential equa-
tion, he found out that after touching the wall the motion of the ball gradually slows down, until
it stops for an instant, and then the elastic forces begin to accelerate it in the opposite direction.
The change of direction of motion (which Descartes understood as an instantaneous turn) is thus
in fact a gradual process of change of velocity. Therefore there is no reason to describe changes
of state and changes of direction separately. From the perspective of objectivizations some con-
textual differences came to the fore. In Descartes’ system, the separation of the velocity from
the direction in the formulation of the principle of inertia is important in several contexts. Most
important is the context of the relation between the soul and the body. In this context, the sepa-
ration of the velocity and the direction of motion makes it possible for the soul to influence the
body.?! Since our aim is to analyze idealization, we will not discriminate between Descartes’ and
Newton’s formulation of the principle of inertia. We will thus consider Descartes the author of
this principle. In Descartes we can find both the rectilinear character, as well as the universality
of the inertial motion which are missing in Galileo.

Whenever Galileo studied a moving body, he isolated it from its surroundings. According
to Descartes, such an idea of motion is totally misleading. For one thing, it can lead us to

21 According to Descartes, the body is a hydromechanical machine. Nerve fibers are tubes in which flows a fine fluid
that affects muscle contraction and blood circulation in the body. If we replace the fluid in the nervous fiber by an electric
current, Descartes’ idea is not at all naive. From anatomical studies he learned that a large number of nerve fibers end in
the pineal gland, and therefore he situated there the place of the contact between the soul and the body. The soul cannot
change the quantity of motion (i.e. the velocity of the flux of the fluid), because this quantity is constant, but Descartes
attributed to the soul the ability to influence the direction of the flux of the fluid in the pineal gland, thus to determine
where the blood will flow, and so to interfere with the body’s movements. In Newton’s system such influence of the soul
on the body is not possible any more.
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erroneous conclusions, as for instance Galileo’s belief that inertial motion is circular. This error is
a consequence of Galileo’s tendency to isolate the moving body, to exempt it from the influences
of its surroundings and to describe how it would move if there were no other bodies and no
friction. In his study of motion on a horizontal surface Galileo thus abstracted from friction,
air resistance and from the influence of all other bodies. But in this process of abstraction he
happened not to abstract from weight. Only on account of that did inertial motion remain circular.
If he had really abstracted from everything that surrounds the moving body, the circular motion
would become rectilinear. Galileo did not realize that removing the surrounding medium would
also destroy the agent causing the curvature of the body’s trajectory. He mistakenly assumed that,
after the elimination of all surrounding bodies interacting with the studied body, it would preserve
the circular form of its trajectory. Thus Galileo believed that, if we eliminate the influence of the
surrounding medium, each motion will preserve its particular character. Moreover, in a vacuum
the motion will manifest its character all the more clearly.

Descartes had the idea that there is only one kind of motion, uniform motion in a straight
line, and that everything else is the consequence of interaction. Thus, according to Descartes,
Galileo’s theory of motion was erroneous in a fundamental way, because it abstracted from the
surrounding medium as well as from the neighboring bodies. In reality we can eliminate neither
and therefore we cannot study what would happen after such elimination. Therefore it is very
probable that Galileo’s theory of free fall was just as mistaken as was his claim that inertial
motion is circular. Galileo claimed that his law of free fall described the falling of a body in a
vacuum. But free fall is an accelerated motion, and in the vacuum there is no agent to accelerate
the motion, so a body falling in the vacuum would have to move with a constant velocity.?? It
cannot accelerate itself. Acceleration is a consequence of interaction. In order to accelerate the
motion of the body there must be something acting on the body, some other body which causes
the acceleration. For this reason Descartes rejected Galileo’s theory of the free fall. According
to Descartes, if a vacuum was possible at all, all bodies placed in it would move with constant
velocities. Accelerated motion is possible only as a consequence of an action. Accelerated
motion in a vacuum is nonsense.”?

Imagine Galileo studying the flight of a bird. He would probably, as he did in the case of the
free fall, turn to the study of the flight of the bird in a vacuum. Galileo’s method was to get rid of
the environment that complicates the motion. Once we get rid of the air, the bird would fall to the
ground. Just like in the case of the free fall, once you strip away the environment, the body stops
to move with acceleration. In order to keep the bird afloat and the free fall accelerated we need
a causal agent that causes these kinds of motion. When Galileo abstracted from the medium, in

22 Galileo’s law of free fall contradicts the law of conservation of momentum. Galileo did not have the notion of a
closed physical system; he did not find it strange that in a free fall the total momentum is increasing. Only Descartes,
who abandoned the description of motion in a vacuum and returned to motion in a medium, was able to identify the
source from which the falling body obtains its increasing momentum. In the Galilean system the source of the increasing
momentum of the falling body remained a mystery.

23 Newton introduced forces acting at a distance and we have a tendency to see Galileo’s law of free fall against the
background of the Newtonian gravitational force. But Galileo had no forces acting at a distance, and he would reject
them as occultism. Thus Descartes’ criticism of Galilean physics is fully justified and fatal. Newton accepted Descartes’
argument that a body moving with acceleration must be subject of action of a force. The only difference is that Newton
did not require for this action a material carrier. According to Newton, the acceleration of free fall is the result of action,
just like according to Descartes. The only difference is that Newton described this action by means of forces that spread
through empty space without any physical mediation, which Descartes did not think possible.
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his imagination he could envision a bird flapping its wings in a vacuum or a body falling there
with acceleration. But according to Descartes, such motions are absurd; they are ‘phenomenon
without any causal substratum’. We are able to imagine them, but they cannot exist. Thus the
entire Galilean project is mistaken. Descartes realized that the scientific description of a particu-
lar phenomenon must take into account the ontological basis that determines that phenomenon.
It is not possible to restrict science to the phenomena, as Galileo was trying to do. Now we
understand what Descartes meant when he criticized Galileo by saying that “he has thereby built
without foundations”.

Galileo’s mistake is systematic. He tried to abstract from the influences that disturb the
motion, while still supposing that the circular shape of the inertial motion or the acceleration of
the free fall would remain. But both these effects are consequences of interaction. As soon as
we eliminate interaction, the circular character of the inertial motion as well as the accelerated
character of the free fall vanishes. What remains is uniform motion in a straight line.

2.1.2 Mathematization of the ontological basis of the phenomena

From the Galilean notion of motion as a geometric flow it is necessary to move to a dynamic
notion of motion as a state.>* According to Descartes, motion is not a process but a state; it is
not an activity but passivity. Descartes thus introduces a radically new kind of ontology when he
declares that the essence of the world is extension and motion. The importance of this change
cannot be overestimated. Aristotle in the Posterior Analytics asserted that mathematics cannot
be used in scientific explanation of natural phenomena. He based his view on the argument that
a scientific explanation must be a causal one, i.e. it must be based on the causes which actually
determine the phenomenon explained. According to Aristotle mathematics is unable to provide
causal explanations. In their descriptions of nature mathematicians use a system of abstract
constructions, as for instance the epicycles and deferents in the Ptolemaic system. These abstract
constructions do not exist in reality, and therefore cannot be the causes of the studied phenomena.
It would be absurd to maintain that the epicycles and deferents are the causes of the retrograde
motion of the planets. They only describe that motion, but they cannot cause it. In other words,
mathematics is suitable only for the description of phenomena, but it is unable to deal with the
real causes that determine them. According to Aristotle, the material cause, i.e. the matter,
out of which the particular bodies are made, is one of the causes of each phenomenon. Only
an explanation taking into account the material substance can be a causal one, i.e. a scientific

24 Modern logic does not discriminate between states and attributes. State is a physical analogy of the geometric
concept of position. Modern logic originated from Frege’s analysis of arithmetic and numbers have no relative positions.
A geometric figure is characterized by the fact that it can be placed in different places. Thus position in geometry serves
individualization, an aspect which the language of arithmetic does not have. In geometry an object is not determined
by its attributes—besides of them we must specify its position, which is not a characteristic of the object itself. Further
equivocalities of the objects of the language of geometry are size and orientation. These three aspects refer to three
groups—the group of congruencies, the group of scalings and the group of mirror symmetries. The choice of position is
the choice of a representative with respect to the group of congruencies, the choice of size is the choice of a representative
with respect to the group of scalings and the choice of orientation is a choice of representative with respect to the group
of mirror symmetries. To speak means to introduce differences. To speak the language of geometry means to interfere
with the symmetries of this language and into the homogeneous, isotropic and scaling invariant background introduce
signs that destroy its symmetry and create the here. The language of physics goes further when it introduces the notion
of state. State resembles position, but it is not restricted to the group of geometrical transformations, but to the Galileo
group. Besides here it can say also now.
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explanation of the particular phenomenon. Mathematical abstractions are unable to offer causal
explanations.

Galileo yielded to this Aristotelian argument. What he aimed at in his physics was a purely
mathematical description of phenomena and he completely gave up the ambition of offering ex-
planations of their causes. In this way he accepted the role Aristotle had allotted to mathematics.
He was probably convinced that science can do no more than offer a precise mathematical de-
scription of the studied phenomena. Descartes did not shrink from the Aristotelian challenge. On
the contrary, he welcomed it. According to Descartes a mathematical explanation of phenomena
is possible, because the mathematical form, i.e. extension, is the ontological basis of nature.
Therefore a mathematical description of the phenomena is the description of the causal basis
of the world and a mathematical explanation is a causal explanation. In other words, Descartes
raised the geometric form to the ontological level; he converted mathematical form into phys-
ical substance. Mathematics does not abstract anything, as Aristotle believed. It grasps the
ontological essence of things, because extension and motion form the ontological essence of
bodies. Thus, according to Descartes, not only the particular physical quantities are mathemati-
cal. The ontological basis of the physical world is mathematical as well. Descartes moved from
the Galilean idealization of the particular physical quantities to the idealization of the ontological
foundation of the world.

We have thus reached a deeper understanding of the sense in which Cartesian physics is
mathematical. It is not mathematical in the superficial sense in which Galilean physics can be
called mathematical. For Descartes, mathematics is not just a language we can use to describe
nature. According to Descartes all that exists is extension and motion and thus the mathematical
description of extension and motion is a causal description of the world. The fact that Descartes
formulated it with the help of ordinary language shows his deep understanding of the possibili-
ties of contemporary mathematics. In comparison to Descartes’ system, the Galilean theory of
the universe with its search for geometric harmony of circular trajectories is a naive overestima-
tion of the possibilities of geometry. Descartes understood clearly that we have to give up the
ancients’ preference for geometry. We have to give up the search for order in the universe, both
in the form of a system of natural places as in Aristotle, and in the form of a system of circular
motions as in Galileo. Galileo’s views considering triangles and circles to be the letters in which
the book of nature is written are naive. It is not only that the book of nature is written in the lan-
guage of mathematics, but nature itself is embodied mathematics. Therefore the question of the
applicability of mathematics in the description of natural phenomena is according to Descartes
meaningless. We do not apply mathematics to nature; nature itself is mathematical.

The transition from the epistemological to the ontological use of mathematics is closely con-
nected with the rise of modern algebraic symbolism. It is the algebraic symbolism that makes
the creation of a universal description of nature possible. From the algebraic point of view it is
unimportant what kind of quantity is represented by a variable. A variable x can stand for the
length of a geometric line, for the temperature of water, or for the speed of a stone. Descartes was
probably the first thinker who clearly realized the possibilities of this new symbolic language.
Algebraic language enables us to move from the description of appearances to the description of
the universal relations that constitute them. On this deeper level, where the objects are stripped
of their accidental qualities (where an object is just an X, i.e. something capable of entering into
relations with other objects), the world can be mathematized. To this deeper level, disclosed by
the language of algebra, Descartes ascribed an ontological status.
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Thus Cartesian physics is more algebraic than geometrical. It is the Galilean theory that
is geometrical. Galileo conceptualized motion as a geometric flow along a trajectory; and the
trajectories of all bodies are ordered to form the geometrical harmony of the heliocentric system.
Thus it can be said that Galileo only replaced the Aristotelian geometrical hierarchy of places
by a similarly geometrical hierarchy of trajectories. The Sun is in the center of the universe,
around which the planets move in a neat geometrical order. On the one hand it is an important
step forward, because in the Galilean system motion ceases to be a mere disturbance of order. In
contrast to Aristotle, Galileo sees motion as a constitutive element of the order of the universe.
But on the other hand the order of the universe is still conceived as a geometrical order. Descartes
was one of the first scientists for whom the universe was not a geometrically ordered system of
trajectories, but a dynamic system of interacting bodies.

2.1.3 Descartes’ law of conservation of momentum as the first universal law

Descartes formulated a law, according to which the total quantity of motion in the universe is
constant.> In Principia philosophiae he gave a theological justification of this principle: “it is
most in harmony with the reason for us to think that merely from the fact that God moved the
parts of matter in different ways when he first created them, and now conserves the totality of that
matter in the same way and with the same laws with which he created them earlier, he always
conserves the same amount of motion in it.” (Descartes 1644, part II sec. 36). Descartes’ notion
of the quantity of motion is in many respects close to the modern concept of momentum. Of
course, Descartes did not have the concept of mass which enters into our definition of the mo-
mentum, and used the notion of the size of the body instead. Nevertheless, it might be argued that
in his system the size of the body is equivalent to its mass, because his geometrical substance has
“constant density”. Another peculiarity of Descartes’ quantity of motion is its scalar character. In
spite of this some historians tend to substitute our expression myv for the Cartesian term quantity
of motion. Thus for instance Martial Gueroult writes: “The characteristic of these forces... is that
they... can be calculated at each instant for each body, according to the formula mv”’ (Gueroult
1980, p. 198). This may seem questionable, because Descartes did not have the notion of mass;
therefore the use of the symbol m is unjustified. But the transcription of Descartes’ views into
modern formalism may help us to understand more clearly what Descartes was actually doing.
Other historians object to such interpretations. For instance Daniel Garber writes: “It is im-
portant here not to read into Descartes’ conservation principle the modern notion of momentum,
mass times velocity. First of all, Descartes and his contemporaries did not have a notion of mass
independent of size... What is conserved is size times speed simpliciter, so that when a body re-
flects, and changes its direction, then as long as there is no change in its speed, there is no change
in the quantity of motion. Descartes’ conservation principle was extremely influential on later
physicists... Unfortunately, the law turned out to be radically wrong.” (Garber 1992b, p. 313-
314). Nevertheless, this view can be challenged, as well. Descartes’ theory can be reconstructed

25 An interesting interpretation of the origins of Descartes’ law of conservation of the quantity of motion can be found
in a paper of Alan Gabbey (Gabbey 1985, pp. 38-41). Beeckman has noticed that in the collisions of bodies their motion
is slowing down—the faster body loses some of its velocity. Therefore he asked why we do not observe in the universe a
universal rigidity. This problem of the mechanical universe resembles the problem of the thermal death of the universe,
which emerged in the 19th century. It is not excluded that Descartes came to the discovery of the law of conservation of
the quantity of motion just when he ruminated about this issue.
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on different levels of complexity: the level of idealization, the level of representation, or the level
of objectivization. The replacement of the size of the body by its mass in the definition of the
quantity of motion, accomplished by Newton, is an objectivization—the objectivization of den-
sity of matter. Another correction of the Cartesian concept of the quantity of motion, introducing
its vector character, which was accomplished by Huyghens, is similarly only an objectivization.
The fact that these corrections can be achieved at the level of objectivizations indicates that at the
level of idealization, which is the topic of this paper, Garber’s objections can be omitted. At this
level Descartes’ principle of conservation of quantity of motion is the first conservation law in
the history of science. This principle is the precursor of a series of similar laws of conservation.
But even more important is the fact that it was the first example of a universal law. It is not a
law describing only a particular phenomenon, as were the Galilean laws. Descartes’ law does not
split the universe into an infinite number of isolated regularities. On the contrary, this law grasps
the unity of the world, describing an aspect of the world which unites the world into a whole—
the whole having an invariant quantity of motion. This law cannot be derived from experience,
because it is impossible to measure the quantity of motion of the whole universe. Despite this,
Descartes asserted that it was invariant.

2.1.4 Descartes’ description of interaction as a collision

Descartes replaced Galileo’s notion of motion as an ideal flow along a trajectory by the notion
of motion as a state. This enabled him to pose the fundamental question of how to describe
the changes of this state. The changes of the state result from interactions. The law of the
conservation of the quantity of motion required that these interactions consist in transmissions
of momentum from one body to another. Thus Descartes radically changed the picture of the
world presented by Galileo. The Galilean universe was a kinematic universe: it was an ordered
system of inertial circular motions. Galileo lacked any notion of interaction between bodies. In
contrast to this, the Cartesian is a dynamic universe, a universe of bodies in perpetual interaction.
According to Descartes, the interactions between bodies have the character of collisions. The first
and the second laws of Cartesian physics say that bodies remain in the state of rest or uniform
rectilinear motion as long as possible. For a body it can become impossible to preserve its state
in two following ways: either two bodies are heading for the same place, or one body is already
at rest at a place towards which another body is heading. Then a collision is inevitable. For
Descartes collision is the paradigmatic kind of interaction and he describes it by his third law:
“When a moving body comes upon another, if it has less force for proceeding in a straight line
than the other has to resist it, then it is deflected in another direction, and retaining its motion,
changes only its determination. But if it has more, then it moves the other body with it, and gives
the other as much of its motion as it itself loses.” (Descartes 1644, part I1, sec. 40).

In his theory of collision Descartes introduced the notion of force: “Here we must carefully
note that the force each body has to act on another or to resist the action of another consists
in this one thing, that each and every thing tends, insofar as it can to remain in the same state
in which it is, in accordance with the law posited in the first place.. .. That which is at rest has
some force for remaining at rest, and as a consequence has some force for resisting all those
things which can change that; that which moves has some force for preserving in its motion, that
is, in a motion with the same speed and toward the same direction.” (Descartes 1644, part II,
sec. 43). Descartes’ notion of force is remarkable because his forces are entirely passive; their
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purpose is only to preserve the state. Thus in contrast to the Newtonian system, the Cartesian
forces are not forces of interaction; they are not forces by means of which one body would act
upon the other. The Cartesian force is an inertial force, preserving the state of the body. From the
metaphysical foundations of the Cartesian system it follows that it is God who, because of his
immutability, preserves a constant quantity of motion in the universe. And it is the immutability
of God that is the reason why the Cartesian forces cannot be active. God does not interfere with
the world; he only preserves the world as it was at the moment of creation. Even though God is
the source of the inertial forces, he is not affected by them. Therefore, in Descartes’ philosophy,
the forces have a very complex ontological status. With respect to God they are the consequences
of his immutability, with respect to the world they are its modes. In a letter to More from 1649
Descartes wrote: “Moving force is the force of God Himself conserving as much displacement in
matter as He put in it at the first moment of creation ... And this force in created substance is
its mode, but it is not a mode in God; but this being somewhat above the understanding of the
common run of mind, I have not wanted to deal with the question in my writings so as not to seem
to support the opinion of those who consider God as a world-soul united to matter.” (Gueroult
1980, p. 199). Thus Descartes’ universe is opened to the action of God. God can act upon the
world without being affected by it. Therefore, in the Cartesian system, the law of action and
reaction does not hold, because the forces act only in one direction, from God towards the world.
In contrast to this, in the Newtonian system God is not the origin of the forces, he only assures
their passage through empty space. Newtonian forces themselves belong to the world, they are
forces of interactions between bodies. Thus, while in the Cartesian system forces originate in
God and act in the world, the Newtonian forces both originate in and act on bodies.

2.1.4.a A formal reconstruction of Descartes’ theory of collisions In the literature we can
find several proposals for a formal reconstruction of the Cartesian collision rules (see e.g. Gabbey
1980, Garber 1992a, or Coehlo 2002). The aim of these reconstructions is to help us to under-
stand what Descartes was actually doing when he formulated his rules. They differ by the degree
to which they adhere to the precise wording of the Cartesian system and in the extent they rely
on modern formalism. The outcome of the reconstructions is a more detailed and differentiated
assessment of the relation of the Cartesian rules to the actual behavior of solid bodies in collision.
In presenting a new reconstruction, we do not mean to question the main results of the previous
ones. Our aim is rather to pose a new question. We intend to reconstruct not the empirical content
of the Cartesian laws (i.e. how far they agree with the facts about collision) but rather their for-
mal relation to the Newtonian system (i.e. how far they agree with the Newtonian description of
the collisions). Thus we reconstruct not the content of one system, but the relation between two
systems. In this way we hope to be able to give some meaning also to laws that are empirically
incorrect, and could not, therefore, be properly dealt with by the usual methods of reconstruc-
tion. The techniques used in our reconstructions are known as perturbation theory. They were
developed in the 19th century in astronomy and played an important role in the development of
various areas of quantum mechanics. Their original purpose was to transfer knowledge about
the behavior of the solutions of a dynamic system, which can be handled by analytic means, to
a system that is not analytically solvable, but which is in some respects close to the original sys-
tem. Our aim is to use perturbation theory in the reconstruction of the relation between scientific
theories. We have used perturbation theory in (Kvasz 1999), and here we would like to use it in
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the reconstruction of the Cartesian theory of collision.

Descartes described the collisions of bodies by his seven rules. From the point of view of
contemporary physics these rules look rather strange. Descartes’ fourth rule, for instance, says:
“If body C were entirely at rest, and were just a bit larger than B, then whatever the speed with
which B moved toward C, it would never move C, but would be repelled by it in the opposite
direction, since a resting body resists a greater speed more than it does a smaller one, and this
in proportion to the excess of the one over the other. And therefore there would always be a
greater force in C to resist, than there would be in B to impel.” (Descartes 1644, part II, sec.
49). We will try to give an epistemological reconstruction of two of the Cartesian collision rules.
Our approach differs from the approaches of many renowned historians. Martial Gueroult, for
instance, remarked with respect to the above-mentioned quotation: “This law is false, but we
are concerned here not with the scientific truth of Cartesian physics but with the coherence of
this physics with the metaphysics which should provide the foundations for it” (Gueroult 1980,
p- 224). In our view an epistemological reconstruction of a theory should not be restricted to
the description of its historical context and its internal consistency. A reconstruction should offer
more. It should not just show that at the time they were formulated the views of Descartes were
meaningful and that they are to some extent internally consistent. We believe that in order to be
able to play such an important role in the history of science, the theories of Descartes must have
had a factually correct core. That means that there must be a class of phenomena for which a
great deal of what Descartes said about motion was correct. Thus we do not defend Descartes as
a philosopher, as a creator of internally consistent systems of categories. Our aim is to defend
him as a scientist, to show that his views are factually valid for at least a segment of reality.

Therefore we must first of all find a situation, in which the Cartesian collision rules (at least
some of them) would be meaningful not just internally, i.e. from the point of view of the Cartesian
system itself, but also from the point of view of the Newtonian mechanics. Then we must find
a parameter of the Newtonian theory which, when decreased to the limit zero, yields a system
behaving in accordance with the Cartesian rules. It seems that for the Cartesian theory, such
a parameter could be the ratio of the masses of the colliding bodies. Thus we would like to
show that Descartes’ theory is a factually correct theory of collision of bodies with enormously
different masses.

Let us first take the collision of a light body B moving towards a heavy body C, which is at
rest. We will describe this collision using the formulas of the Newtonian mechanics, expressing
the laws of conservation of momentum and of energy:

mp.vg = mp.Veg + me. Vo,

1
imB'U% = imB.VEQ; + imc.Vg.

In these equations we consider the masses mp and m¢ of the colliding bodies, as well as the

velocity vp of the body B before the collision to be known, and our task is to determine the ve-
locities Vg andV after the collision. After elementary transformations we obtain the formulas:

mp — mg¢ 2mp
RE— Vo=v

_ 2.1
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This result contradicts the Cartesian assertion, according to which the body C' will preserve its
state of rest after the collision. The velocity V¢ is a positive quantity and so Descartes’ assertion
is wrong. Nevertheless, let us divide the numerators as well as the denominators in the formulas
(2.1) by m¢ and let us then expand the resulting expressions into a series according to % We
obtain:

2
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If we now take the limit % — 0, we will obtain precisely what Descartes asserted. The body

C will remain at rest, because in the limit case V> will equal zero. On the other hand, the body B
will rebound, because there is the factor —1 in the formula for Vg, and this factor indicates that
the velocity Vg of the body B after the collision will be equal to —vp. That means that the body
B will rebound with the same velocity vp and will move in the opposite direction. This shows

that even if in the general case the Cartesian assertion is wrong, (for finite values of the ratio e
m

the resulting speed of the body C' will be positive), in the limit case (the ratio e approaching
zero) the system behaves in accordance with the Cartesian theory. Thus the Cartesian theory of
motion is more than just a consistent philosophical system. It is a scientific theory, because at
least for a small segment of reality it really holds.

Let us now consider the situation, in which the heavy body B is moving towards the light
body C, which is at rest. The solutions (2.1) are valid, because in the Newtonian system the
equations are the same regardless of the masses of the bodies. Nevertheless, what changes is the
parameter according to which we expand our solutions into infinite series. It cannot be the ratio
%, because now the body B is heavier, and so this ratio is greater that 1. Instead, we have to
choose %ﬁ, and by transformations similar to the above ones we obtain:

Vg =vp 1—2@4——"' Vo =vp 2—2@+—~-~
mp mp

We can see that there is a fundamental change in the behavior of the body C' in comparison
to the previous case. While in the previous case the body C' stayed at rest, now, in the limit
%g — 0 we obtain a nonzero velocity for both bodies. Thus both bodies would move in the
same direction, precisely as Descartes asserted. Nevertheless, there is a difference between our
result and Descartes’ prediction. Descartes thought that after the collision both bodies would
move with the same velocity, while our result indicates that the lighter body C' will move with
double velocity compared to the heavy body B. This difference draws our attention to another
peculiarity of the Cartesian theory of impact. While in the first case which we have reconstructed,
Descartes described the collision as elastic, in the second analyzed case he described the collision
as totally inelastic. Thus in order to obtain precisely what Descartes said, it would be necessary
to introduce an additional term, expressing the energy loss into the second case. This would
make our formulas a little bit more cumbersome, but our general result would not change. Thus
we can consider the asymptotic validity of the Cartesian theory to be established.

Our reconstruction of Cartesian physics is in a sense a middle position between its assess-
ment by positivist historiography and its philosophical reconstruction. According to the positivist
historians, if Cartesian physics was a scientific theory, it must have been an inductive general-
ization of the empirical data. But as Descartes’ collision laws are obviously wrong, they cannot



566 Galileo, Descartes, and Newton — Founders of the language of physics

be obtained in that way, and therefore Cartesian theory cannot be a scientific theory. That is why
most positivist historians of science do not even discuss it. On the other hand the historians of
philosophy tend to consider Descartes’ physics to be a purely metaphysical system, and so they
restrict their own task to showing its internal coherence. They usually do not even formulate the
question of its empirical validity. Thus both these interpretations agree in ignoring Descartes’
scientific aspirations.

But Descartes’ physics is more than just a coherent conceptual system. It is related to reality,
but this relation is not as direct as positivists would like it to be. Thus in our reconstruction we are
not giving up the question of the empirical validity of the Cartesian system. Nevertheless, we an-
alyze this question not via a direct confrontation of the theory with the experimental data. Rather,
we confront Descartes’ theory with reality in an indirect way, using its formal reconstruction in
the framework of Newtonian physics. Thus we accept Newtonian physics as a true representa-
tion of reality and confront the Cartesian physics only with this Newtonian representation. While
the positivists use the correspondence theory of truth, and while philosophers like Daniel Garber
use the coherence theory of truth, our approach is based on a combination of the two. In the
case of the Newtonian theory, which we used in our reconstructions, we adhere to the classical
correspondence theory of truth. But in the case of the Cartesian theory we test only its coherence
with the Newtonian system. Therefore our result is that Cartesian physics is coherent with a
theory that corresponds to reality. Thus the Cartesian theory is true in a stronger sense than the
philosophical reconstructions based on the coherence theory of truth can provide. On the other
hand our approach protects Descartes against the strict verdict of the positivist historiography,
because it does not require a direct correspondence to reality.

2.1.4.b A conceptual comparison of Descartes’ theory of collisions with Newton’s theory
Our interpretation of Descartes’ theory of collisions will be based on the paper Force and mo-
mentum in the Seventeenth Century: Descartes and Newton, in which Alan Gabbey used in the
interpretation of Descartes’ physics the formalism of Newtonian mechanics. Such an approach
may seem unjustified, and Gabbey himself felt the need to justify it by saying, “I do not read
Descartes through Newtonian glasses, how someone may believe ... I use rather Newtonian mir-
ror to properly display the essential aspects of Descartes’ theory of collision, and thus clarify our
understanding of this theory.” (Gabbey 1980, p. 314, note 169). We will go beyond such a use
of Newton’s theory as a means for ‘mirroring” Descartes’ theory. In our view, in the epistemo-
logical reconstruction of the development of pre-Newtonian physics Newton’s theory has to play
a much more fundamental role. We see the birth of Newtonian physics first of all as the birth of
a new language having a new syntax. Therefore, our aim is not to compare what Descartes said
about motion with what Newton said about the same topic. We are interested in comparing the
way how Descartes speaks about motion with the ‘Newtonian syntax’. We consider Descartes
a linguistic innovator. The fact that some of his formulations turned out to be false is from our
perspective of secondary importance. The important point is that in formulating these views he
fundamentally changed the language by means of which we describe nature. Thus we are inter-
ested here in a comparison of the language of Cartesian physics with the Newtonian language.
We are not going to judge Descartes’ views from the viewpoint of the “Newtonian truth”. We
rather analyze Descartes’ language from the viewpoint of the “Newtonian syntax”.

If we want to understand Descartes’ theory of collisions, we must turn to the letter of 17
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February 1645 to Clerselier, where he wrote: “My reason for saying that a body without motion
can never be moved by another which is smaller, with whatever speed it might move, is that it is
a law of nature that a body which moves another must have more force to move it than the other
has to resist it. But this excess can depend only on its size; for the one without motion has as
many degrees of resistance as the other, which is moving, has of speed. The reason being that
if it is moved by a body moving twice as fast as another, it must receive from it twice as much
motion; but it resists twice as much this double quantity of motion. For example, B cannot push
C except it move it as fast as it itself would move after having pushed it: that is, if B is to C as
5 to 4, of 9 degrees of motion in B it will have to transfer 4 of them to C to make it go as fast
as itself: which for it is easy, for it has the force to transfer up to 4 1/2 (that is the half of all it
has), rather than be reflected in the opposite direction. But if B is to C as 4 to 5, B cannot move
C, except it transfer 5 of these nine degrees, which is more than half of what it has, and against
which C consequently resists more than B has the force to act; that is why B must be reflected in
the opposite direction rather than not move C.” (Gabbey 1980, p. 269).

Descartes describes here a collision as an event happening in a single moment of time. Bod-
ies collide and at the moment of their collision it is decided which force will prevail: whether the
motive force of the body B, or the resisting force of the body C'. As a result of the understanding
of motion as state, every body strives to preserve its state as long as possible. The state is pre-
served by means of the forces of inertia—the motive force in the moving body or the resisting
force in the resting body.

Descartes introduced the force of inertia that preserves the motion of the body B that moves
with the velocity Vp (i.e. the motive force) simply as the product of the size of the body and
its velocity. In the case of a body at rest this definition is useless, because it would always
give the value zero. Therefore, for a body at rest Descartes gave a different definition of the
force of inertia, according to which the force of inertia of a resting body to resist an attempt
to set it into motion (i.e. the resisting force) is equal to the product of the size of the body
and the speed at which it would move after the collision. Thus according to the first definition,
the force of inertia is equal to the fotal momentum of the body, while according to the second
it is equal to the change of momentum.”® These definitions describe the situation where the
bodies are ‘isolated’. When they collide, the situation becomes more complex. Gabbey writes:
“The supporting arguments Descartes provides in this passage, are of greater significance than
assessments, based on the comparatively mundane grounds that the rule is empirically absurd.”
(Gabbey 1980, p. 269).

Gabbey’s interpretation of Descartes’ theory can be summarized as follows: If the body B
moving at the velocity Vz manages to move the resting body C, so after the collision they will
move together with the velocityZXY2 27 This result is a consequence of the conservation of

B+C -
momentum and it is valid also in the Newtonian theory. The quantities of motion of the bodies

26 One of Newton’s fundamental innovations was that he unified these two definitions and put force proportional to
the change of momentum. It resembles Newton’s unification of Descartes’ first two laws into a single law of inertia by
introducing velocity as a vector. Moreover, Newton describes interaction not as a singular event but as a process filling
an interval of time, which allowed him to define force as the velocity of the change of momentum.

27 In the previous chapter we used Newtonian physics to reconstruct some aspects of Descartes’ theory of collisions.
Therefore, instead of the size of a body, which Descartes refers to by the symbol B, we used Newton’s symbol for mass
mp. After we have clarified, in the language of Newtonian physics, the content of Descartes’ theory, we can return
to the use of Descartes’ symbolism. The reader used to Newton’s symbolism can always replace the symbol B by its
Newtonian translation mg.
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. . . 2 . . . .
after the collision will be BBigB and CXBiXCVB respectively, because the quantity of motion is

the product of velocity and the size of the body. Until now we have been in agreement also with
Newton. But now a peculiarity of Descartes’ theory enters the picture. The body C, which was
initially at rest, resists the change of its state and the adoption of the above specified quantity
of motion. Its resisting force is CXBBiJFXCVB. This force of inertia of the resting body C' must be
overcome by the force of inertia of the moving body B, which keeps it in motion. The total
quantity of motion of the moving body B before the collision was B x Vp. But a portion of this

quantity, equal to %, must the body B transfer to the body C' and it can retain only the rest,
X VB

namely B; awonl At the moment of the collision, it will be decided whether the body B can move
the resting body C' or it just rebounds from it. The outcome of the collision depends on whether
the force of inertia of the moving body Bwill exceed the resisting force of the body C' against
the adoption of the particular quantity of motion. Descartes thus describes collision as a process
taking place on two levels. On one level occurs the transfer of the quantity of motion CXBBiQVVB
from the moving body B to the resting body of C.?8 (This transfer occurs also according to
Newton, even if according to him it is mediated by forces.) But in addition to this transfer of
momentum, there is the process of deciding whether the transfer of momentum will take place
at all. In the process of decision, the motive force of the moving body B stands against the

resisting force of the resting body C'. The body C' will be moved if its resisting force % is
B;frg’? of the moving body B. After simple cancellations we get

smaller than the motive force
Descartes’ condition C' < B.

This derivation is interesting because Descartes views collision as a transfer of momen-
tum and describes it by means of forces, i.e. just like Newton. However, the two levels of
description—the transfer of momentum and the action of forces—are separated. The transfer
of momentum happens somehow spontaneously, the momentum simply passes from the body
B to the body C. The forces do not enter into the transfer of momentum; they act only in
deciding whether the transfer will happen at all. The reason is that Descartes’ forces are not
forces of interaction, but they are forces of inertia by means of which bodies preserve their
states. Gabbey characterized the Cartesian theory of collision as the contestant view of force.
He writes: “Descartes’ assumption that the key to solving a collision problem lies in setting the
motive forces of one body against the resisting forces of the other, and calculating the excess, on
which depends the retardation of the acting body, or acceleration of the recipient. Accordingly,
there will be an exchange of motion when the motive force exceeds the resisting force.” (Gabbey
1980, p. 246). Forces are not associated with the change of state (as in Newton), but with pre-
serving it. Comparing the forces we can find out which of them will prevail and determine the
outcome of the collision. If the motive force prevails, the bodies will move together. If the re-
sisting force prevails, the body that was at rest will remain at rest, and the moving body will
bounce.

On Descartes’ theory of interaction it is fascinating to see how close he got to Newton. We
can say that Descartes had all the ingredients from which Newton would later build his equation
of motion. These ingredients were, however, in Descartes’ theory put together in a rather different

28 God preserves in the universe a constant quantity of motion, and it is irrelevant, whether he preserves it in the body
B, or in the body C. From the point of view of the law of conservation of the quantity of motion, the transference of a
certain quantity of motion from the body B to the body C' is unproblematic. The only problem is that the body C' resists
the acceptance of the particular quantity of motion.
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way. Descartes had the concept of interaction, but he described interaction as a singular event
and not as a process. He had the concept of force, but his forces were only preserving the states
of the bodies and not changing them. He understood interaction as a fransfer of momentum,
but this transfer was separated from the action of forces. Thus all major components of the
Newtonian theory of interaction can be found already in Descartes, although they did not fit
together in the way they were later combined by Newton. This is the reason why, if we want
to understand Newton, we must first analyze Descartes. Newton’s contribution to physics was
neither the concept of interaction, nor the concept of force, or the interpretation of interaction as
a transfer of momentum. All these ideas were already in Descartes. Newton’s most important
contribution was the linguistic framework that combined these Cartesian notions (after their
corrections and refinement) into the formal syntax mechanics.

2.1.5 Descartes’ theory of gravity and the vortex of fine matter

One of the main achievements of Galilean physics was its description of the free fall. Accord-
ing to the law of free fall discovered by Galileo, all bodies on the surface of the Earth fall by
uniformly accelerated motion with acceleration constant for all bodies. Galileo did not ask the
question where the acceleration of the falling bodies comes from. The falling bodies clearly vio-
late the law of the conservation of momentum. According to Descartes the motion of the falling
body must be accelerated by something; the body must get its momentum from somewhere. But
for Descartes the only mechanism of interaction was an interaction by contact (i.e. push or pull).
The agent that confers the additional quantity of motion onto the falling body must itself be in
motion (in order to be able to transfer motion it must possess some), and it must be in constant
contact with the falling body (so that the acceleration could be the same during the entire motion).
Finally, since all bodies on the surface of the Earth are falling, the agent must be omnipresent.

Due to these attributes of free fall, it is natural to conclude that the Earth is in the center of
a huge vortex of invisible matter which presses all bodies down to the surface of the Earth. This
invisible matter must be itself in motion (so that it could pass portions of its motion to the falling
object), and this motion must have a consistent and steady character. So we come to Descartes’
vortex of fine matter as an explanatory model by means of which he explained gravity. According
to Descartes, the universe is filled with matter; around every celestial body is a vortex similar to
that which surrounds the Earth, and thus on every celestial body we would feel gravity just like
on the Earth. Descartes’ vortex theory is thus a natural explanation of gravity as soon as one
realizes that gravity needs an explanation, and assumes that this explanation must be based on a
contact theory of interaction. Descartes’ theory of gravity has the advantage that it integrates the
universe into a system of causally interacting bodies.

In the Galilean universe, bodies were isolated by empty space; they were individual objects
moving through space without mutually influencing each other. The unity of the universe was,
according to Galileo, a kind of harmony of its elements that can be compared to the unity of
tones in a chord. It is a mathematical unity rather than a causal one. Galileo would probably
dismiss the idea that the planets, for instance Venus, affect the objects on the Earth (including
people), as an astrological superstition, as an irrational belief in occult powers. Against the
background of the Galilean universe we see the predominance of the Cartesian understanding of
the universe as a system of causally interacting bodies. Thus fine matter unites the entire universe
into a single, causally connected system of mutually interacting bodies. While this was a purely
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speculative idea, it has a correct core. Descartes realized that, in addition to the description of
interaction of individual bodies by means of collision, he needs a mechanism to unite the parts of
the world-system into an integrated whole. As in the previous cases, also here Descartes lacked
the mathematical tools by means of which this unification would be accomplished by Newton.
Instead of a formal unification Descartes introduced a material one (in the form of vortices of
fine matter). But whatever form his causal unification of the universe takes, it was an important
step forward.

2.1.6 Descartes’ concept of motion as dynamic transition

From the point of view of Cartesian physics we could say that Galileo’s theory of motion de-
scribed only that which was trivial—the motion of a body on which no other body acted. What
Galileo understood as motion is actually the temporal evolution of the state of a body in the case
when we neglect all other bodies. On the one hand, this is uninteresting, because in reality there
is only one kind of such motion—the uniform motion in a straight line. All other examples of
Galileo, as they contain no description of interaction, must be mistaken. On the other hand, what
Galileo proposed is not physics but an exercise in geometry. According to Descartes, physics
must turn from the Galilean concept of motion as a geometric flow to the dynamic concept of
motion as a change of state.

Aristotle described motion as a geometric transition, i.e. a transition of the body from an
initial place to a terminal one. Between the initial and the terminal places Galileo inserted a
trajectory connecting them. In this way he transformed motion into a geometric flow, into a
continuous “sliding” along a trajectory. Descartes described interaction as a collision, i.e. as a
transition. In contrast to Aristotle’s geometric transition from the initial to the terminal position,
Descartes described motion as a dynamic transition, as a transition from an initial state (state
before the collision) to a terminal state (state after the collision). As he did not have the calculus
at his disposal, he described this transition using ordinary language. Descartes was among the
first thinkers who viewed the universe not as a geometric system of harmonically ordered circular
motions, but as a dynamic system of interacting bodies.

2.2 Shortcomings of Cartesian Physics

Descartes’ physics brought, with respect to Galilean physics, major conceptual advances. It
introduced the concept of state, the description of interaction and a new conception of natu-
ral law as a universal law describing motion of bodies. Besides these advantages, however,
Descartes’ physics had a number of serious shortcomings. The shortcomings of the Cartesian
system most frequently mentioned in the literature are its verbal formulation and its empirical
falsity. We, however, do not consider these two shortcomings as too important. As we already
mentioned, the verbal formulation of the Cartesian system can be interpreted as a manifestation
of Descartes’ insight that mathematics of the first half of the 17th century (to the development
of which Descartes substantially contributed) was not suitable for the description of interaction.
From this perspective the verbal formulation of the Cartesian system is its merit rather than
its shortcoming. It seems that it was the choice of an inappropriate mathematics that prevented
Galileo from incorporating interaction into his representation of motion. Triangles and circles
are changeless and it is not clear how we can by their means describe interaction. Descartes
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refused the use of triangles and circles and opted for ordinary language, and it is probable that
this decision enabled him to introduce interaction into physics.

As to the empirical falsity of Cartesian physics, our reconstruction of Descartes’ theory of
collisions showed that Descartes’ theory is not completely false, it has an empirically correct
core. The fact that positivist philosophy of science was not able to identify this core is a conse-
quence of the insensitivity of the correspondence theory of truth by means of which it approached
Descartes. In section 2.1.4.a we have shown that Descartes’ theory of collisions—despite its
empirical inadequacy—can be put into correlation with reality. Nevertheless, for this we need
Newton’s theory as a mediator. Despite the fact that according to the correspondence theory of
truth Descartes’ theory of collisions is false, by combining the correspondence and the coherence
theories of truth we showed that Cartesian theory is coherent with a theory that corresponds to
reality.

When we refuse the shortcomings that are most often attributed to Descartes, this does not
mean that we consider Descartes’ theory being perfect. In our opinion, Descartes’ theory has a
number of conceptual shortcomings, but in order to identify them, we must enter deeper into the
Cartesian system.

2.2.1 Inability to define rectilinear motion

The first problem of Cartesian physics has to do with this definition of motion. Although
Descartes was convinced of the correctness of the Copernican theory, after the condemnation
of Galileo he was reluctant to take a stance on this issue. He avoided this problem by his defini-
tion motion: motion is “the transference of one part of matter or of one body, from the vicinity of
those bodies immediately contiguous to it and considered as at rest, into the vicinity of others”
(Desecrates 1644, p. 51). Thus we can speak about motion of a body only in relation to bodies
that surround it, and the Earth is, of course, relatively to its immediate environment (i.e. the
atmosphere) motionless. Descartes writes: “However, in common usage, all action by which any
body travels from one place to another is often also called movement; and in this sense of the
term it can be said that the same thing is simultaneously moved and not moved, according to
the way we diversely determine its location. From this it follows that no movement is found in
the Earth or even in the other Planets; because they are not transported from the vicinity of the
heaven immediately contiguous to them, inasmuch as we consider these parts of the heaven to
be at rest.” (Descartes 1644, p. 94). So Descartes used his definition of motion to reject Coper-
nicanism. Earth is motionless because it does not move in relation to the matter that surrounds
it.

But Descartes’ definition of motion cannot be explained only as a concession to the pressure
of the Church, because it is deeply connected with the whole Cartesian system. Among other
things, the definition of motion is of fundamental importance for the theory of collisions. A
strange aspect of Descartes’ description of collisions is that if a lighter body moves towards a
heavier one, it bounces and the two bodies will remain separate; on the other hand, when a
heavier body moves towards a lighter one, it will set it in motion and both bodies will continue
to move together. From the point of view of Newtonian physics this is false, because these two
cases differ only in the reference system in which we describe them. First we describe them in
the system coupled with the heavier body, then in the system coupled with the lighter one. The
choice of the reference system, however, cannot affect the outcome of a collision. Imagine that
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the Earth is colliding with a small comet, and on the Earth, as well as on the comet there are
Cartesians. The Earthly Cartesian sees a small comet moving towards the enormous Earth, so he
believes that the comet will bounce. On the other hand, the Cartesian living on the comet sees
the huge Earth moving towards him, so he believes that after the collision both bodies will move
together. What will actually happen cannot be decided by Cartesian physics.

In the manuscript De gravitatione from 1673 Newton criticized Descartes’ definition of mo-
tion. His criticism was that if motion is defined as “the transference of one part of matter or of
one body, from the vicinity of those bodies immediately contiguous to it”, then it is not possible to
define rectilinear motion. If the bodies surrounding the given body move in different directions,
some are accelerating, others decelerating, it is not clear what it means that “all movement is,
of itself, along straight lines”, as the second law of Cartesian physics requires. With respect to
some bodies, the given body may move in a straight line, while with respect to others it may
move along a curve.

2.2.2 Separation of the velocity of motion from its direction

Descartes understood velocity as a scalar quantity, and so he separated it from the direction of
motion. Therefore, he had to formulate one principle for the conservation of velocity and another
principle for the conservation of the direction of motion. The separation of the velocity from the
direction, however, had a number of other consequences which could not be solved so easily. For
instance, motions in which only the direction changes (as in the bounce of a ball from the wall,
or in the uniform circular motion) Descartes did not perceive as changes of state. He described
them simply as changes of direction. This is false, because when the ball bounces from the
wall, it passes through “all degrees of slowness”, as Newton will formulate it, thus its velocity is
changing as well.

2.2.3 Scalar character of Descartes’ quantity of motion

Although Descartes formulated the predecessor of the first conservation law—the law of the
conservation of momentum—we cannot attribute to him the full credit for this discovery, be-
cause his formulation was incorrect. What is conserved is not the scalar quantity of motion, as
Descartes believed, but the vector of momentum. An example, in which we can realize the dif-
ference between these two formulations, is the system of two bodies that attract each other by
gravitational force, and consequently move towards each other with acceleration. In this system
the (scalar) quantity of motion increases, because the bodies are moving faster and faster, but
the (vector) momentum remains constant, because their motions are in opposite directions so
that the increases of momentum of the two bodies cancel each other. This system, of course, is
not a counterexample to Cartesian physics, because according to Descartes the increases of the
velocity of the bodies are at the expense of the vortex of fine matter, which is the cause of the
acceleration. The vortex loses exactly the same quantity of motion which the bodies acquire, so
that the law of conservation of the quantity of motion (at least according to Descartes) is not vio-
lated. Although this example does not show the ‘internal inconsistency’ of the Cartesian system,
it definitely shows its ‘empirical inadequacy’.
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2.2.4 Speculative character of the Cartesian explanatory models

After introducing the ontological level of description of nature, Cartesian physics split the de-
scription of nature into two components. On the one hand, there is the description at the phe-
nomenal level where the goal is to acquire exact, quantitative data about the phenomenon. For
example, in the case of refraction of light Descartes created a detailed table that contained the re-
sults of thorough measurements of the angle of refraction for various angles of incidence. On the
other hand, there is the description on the ontological level where Descartes introduces his ex-
planatory models, the aims of which is to offer a causal explanation of the studied phenomenon.
Typical Cartesian explanatory models were, for example, the vortex of fine matter explaining
gravity, or the tennis balls explaining refraction of light. These models represent progress in
comparison with Galilean physics, which was restricted to a quantitative description of phenom-
ena and did not attempt to explain them causally. On the other hand, many Cartesian models
were pure speculations. Descartes, the main advocate of scientific method, lacked any methodi-
cal guidance in the construction of his explanatory models. Therefore it is no wonder that many
of these models—the model of the vortex of fine matter, or the model of the tennis balls—have
turned out to be misguided.? Sporadic errors can be tolerated, but such an accumulation of
errors indicates a serious problem of the conceptual structure of Cartesian physics.

2.2.5 Disconnectedness of the phenomenal and the ontological levels of description

The explanation of gravity by means of the vortex of fine matter is a paradigmatic example of
the Cartesian method of explanation by means of a reduction of a phenomenon to its ontological
basis. This method, however, has a very loose connection between the phenomenal and the
ontological levels of description. In the case of gravity, although we know that it is caused by
the vortex, there is no link between the properties of gravity (its magnitude, homogeneity, and
direction) and the properties of the vortex (its orientation, direction, and velocity). Descartes
postulated his models without any possibility of empirically testing their properties. Probably
against this aspect of the Cartesian system were directed Newton’s famous words “Hypotheses
non Fingo”.

2.2.6 Impossibility to incorporate friction into the description of interaction

Another problem of Cartesian physics is that it is not possible to include friction into its de-
scription of motion. Descartes understood interactions as collisions, and he described them by
comparing the states of the system before and after the collision using the law of conservation of
the quantity of motion. This means that Descartes cannot describe those interactions in the course
of which the total quantity of motion of the system is changed—and these are all interactions in
which friction plays a role. When a body moves with friction, we can not equate the quantity
of motion before and the quantity of motion after a particular period of time (as the Cartesian
description requires), because some quantity of motion is lost due to friction. A Cartesian could
argue that motion is not lost, but only transferred to the tiny particles of matter. In principle this
explanation is correct: friction only changes mechanical motion into molecular motion that we

29 Even if many of Descartes’ explanatory models were wrong, his explanation of the rainbow turned out to be correct.
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perceive as heat. Nevertheless, this does not change the fact that motion of a mechanical system
with friction cannot be described by means of Cartesian physics.

This deficiency is not a marginal problem—friction touches the very heart of Cartesian
physics. In order to explain the circular form of planetary orbits, Descartes filled the uni-
verse with fine matter. For the development of physics it was important because Descartes thus
achieved the causal interconnectedness of all phenomena. Any body of the Cartesian universe
could in principle act on any other body through the mediation of fine matter. Nevertheless, the
vortex of fine matter has one major drawback. If the form of the Earth’s orbit was really caused
by the vortex, the vortex would have to interact strongly with the Earth. In six months, during
which the Earth traverses half of its orbit and its velocity takes the opposite direction, the fine
matter would have to transfer to it a momentum equal to twice the product of the mass of the
Earth and its velocity (that is 2 times 5.97 x 10%* kg times 2.98 x 10* m.s~!, which gives the
unimaginable 3,56 x 102 kg.m.s~1). If fine matter interacted with the Earth so intensively,
friction would appear which would stop the motion of the Earth.3°

The same substance, by means of which Descartes explained gravity, had such a disastrous
consequence for the kinematics of his universe. In order to cause gravity, fine matter must
strongly interact with the macroscopic bodies. But once it starts such interaction, friction ap-
pears, due to which after a short period of time all motion ceases. Newton dedicated the second
book of the Principia to the calculations of various scenarios of motion in an environment. The
failure to include friction into his physics was not an oversight of Descartes. Friction cannot
be included into the Cartesian system because it violates the law of conservation of the quantity
of motion. Newton had to leave the Cartesian world filled with fine matter and return to the
universe of bodies moving in a vacuum. Nevertheless, this will be not the Galilean universe of
isolated bodies. Newton took over into his system one of Descartes’ main achievement—the
causal interconnectedness of all phenomena.

2.2.7 Contact theory of interaction as collision

Descartes’ conceptualized interaction between bodies as a conflict understood as a clash of their
tendencies to preserve their state (of motion or of rest). The basic model of interaction was the
model of collision, i.e. of an immediate contact. We do not want to say that there are no colli-
sions. Collisions are, however, not the only kind of interaction. Descartes’ vortex of fine matter
was an attempt to fit also gravity into the framework of his theory of interaction. We saw that
Descartes was led to his vortex theory by the assumption that interaction happens through con-
tact. Even if the vortex theory had worked, it was too complicated for a mathematical description.
That was why Descartes did not try to mathematize gravity. He believed that Galileo’s law of free
fall was false, because he could not imagine that a vortex could lead to such a simple law: “path
proportional to the square of time”. But Descartes’ theory of gravity was so complicated only
thanks to his contact theory of interaction. When Newton admitted forces acting at a distance,
gravity became accessible to mathematical description.

30 Since Descartes considered the quantity of motion a scalar quantity, according to Cartesian physics during the
Earth’s motion around the Sun, the quantity of motion does not change—the Earth changes only the direction of its mo-
tion, while its quantity of motion is unchanged. Thus Descartes did not realize this fundamental problem—the necessity
to transfer huge momentums between the Earth and the vortex of fine matter.
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2.2.8 Understanding of interaction as a singular event happening instantaneously

According to Descartes, the motion of a body is composed of sections of uniform rectilinear
motion when the body preserves its state of motion, which are separated by collisions, i.e. by
singular events, during which the body undergoes changes of state. Singular event here means
an event that happens at an instant i.e. at a ‘point of time’. This has the consequence that the
rates of change of momentum as well as the rates of change of all other temporal characteristics
of the body are infinite. It is not difficult to see that it was Descartes mathematical apparatus that
forced him to understand collisions as singular events. The law of conservation of the quantity of
motion is an algebraic equation and it was the language of algebra that did not allow Descartes
to describe interaction as a continuous process.

2.2.9 Inability to describe a bounded closed mechanical system

A further problem is that the Cartesian law of conservation of the quantity of motion applies
only to the entire universe. Cartesian physics is therefore unable to describe not only systems
with friction, but actually any physical system that is less than the entire universe. In Cartesian
physics, it is not possible to describe the motion of a closed bounded system of bodies, because
all bodies are submerged in the vortex of fine matter which constantly interacts with them. Into
every bounded system of bodies, the vortex brings or takes away certain quantities of motion.
Cartesian physics was therefore unable to define a closed bounded system—the only system that
it was able to describe was the entire universe. But the universe as a whole is not accessible to
empirical investigation, but only to speculation.

Descartes’ system is thus open. First of all, it is open to the work of God who maintains
a constant quantity of motion in the universe. Secondly, it is open to the actions of the soul.
Descartes’ separation of the direction of motion from its quantity, and his limitation of the con-
servation law solely to the quantity of motion, forms the basis of the Cartesian explanation of the
action of the soul on the body. According to Descartes, the body is a hydraulic machine driven
by the circulating blood. In addition to the blood vessels, in which the blood flows, the body
contains also nerve fibers, which are fine tubes, in which, according to Descartes, a spiritual fluid
circulates. Its circulation can affect the muscles by closing or opening the flaps that direct the
flow of blood, and so cause muscles to contract or expand. The center of the circulation of the
spiritual fluid is, according to Descartes, the pineal gland, into which enter a great number of dif-
ferent nerve fibers from the whole body, including the nerves from the two eye balls. The pineal
gland is the place where the contact between the body and the soul occurs. On the one hand, the
flow of the spiritual fluid can cause motions of the pineal gland which the soul perceives as sen-
sory perceptions. On the other hand, the soul can interfere with the flow of the spiritual fluid by
redirecting it from one nerve fiber to another one. Descartes’ law of conservation of the quantity
of motion is not violated because the redirecting of the flow of the spiritual fluid does not change
the quantity of motion. The erroneous notion of the (scalar) momentum thus allowed him to
describe the interaction between the soul and the body. As soon as Newton corrected Descartes’
concept of momentum (by turning it into a vector quantity), the physical world became causally
closed, and in the physical universe there remained no place for the interference of the soul.
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2.2.10 Summary

We introduced the shortcomings of Cartesian physics in the order in which Newton gradually
eliminated them. The first three of them—the impossibility to define rectilinear motion, the sep-
aration of velocity of motion from its direction, and the scalar nature of the quantity of motion—
Newton explicitly rejected at the very beginning of his scientific career, and replaced them with
his theory based on the concept of absolute space and time. The next three shortcomings—the
speculative character of the explanatory models, the disconnectedness of the phenomenal and the
ontological level, and the failure to include friction into the description of interaction—Newton
overcame gradually as he replaced the Cartesian speculative explanatory models by the math-
ematical description of forces. The last three shortcomings—the contact model of interactions,
the interpretation of interaction as an instantaneous event, and the openness of the Cartesian
description of nature—Newton abandoned only tacitly as he developed his system and the par-
ticular aspects of the Cartesian description of interaction became redundant. Against the last
three aspects of the Cartesian theory Newton never openly objected.
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3 Newtonian physics

Husserl interpreted idealization as a process in which an aspect of the lifeworld is replaced by
a mathematical ideality. Galilean physics replaced phenomena such as speed or heat by mathe-
matical quantities of velocity or temperature. Cartesian physics replaced the objects of lifeworld
by extended bodies of the Cartesian universe. In the present chapter we would like to interpret
Newtonian physics as a further step in the process of idealization, a step in which action that
we encounter in our lifeworld (like pulling, pushing, dragging, etc.) was replaced by action of
forces. The Newtonian replacement of the ordinary action by the action of forces can be seen as
a continuation of the Cartesian reduction. Even though on the ontological level Descartes aban-
doned the lifeworld and created his mathematical universe of extended bodies, his understanding
of action (as pushing and pulling) remained close to the ordinary notion of action. Pushing and
pulling is precisely what we do in our everyday lives. When we write, we push the pen against
the paper, and when we want to undo the shoelaces, we simply pull them. Thus Descartes trans-
ferred our ordinary notion of action into his mathematical universe of extended bodies. In what
follows we would like to show that many aspects of Newtonian physics can be understood as a
consequence of the replacement of the Cartesian notion of action based on everyday experience
by a new, mathematical notion of action that is absolutely alien to any experience; the action of
forces at a distance. In other words we will try to interpret Newtonian physics as idealization
of action.’' Tt was the mathematical description of action that enabled Newton to complete the
process of mathematization of nature, started by Galileo.

The idealization, on which modern physics is based, has thus three layers. The first layer
is the Galilean instrumental idealization of phenomena. It consists in the replacement of the
phenomena of the lifeworld by mathematical quantities, obtained by techniques of measurement.
The second layer is the Cartesian ontological idealization of objects. It consists in the replace-
ment of the objects of the lifeworld by extended bodies obtained in the process of the ontological
reduction of reality. The third layer is the Newtonian analytical idealization of action. It consists
in the replacement of the action between objects of the lifeworld by forces acting at a distance.
By identifying these three levels of idealization we actually claim that physical quantities are not
true pictures of the phenomena of the lifeworld. Physical quantities are unambiguous, intersub-
jective, and reproducible, while the phenomena of the lifeworld contain a subjective dimension,
they are often ambiguous and non-reproducible. Similarly, we claim that physical bodies are
not identical with the objects of the lifeworld. Physical bodies have unambiguous quantitative
characteristics that can be combined into the “finitely representable” state,*? which contains all
information about their future. Objects of the lifeworld have qualitative properties, and they are
characterized by their purpose rather than state. And finally we claim that physical interactions

31 In the chapter devoted to Galilean physics, we pointed out that Husserl took over the horizon in which the posi-
tivists formulated their philosophy of science. The positivists tried to reduce the discussion of science to the analysis
of its empirical methods, while ignoring the ontological and causal aspect of scientific theories. In the controversy
with positivism, Husserl refuted the positivist interpretation of science, pointing at a discontinuity between the lifeworld
phenomena and their scientific description. But because the other two aspects of scientific theories were avoided by
positivism, the ontological and the causal aspect of science was avoided also by Husserl. The concept of idealization,
which we use here, is thus broader than that introduced by Husserl in the Krisis.

32 In quantum mechanics, the states are given by vectors of an infinite-dimensional Hilbert space. Thus ‘final repre-
sentability’ is not meant in the sense of final dimension of the representation. But the Hilbert space, despite its infinite
dimensions, is given by a finite number of axioms, and so it is manageable by a ‘final, human mind’.
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are not identical with the causal relations as we encounter them in the lifeworld. Physical systems
are mono-temporal and causally closed. The objects of the lifeworld are changing simultaneously
on several time scales and are in a fundamental sense open.

Our aim is to show that by joining these three layers of idealization, that is, by putting to-
gether the mathematical description of quantities, of states and of action, Newton created an
idealized world, by which modern science replaces the world of our ordinary experience. This
replacement is so successful because, besides its own empirical basis, the world of science has
its own ontology and its own causality. Thus the world of science is closed not only on the em-
pirical level of facts, but it is closed also on the ontological level of objects and on the causal
level of action. Modern science is able to predict not only the outcomes of experiments, but also
the existence of new objects.>

The universe of physics is separated from the lifeworld by three layers of idealization which
together constitute the language modern physics. Modern physics replaces the lifeworld by de-
scriptions of its language. This replacement is so suggestive that many of us believe that we
actually live in the world that is described by the scientific theories. The world of physics is op-
erationally, ontologically, and causally closed. The world of physics is operationally closed—that
means that only those phenomena are physically real which can be reproduced by instrumental
procedures; it is ontologically closed—that means that physical phenomena are the manifesta-
tions of physical objects; and it is causally closed—that means that physical objects can interact
only with other physical objects. Husserl argued that we must not equate the descriptions of the
language of physics with reality, in order not to lose the possibility to understand the process of
the creation of that language and to appreciate the difficulties that its creators had to overcome.
The aim of the phenomenological criticism of physics is not to challenge the physical picture of
the world, but to understand its roots.

A remarkable aspect of Cartesian physics is that Descartes in a sense failed to incorporate
interaction into his mathematical description of nature. Cartesian physics contains a tension.
In contrast to Galileo, Descartes realized that it is necessary to incorporate interaction between
bodies into the physical description of nature. On the other hand, he was not able to create a
mathematical description of interaction. Thus in Cartesian physics, when we describe a collision
of two bodies, we describe the state of the system before the collision as well as the state of the
system after the collision. Nevertheless, what we do not describe is what happens in the very
moment of the collision. Therefore, instead of what is changing, that is, instead of the process
of the gradual change of state during the interaction, Cartesian physics describes only what is
preserved, that is, the quantity of motion. One of the fundamental contributions of Newton to the
development of science was the creation of a mathematical description of interaction. Into the
gap, which in Cartesian physics separated the state of the system before the collision from the
state after the collision, Newton inserted the process of continuous change of state caused by the
action of a force. Descartes described a ball’s bouncing from the wall as an immediate change of
the direction (the technical term was directedness) of the motion of the ball, without a change of

33 One of the first such prediction was the prediction of the planet Neptune. Physicists understood the perturbations of
the motion of Uranus not as mere phenomena requiring an exact description (as a Galilean scientist would proceed), but
postulated the existence of a causal agent, which by means of its gravitational attraction causes these perturbations, and
interpreted this agent ontologically, as a celestial body. When astronomers focused their telescopes on the place where,
according to the calculations of the physicists, this celestial body should be, they found a new planet there. Since the
discovery of Neptune, this scenario has been repeated many times.
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its velocity. Newton inserted between the two Cartesian states (representing the ball before and
after the bounce) a process of gradual deceleration, until the ball stopped for a moment. Then the
forces of resilience started to accelerate its motion as long as the ball reached the same velocity
as that with which it hit the wall, but of the opposite direction. Thus, according to Newton,
the rebounding ball passes all degrees of velocity reaching zero, while according to Descartes
it only turns around without any change of velocity at all. This example illustrates clearly that
Descartes excluded the process of gradual deceleration followed by gradual acceleration from the
description of collision and he simply connected the initial and the final state by his conservation
law. In this way Descartes reduced the bouncing of the ball to a change of its direction.?*

The creation of a mathematical description of interaction enabled Newton to close the causal
network of the physical picture of the world. He replaced the hypothetical fine matter, by means
of which the Cartesians tried to embed the physical phenomena into a network of causal rela-
tions, by a mathematical description of interaction. This step is in agreement with Husserl’s
interpretation of idealization as a replacement of an aspect of our lifeworld by a mathematical
representation of it. Therefore we suggest the main contribution of Newton to physics was not
in his discovery of the law of universal gravitation or of the law of action and reaction, but in
the creation of a mathematical language that makes it possible to predict the future behavior of
a mechanical system in an analytic way. As long as the discussions of Newton’s contribution to
physics are restricted to the discussions of his particular discoveries, we are stuck in the positivist
framework. Then Newton’s fame represents a mystery, because in the case of each particular dis-
covery, which we can ascribe to him, a whole range of predecessors and contemporaries emerge,
who require their share in the discovery. And so Newton’s exceptional place in the history of
science remains unexplained. Nevertheless, as the author of a mathematical description of in-
teraction, Newton stands alone and ahead of his time. In order to appreciate the importance of
Newton’s work we have to accept that Newton’s main contribution to science was not an empir-
ical one but a linguistic one. Newton is the author of the mathematical language which enables
us to describe interaction.

3.1 Newton’s analytical idealization of interaction >

Descartes biographer Stephen Gaukroger writes: “Newton, the success of whose work was largely
responsible for the demise of Cartesianism later in the century, was himself a Cartesian in the
early 1660s, before he developed his own distinctive natural philosophy.” (Gaukroger 1995,
p- 4). Newton read from Descartes everything that was available, and certainly read Dioptrics,
Geometry and Principles of Philosophy, whose topic will appear again and again in his mature
work (see Whiteside 1970, p. 72). His main scientific work Philosophiae naturalis principia

34 Cartesian physics has a mathematical ontology but it lacks a mathematical description of interaction. Its verbal
formulation is the consequence of its inability to mathematically describe the interaction of mathematical objects.

35 To call the Newtonian idealization analyfical may cause some doubts. The term analytical is usually associated
with Lagrange, who used it in the title of his treatise on mechanics. Newton called his theory rational mechanics. When
we use, in connection with Newton, the adjective analytical, we would like to call attention to a remarkable aspect of
Newton’s physics. At the surface, Newton’s Principia are synthetic, because they are written in the language of synthetic
geometry. But if we examine their structure in more detail, it turns out that Newton, using the language of synthetic
geometry, presented a concept of interaction that is fully analytic. Newton’s mechanic was the first theoretical system, in
which the causes and the effects of a mechanical interaction were connected in such a way, that from the effects (e.g. the
elliptic form of the planetary trajectories) it was possible to deduce the causes (the inverse square law). The transition
from the effects to the causes is typical for the analytic method.
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mathematica is in many respects a result of critical coming to terms with Descartes’ Principia
philosophiae. Newton took from Descartes several incentives, among the most important of
which were understanding motion as a state; describing interaction as a change of state; and the
notion of a natural law. Newton based his system on three laws, the same number as Descartes: 3¢

I. Every body perseveres in its state of being at rest or of moving uniformly straight forward,
except insofar as it is compelled to change its state by forces impressed.

II. A change in motion is proportional to the motive force impressed and takes place along
the straight line in which that force is impressed.

III. To any action there is always an opposite and equal reaction; in other words, the actions
of two bodies upon each other are always equal and always opposite in direction. (Newton
1687, p. 416-417).

At the beginning of the Principia we can find the following definitions:
I. Quantity of matter is a measure of matter that arises from its density and volume jointly.

II. Quantity of motion is a measure of motion that arises from the velocity and the quantity of
matter jointly.

III. Inherent force of matter is the power of resisting by which every body, so far as it is able,
perseveres in its present state either of resting or of moving uniformly straight forward.

IV. Impressed force is the action exerted on a body to change its state either of resting or of
moving uniformly straight forward. (Newton 1687, p. 403-405).

In these definitions, Newton used Cartesian terminology (quantity of motion, inherent force).
Nevertheless, he gives these terms a new meaning that is absolutely alien to Cartesian physics.
At the beginning of his career, between the years 1665-1673, Newton held a kind of Cartesian
mechanical philosophy, which he gradually abandoned. The process of abandoning the Cartesian
philosophy is visible on the development of Newton’s notion of inertial force (see Gabbey 1980,
p- 273-274).

Newton’s reaction to Cartesian physics can be divided into three areas. The first area con-
cerned motion and the concepts of space and time. In this area, Newton rejected Descartes’ views
as early as in the 1670s. Already in his manuscript De gravitatione from 1673 Newton subjected
Descartes’ identification of matter with extension to severe criticism, as well as his definition of
motion, and showed the inconsistency of the Cartesian system. Perhaps the most important ar-
gument of Newton was that if we define motion as the replacement of a body with respect to the
bodies of its immediate neighborhood, then it is impossible to introduce the notion of rectilinear
motion. The manuscript De gravitatione is remarkable also because Newton used here for the
first time the term absolute motion. Thus Newton’s idea of the absolute space has its roots in a
confrontation with Descartes (see Bohme 1989, and Steinle 1991). In the Principia we can find

36 Newton united the first two laws of Descartes (the law of inertia of motion and the law of conservation of the
direction of motion) into his law of inertia. He replaced Descartes’ third law by his law of action and reaction. Between
these two laws he, finally, inserted his law of force.
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the notion of absolute space in an explicit form, so that when he was writing the Principia, the
Cartesian theory of motion was already rejected.

The second area of Newton’s reaction to Cartesian physics concerned methodology. Newton
criticized the Cartesians for the speculative nature of their explanatory models. Overcoming this
deficiency meant abandoning the Cartesian models and replacing them with theoretical expla-
nations, in which the phenomena are tied to the causes by means of an experimental method so
that the causes are no longer speculative. Newton used this method already in Lectiones Op-
ticae, a work written at the end of the 1670s (Newton 1729). In the sphere of methodology,
however, the surpassing of Cartesianism was not as easy as in the question of motion, because
for each Cartesian explanatory model it was necessary to develop a mathematical theory based
on experiments.

Newton’s third area of reaction to Cartesian physics concerned interaction. Unlike the Carte-
sian notion of motion, which he rejected right at the beginning of his career, in the description of
interaction Newton remained for a long time faithful to the Cartesian contact theory of interac-
tion and emancipated himself from it only gradually. At first, he translated the Cartesian theory
of interaction into the language of forces, which made it more precise, but the forces by means of
which he described collisions were still the Cartesian contact forces acting in a singular moment
of time. As it was pointed out by I. Bernard Cohen, Newton’s second law presented in the Prin-
cipia reads as follows: “A change in motion is proportional to the motive force impressed and
takes place along the straight line in which that force is impressed.” Force is thus proportional
to the change of (the quantity of) motion, thus

F = d(mv). 3.1)

This is something fundamentally different from what we understand as Newton’s second law
today when we put force equal to the rate of change of momentum:

d(mv) '

F - F =
dt = d(mw) or o

(3.2)

In Newton’s formulation of his second law, force is directly proportional to the change of
momentum, and not to the rate of change of momentum, and it is an instantaneous force (Cohen
1970, pp. 144-159). It is the Cartesian conception of action as collision, described in the language
of forces.’’

In addition to the instantaneous forces, which act at the moment of collision, Newton has
already around 1665 introduced the description of continuous action of forces. It was the ac-
tion of the centrifugal force in rotational motion, which he described by a sequence of evenly
spaced impulses of instantaneous forces, and he approximated the smooth trajectory by an in-
scribed polygon. In a limit the polygon approaches the smooth trajectory and the impulses of
the instantaneous force approach the action of a continuous force (Herivel 1970, p. 125). Later
he used also “continuous forces” operating in a time interval (the gravitational force). But for
these continuous forces he did not formulate any special law of motion, and kept on describing
their action as the limit of a large number of impulses of instantaneous forces. He spread out
these instantaneous forces evenly over an interval of time, so that in the limit he obtained from

37 Newton speaks about proportionality between force and change of motion, so that his formulation does neither
contradict equation (3,2), nor does it explicitly assert it.
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formulas of the type (3.1) a description of action equivalent to (3.2). Therefore, as Cohen writes:
“Surely there can be no doubt that Newton thus knew and stated explicitly the Second Law of
Motion in a form equivalent to [(3.2)].” (Cohen 1970, p. 157).

It seems that Newton considered for a long time the introduction of a (continuous) force of
gravity only an effective way of describing the gravitational action, the mechanism of which is
unknown, but which has the form of collisions with some kind of eather. This eather cannot be
the Cartesian fine matter, because Newton knew that the Cartesian model does not work. He
believed, however, that we will find a mechanistic explanation of gravitational interaction. So
everything that we have said until now (the translation of interaction into the language of instan-
taneous forces and an exact mathematical formulation of the law describing their action), still
belongs to the second area of Newton’s reaction to Cartesian physics. Instead of an arbitrary
speculative explanation of gravity using a hypothetical fine matter, Newton substituted its quan-
titative and experimentally controllable description by means of instantaneous forces. Newton
passed to the third area when he realized that he will probably never find anything better than the
continuous forces, and he turned from viewing the continuous forces only as an effective way
of description of some unknown contact interaction to accepting the continuous forces as forces
acting at a distance (i.e. forces without any further mechanical explanation).’®

It is not clear how far towards the adoption of forces acting at a distance Newton actually
went. It is obvious that these forces appear in the Principia in the description of the planetary
motion. Newton, however, did not introduce them into the conceptual foundations of his theory.
Newton’s Principia is built on the concept of instantaneous forces and the continuous forces act-
ing at a distance appear on the scene only incidentally. It may be that he thought that the theory
of gravity built on forces acting at a distance would incite opposition, and therefore he introduced
in the first pages of his work, where he formulated the laws of motion, only instantaneous forces.
However, it is equally possible that he still believed in the possibility of finding a mechanical
model of gravitational interaction, which would replace the forces acting at a distance, and so he
built the Principia solely on instantaneous forces. Fortunately, we can leave this question unan-
swered and include Newton’s description of interaction by means of continuous forces among
his achievements.

3.1.1 Mathematization of nature as Newton’s program

Galilean and Cartesian physics represent two fundamentally different approaches to mathemati-
zation of nature. According to Galileo, mathematics is a language in which the book of nature is
written. This is perhaps the most widespread understanding of the role of mathematics in physi-
cal sciences. When we open a book on modern physics, we find mathematical language used in
the description of phenomena and the derivation of laws. This fact may create the impression that
contemporary physics is the continuation of the Galilean mathematization. In the previous chap-

38 In this respect the fate of Newtonian gravitational force is not different from the fate of the electromagnetic field
(introduced by Faraday as a convenient description of the action of charges and currents), or Planck’s action quantum
(introduced by Planck as a formal trick in the course of his derivation of the law of black body radiation). Just as after
Faraday came Maxwell, and after Planck came Einstein, who ascribed the electromagnetic field or the action quantum
respectively an ontological status, so after Newton came Euler, who formulated for forces acting at a distance the equation
(3.2), which we call Newton’s second law. Thus the birth of field theory or of quantum mechanics was in many respects
similar to the birth of Newtonian mechanics. An entity, introduced as a convenient tool of description acquired the status
of physical reality.
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ter we argued that this is not the case. The Galilean program was a blind alley and it soon petered
out. Its fundamental fault was that it accepted the role which Aristotle ascribed to mathematics:
not to meddle in the ontological interpretation of reality and to restrict itself to the description of
the phenomena. The expansion of the program of mathematization to the ontological level was
the merit of the Cartesians.

Descartes did not understand mathematics as a mere language useful for the description of
reality. For Descartes, the reality itself is mathematical because things are extended bodies.
Mathematics thus becomes the ontological foundation of reality. It does not describe physical
phenomena (i.e. phenomena that according to Aristotle have a material, thus for mathemat-
ics inaccessible foundation). Mathematics, according to Descartes, represents the states of the
physical system and so it comprises all the information needed for its understanding. In this
way Descartes terminated a dualism stemming from antiquity, according to which reality is the
union of form and matter. According to Descartes a thoroughgoing mathematization of nature is
possible, because there is no substance different from form. Mathematical objects—Descartes’
extended bodies—represent not only the form but also the ontological foundation of reality. They
are form and matter at the same time.

Nevertheless, despite its radical character, the Cartesian program did not succeed. Let us
turn to the difficulties which terminated it. The most fundamental among them was Descartes’
failure to create a mathematical representation of interaction. The program of mathematization
was accomplished by Newton who carried mathematization even further. According to him,
mathematics is not only a language suitable for the description of phenomena, as the role of
mathematics was understood by Galileo. Neither is it only an ontological foundation of reality,
as its role was understood by Descartes. Newton introduced a third approach, according to
which mathematics is the form of analytical representation of reality; the form of representation
of time, space and interaction.*

3.1.2 Transformation of the instrumental practice — instrument as a physical object

Instrumentalization of observation was one of the main achievements of Galilean physics. In-
struments such as the telescope or the barometer allow mathematization of various phenomena;
the instruments themselves, however, were not subject to mathematical description. At the time
of his astronomical discoveries, Galileo did not know the law of refraction. And even if he had
known it, he probably could not have built a theory of the telescope, because Galilean physics
was not suitable to explain the operation of complex instrumental devices. A comprehensive
mathematization of the world, including the instruments and the human body, was introduced
only by Cartesian physics. There every object, be it an organ of the human body such as the eye,
or a scientific instrument, such as the telescope, was subject to mathematization. This made it
possible to interpret observation as an interaction of the observed object with the sensory organ
of the human body. So the very act of observation became part of the physical description of
nature. Nevertheless, Cartesian physics remained in many respects qualitative and was focused
on the construction of qualitative explanatory models of the organs of human body rather than
on the development of a quantitative theory of physical instruments. It was only Newton who
made the instruments subject of theoretical description. We can fully realize the importance of

3For more details concerning the meaning of the phrase ‘form of analytical representation of reality’ see section 3.2.
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this shift on the problem of the analysis of errors of measurement.

In Galilean physics, the errors caused by friction, surface imperfections, or deformations of
physical instruments are something that has to be eliminated, and not studied. According to
Galileo, the smaller the friction, the smoother the surfaces, and the stronger the materials, the
closer we get in our observations to the perfect law of nature that describe the ideal processes
occurring in a vacuum. Descartes believed that vacuum is not possible, and thus the ideal world
described by Galilean physics does not exist. Disturbances can not be eliminated. Bodies are
constantly exposed to disturbances from the vortex of fine matter, and these disturbances are so
complex, that any mathematical analysis of the errors of measurement is beyond the point.

Only in Newtonian physics, which introduced the concept of a closed physical system, it
became possible to develop for different instruments a theory of their operation, and thus to
obtain a clearer picture of their reliability. An instrument is a physical system like any other, so it
can be studied by standard methods of physics. Newton’s incorporation of instruments, and thus
also of the process of observation, experiment and measurement, into the physical picture was
essential for connecting science and technology. This connection is a feature that distinguishes
modern science from its predecessors in antiquity and the early modern period.*

3.1.3 Newton’s analytical notion of experiment and the inductive proofs from
phenomena

Galileo’s approach to the experimental method was motivated by his effort to find the ideal form
of phenomena by means of artificial experimental situations. The paradigmatic example of this
approach is the experiment on the inclined plane which led to the discovery of the law of free
fall. The acceleration of free fall is a phenomenon known from everyday experience and the task
of science is to make this phenomenon accessible to mathematical description. Galileo’s notion
of experiment can be interpreted as synthetic in the sense that the mathematical quantity or the
mathematical law appear in the final part of the experiment, just as the constructed object ap-
pears in the final step of its construction in synthetic geometry. Descartes showed that Galileo’s
understanding of physics was too narrow. It is necessary to complement the mathematical de-
scription of phenomena by a mathematical description of the bodies which cause the phenomena.
Nevertheless, in order to be able to offer such causal explanation of the phenomena, Descartes
had to introduce several purely speculative entities. For instance, in order to explain gravity he
introduced a vortex of fine matter. But he left unanswered the question how we can study this
vortex. Thus even if Descartes introduced explanatory models into physics, he did it in a spec-
ulative way. The contribution of Newton to the experimental method consisted in finding a way
of studying empirically the ontological basis of reality.

Newton developed his new approach to experimental method during his study of colors in
1665-1667 (Hakfoort 1992, p. 115-121). Hooke and Huyghens rejected Newton’s theory of
colors, because they viewed it against the background of the style of experimental work that was
typical for the Cartesian mechanical philosophy. When Cartesian physics is criticized for being

40 Newton’s incorporation of observation into the physical representation of reality changed the nature of physical
knowledge—post-Newtonian physics reflects its own process of acquiring knowledge in itself. Philosophy ignored this
fact for a long time, and interpreted knowledge as a kind of sensory perception. For example, Kant tried to put Newton’s
physics into the Cartesian epistemological framework of sensory perception. It is with naturalized epistemology that
philosophy begins to discover something that in physics has been valid for three hundred years.
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purely speculative and not caring for empirical data, this criticism is not justified. For instance,
Hooke was one of the most prominent experimental scientists of his time. Nevertheless, his
style of experimental work was Cartesian. The Cartesian mechanical philosophy grew out, at
least partially, from a criticism of the Galilean experimental method. According to Descartes,
it is not enough to study different aspects of a physical problem, but it is necessary to create an
overall mechanical picture about its functioning. The core of Cartesian science is the endeavor
to discover the mechanisms at the core of the experimental data. Thus the problem is not that the
mechanical philosophy would not use experiments, but rather that the experiments are separated
Jfrom the theoretical work on the explanatory models which remained speculative. Descartes
made experiments, but he used them only in order to activate his imagination. Theoretical work
started after experimental work finished.

Newton realized that for the further development of mechanical philosophy an experimental
control of its theoretical models was necessary. The difficulty was that in experiments only the
phenomena are accessible, while the theoretical models postulate ontological entities we cannot
experience directly (for instance the vortex of fine matter, which is, according to Descartes,
the cause of gravity). Newton’s answer to this dilemma was his method of irnductive proof
Jrom phenomena. Questions about Newton’s inductive method led to many misunderstandings.
After Mill interpreted induction as a logical method, Popper presented its fundamental criticism.
Nevertheless, we believe that neither Mill’s interpretation nor Popper’s criticism concern the
method Newton had in mind when he said that he had proven the inverse square law by induction
from the phenomena. In other words, despite Popper’s criticism of the inductive method we still
believe that Newton’s method works and that it lies at the foundations of modern physics.

Every kind of induction is based on some linguistic framework. Just as mathematical induc-
tion is based on the well ordering of the set on which the inductive proof is performed, Newton’s
analytic induction is based on the language of the calculus. In the process of empirical data inter-
pretation (Newton considered Kepler’s laws empirical data and called them phenomena) he was
searching for a function which would describe the dependence of the force from parameters such
as distances or masses. Nevertheless, he was searching for this function not among the logically
possible functions, because here Popper is right: for any finite empirical data there is an infinite
number of logically possible functions fitting the data, and so it is impossible to determine one of
these functions by induction. But if we do not jump at once to the realm of the logically possible
functions (in Newton’s times this realm was unknown), but we restrict ourselves to “analytically
suitable functions”, we obtain a framework analogous to the framework in which mathematical
induction operates. For instance, if we assume that the attractive force is proportional to some
power of the distance f(r) = 7*, then from the fact that the planetary orbits are closed curves we
can prove that k is either -2 or +1 (see Arnold 1974, p. 38). From the logical point of view this
proof is not satisfactory, because the fact that the trajectories form a closed curve is not a simple
spatio-temporal event, and our derivation is based on a series of hidden assumptions (that motion
is described by a second order differential equation, that space is three-dimensional, that all the
functions are differentiable as many times as needed, etc.). From the logical point of view these
assumptions are doubtful. Thus if we interpret Newton’s inductive proof as a logical derivation,
it is obvious that it does not work. But it is Popper’s decision to read Newton’s words using the
framework of logic. Newton did not work in the framework of formal logic because in his times
formal logic did not exist. What we wanted to show is that if we reconstruct Newton’s inductive
method using not formal logic, as Popper did, but the framework of the calculus, which Newton
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himself invented, then we can give Newton’s words a clear meaning.

We suggest calling Newton’s method of inductive proof from phenomena interpreted in the
above mentioned manner analytical approach to the experimental method.*' The analytical
approach in the contemporary sense was born in algebra in 1591, when Viete published his In
artem analyticam isagoge. In 1637 Descartes transferred it to geometry. We would like to inter-
pret Newton’s contribution to the experimental method as a further step in this expansion of the
analytic approach. According to Viete, the core of the analytical method consisted in three steps.
In the first step we mark by letters the known, as well as the unknown, quantities. The purpose of
this step is to cancel the epistemic difference between the known and the unknown. In the second
step we write down the relations which would hold between these quantities if the problem was
already solved. In the third step we solve the equations, and find the values of the unknown quan-
tities. Newton made important contributions to algebra as well as to analytical geometry, which
shows that he mastered the analytical method on the creative level. This increases the plausibility
of the interpretation of Newton’s experimental method as a further expansion of the analytical
approach. In contrast to the analytical method as we know it from algebra or geometry, where
the basic difference is an epistemic difference between the known and the unknown quantities,
in the analytical approach to the experimental method the fundamental difference is a method-
ological difference between the measurable quantity (position, velocity) and the non-measurable
quantities (forces). Thus Newton first marks by letters the measurable quantities as well as the
non-measurable quantities. In this way he cancels their methodological difference. Then he
writes down the equations that hold between these quantities. Finally, he derives from these
equations some relation containing only measurable quantities, which relation can be therefore
checked experimentally.

In order to see the novelty of this method, let us compare it with the methods of Galilean and
Cartesian physics. Galileo simply refused to speak about non-measurable quantities and thus
he considered unscientific all theories which supposed for instance an influence of the Moon on
earthly phenomena. For Galileo, the world of science was restricted to phenomenal reality. In
this respect, Cartesian physics was a step forward. It was able to conceive an influence of the
Moon onto earthly phenomena. The vortex of the fine matter could in principle transfer such
an influence. Nevertheless, Descartes was not able to say anything specific about the physical
characteristics of this vortex and so, in the end, he was not able to say anything specific about
this influence itself. This is so because in Cartesian physics the world-picture is split into two
parts. One part is formed by ordinary bodies accessible to experimental investigation, the other
by hypothetical substances, through which the results of the experiments are explained. The
hypothetical substances are not accessible to experiments; they are accessible only to speculation.
Thus we can say that Cartesian physics has its phenomenal and ontological levels of description
unconnected.

Newton realized that the relation between the phenomenal and the ontological levels of de-

41 The term ‘analytical approach to the experimental method’ can provoke some objections. In philosophy the term
‘analytic’ is usually understood as the opposite to ‘synthetic’. A proposition describing the outcome of an experiment is
usually considered as a synthetic proposition, so it seems that the experimental method cannot be analytic. In our view,
however, the opposition between analytic and synthetic is a consequence only of ignoring the role of formal languages in
physical knowledge. The reality, which we want to examine experimentally, can be put in correlation with some calculus,
by means of which the experiment is incorporated into a network of analytical relations which can provide the experiment
with an analytical dimension. How this can work will be shown in more detail below.
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scription in Cartesian physics is analogous to the relation of the known and the unknown quan-
tities in algebra or analytic geometry. The non-measurable quantity (e.g. the force by which
the Earth attracts the Moon) has to be marked by a letter and this letter has to be inserted into
the equations which hold for such forces. Then some consequence of these equations should be
derived in which only measurable quantities occur. Finally, this empirical prediction should be
experimentally tested. In this way a measurement becomes a test of the analytic relations from
which the prediction was derived. The greatest advantage of Newton’s method is that we are not
obliged to measure directly the quantity we are interested in. The network of analytic relations,
into which this quantity is embedded, makes it possible to apply the experimental techniques at
that particular place of the network which is most suitable for measurement. Thus, for instance,
using the empirical data about the elliptic form of the planetary trajectories it is possible to test
the form of the dependence of the gravitational force from distance. Precisely this was done by
Newton and consequently he was angry when Hooke, who only guessed the correct formula,
made priority claims to its discovery. In the framework of Cartesian physics in which Hooke was
working, it was not possible to “prove by induction” the law of universal gravitation because in
that framework the description of phenomena (data about the planetary trajectories) and the de-
scription of mechanical action (the law of gravitation) are not connected. Thus, even if from the
logical point of view all Newton’s assertions are hypotheses, just as the whole Cartesian vortex
theory is a hypothesis, there is a fundamental difference between them. The hypotheses used by
Newton are analytically bound to the rest of his theory. The hypotheses of the Cartesians, on
the other hand, are only qualitative and their relation to the empirical phenomena is loose. This
gives a deeper sense to Newton’s assertion “Hypothesis non fingo”. Newton does not make up
his hypotheses but derives them from the data.

3.1.4 Measurement techniques and the “weighing” of the Earth

The characterization of measurement as a standardization of an experiment makes it possible
to derive, from our interpretation of Newton’s experimentation as an analytical approach to the
experimental method, a new understanding of Newton’s innovations in the field of measurement.
As an illustration of the possibilities disclosed for physics by Newton’s approach to measure-
ment we would like to take the “weighing” of the Earth. In 1798, that is more than hundred years
after the publication of the Principia, Henry Cavendish (1731-1810) successfully measured the
force of attraction between two heavy spheres using very fine torsion weights. When he com-
pared this tiny force with the weight of the heavy spheres, that is, with the force with which
they are attracted to the Earth, he was able to calculate the mass of the Earth. Cavendish’s mea-
surement was therefore often called ,,weighing of the Earth“. In order to understand the novelty
of the Newtonian approach to measurement employed by Cavendish, let us compare it with the
Galilean approach. In his measurement, Cavendish used fine torsion weights, i.e. an instrument
by means of which Coulomb measured the attraction between two electric charges some ten years
earlier. In his laboratory, Cavendish created an artificial situation that was thoroughly designed
to eliminate all disturbing effects which could distort the result of the measurement. So far ev-
erything is in accordance with the Galilean approach. Nevertheless, the Galilean scientist would
stop here and he would add the new phenomenon of attraction between the spheres to the known
phenomena in a similar fashion as he added more than a century earlier the atmospheric pressure
or temperature to them. The novelty of the Newtonian approach lies in the network of analytical
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relations which makes it possible to relate the measured force of attraction between the spheres
to their weights and from this relation to determine the mass of the Earth. That presupposes the
existence of a universal law, i.e. something entirely alien to Galilean physics. Of course, after
the measurement of the attractive force, the Galilean scientist would also probably come up with
the idea of an analogy of this force with gravity, and maybe after some time he would arrive at
something analogous to Newton’s inverse square law. But Newton formulated this law a century
before Cavendish’s measurement.

If we realize how tiny the force between the two spheres is, it becomes clear that a Galilean
scientist had no chance to discover it by some lucky coincidence. He had no reason to construct
such ingenious experimental equipment as Cavendish created in order to make the force mea-
surable. In ordinary experience there is no clue which could lead him to the discovery of the
attraction of bodies, like the failure of pumping of water from deep shafts that led Torricelli to
the discovery of atmospheric pressure. In everyday experience there is no phenomenon which
would reveal that macroscopic bodies attract each other. Therefore for a Galilean scientist (and
for his positivist followers) the gravitational force would probably forever remain undiscovered.
Newtonian science differs from the Galilean in that it embeds the phenomena into a framework
of analytic relations. It can then use this framework to search for artificial phenomena suitable
for testing its predictions. Cavendish used the law of universal gravitation when he planned the
experimental situation in which the forces predicted by this law would become measurable. The
law gave him an estimate of the magnitude of the force, and thus also an estimate of the preci-
sion that his instruments must reach. Thus while Galilean science uses the technical equipment
in an experiment only to alter the phenomena which already exist in our ordinary experience,
Newtonian science goes much further than that. It constructs new phenomena which have no
parallel in ordinary experience. Of course, by this we do not mean that for instance the forces
of attraction between macroscopic bodies did not exist before Cavendish measured them. These
forces existed, but they were not phenomena, they were not accessible to human experience.

3.1.5 Newton’s critique of Descartes’ definition of motion and the principle of inertia

In paragraphs 3.1.2, 3.1.3 and 3.1.4 we described the changes that Newton brought to the empir-
ical basis of physics. Generally we can say that Newton planted experience into a firm linguistic
framework and inserted the phenomena into a network of analytical relations. This made it pos-
sible to deploy the experimental techniques at the best accessible point of the entire network,
and so to obtain answers to questions whose the direct experimental testing would be difficult.
In the following paragraphs we will analyze the principles that Newton formulated to make the
experimental results intelligible.

As already mentioned, Newton subjected Descartes’ definition of motion to criticism. Descar-
tes wrote that motion is “the transference of one part of matter or of one body from the neigh-
borhood of those bodies that immediately touch it and are regarded as being at rest, and into
the neighborhood of others” (Desecrates 1644, part 11, sec. 25). Newton realized that when we
accept this definition, it becomes impossible to define rectilinear motion. If all bodies in the
neighborhood of a given body move in different directions, then with respect to some of them
the motion of the given body may be rectilinear, while with respect to others it may not be so. So
it is not clear what Descartes’ second law of nature is about when it says that “Each and every
part of matter, regarded by itself, never tends to continue moving in any curved lines, but only in
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accordance with straight lines” (Desecrates 1644, part II, sec. 39). Newton rejected the Carte-
sian definition of motion and introduced his new concept based on the idea of absolute space (see
Jammer 1954, p. 93-124)

In defense of Descartes’ theory of motion it can be said that he did not attach great importance
to the definition of rectilinear motion, because according to him the universe is filled with matter,
so that rectilinear motion is not possible. The purpose of the concept of rectilinear motion in the
Cartesian system is not to describe some actually existing motion. Rectilinear motion does not
belong to the level of phenomena; it belongs to the level of explanatory models. The concept of
rectilinear motion is a theoretical notion which makes the phenomenal reality intelligible. It is
against the background of this concept that circular motion appears to be a motion that at every
point deviates from rectilinear motion, and so there is a need to give a causal explanation of
these deviations.*?> Descartes constructed several models, by means of which he explained the
observed phenomena. The hypotheses on which these models were based, however, did not have
to be precise. It was enough that they showed that in principle the studied phenomenon can be
explained using the particular mechanical model. Descartes felt that he is at the beginning of a
long journey and so he left the details to future generations.

Newton rejected such approach to theoretical models. Unlike in Descartes’ physics, in New-
ton’s the phenomenal and the ontological layers were analytically connected. Hypotheses were
no longer a matter of speculation. They had analytically derivable implications which were em-
pirically testable. Therefore it was impermissible to use in the models so hazily defined concepts
as Descartes’ concept of rectilinear motion. In Newton’s system, all concepts were embedded
into a single linguistic framework, and so it was necessary to define the terms of the ontological
level with the same care as those of the phenomenal level. That is why the Principia open with
definitions of the basic terms.

Although we tried to play down the severity of the problems associated with the definition
of rectilinear motion in Cartesian physics, nevertheless, these problems are not the result of
Descartes’ lack of care or patience. The problems with the notion of motion are a systematic
feature of the whole Cartesian system and are connected with Descartes’ identification of mat-
ter with extension. It is because Descartes identified the extended body with space that he lost
any reference system in which he could define motion. The extended substance is at the same
time that which is moving (i.e. ‘matter’) as well as that with respect to which motion is de-
fined (i.e. ‘space’). Therefore, if Newton wanted to create a coherent description of motion, he
had to divide the Cartesian extension again into space and matter. In this way space became a
framework on the background of which Newton could define uniform motion in a straight line
and formulate the law of inertia. Thus even though Newton’s wording of his first law resembled
the formulations of Descartes, the absolute space, against the background of which this law was
formulated, is fundamentally anti-Cartesian. Newton first planted the description of motion into
the framework of absolute space and only with its background did he formulate the principle of
inertia. In addition to an unambiguous definition of uniform rectilinear motion, Newton changed

42 Here we see the pre-eminance of Cartesian physics over the Galilean, according to which circular motion is natural.
Descartes saw circular motion against the background of the concept of uniform rectilinear motion and so, regardless of
whether he had the term ‘uniform rectilinear motion’ correctly defined or not, he clearly understood that circular motion
is the result of interaction. This example illustrates the relation between the phenomenal and the ontological level of
Cartesian physics. The role of the ontological model was to shed light on the phenomenon, to make the phenomenon
intelligible. So it was not necessary for the model to be accurate in every detail.
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the formulation of the law of inertia as well, by combining Descartes two laws into a single one.
Newton reached the understanding of velocity as a vector quantity, i.e. a quantity that is char-
acterized by magnitude and direction which had been separated in Cartesian physics. Newton’s
law of inertia is thus in many respects fundamentally anti-Cartesian.*3

One of Newton’s important discoveries was the discovery of the absolute nature of circular
motion. Descartes, in order to avoid the dangerous question of the Earth’s motion, declared
that motion is relative. The Earth is at rest with respect to the air surrounding it. According to
Descartes, it is more natural to describe the motion of a body from the perspective of the bodies
immediately contiguous with it. Therefore he declared the Earth to be motionless. Newton
realized that the rotation of the Earth can be determined in an absolute sense. In a letter to
Hook from 1679 he suggested an experiment to prove this rotation. If we let a body fall from
a high tower (Newton threw stones from the dome of St Paul’s Cathedral in London), it will
not fall down along the perpendicular to the surface. Earth’s rotation will deter its motion from
the perpendicular direction. This effect is, for a fall from the height of 50 meters (the altitude
of the dome), only 0.5 centimeters, which is smaller than the effects of draft in the cathedral.
So Newton’s experiments were, despite the fact that he had all windows closed, inconclusive.
However, regardless of the fact that Newton could not measure this effect, the effect as such
really exists, and thus Newton was on the right track.**

As a further argument in favor of the absolute nature of the Earth’s rotation, Newton invented
his experiment with the bucket. If we hang a bucket full of water onto the end of a twisted rope,
the rope will start to unroll and it will bring the bucket into rotation with respect to the water in
the bucket. At the beginning the bucket will quickly rotate, but the water will be still. Gradually
the friction of water with the sides of the rotating bucket will bring the water into motion, and
the water will rotate together with the bucket. According to the Cartesian physics, which defines
motion with respect to the immediate surroundings of the body, the water was at the beginning of
the experiment in motion, because it constantly changed its position with respect to the bucket.
At the end of the experiment, on the other hand, the water is at rest, because it is motionless with
respect to the bucket. Nevertheless, if we look at the surface of the water, we will find out that
at the beginning of the experiment the surface of the water had the form of a horizontal plane,
while at the final stages of the experiment it acquired a parabolic shape. The parabolic shape
of the surface of water reveals the presence of centrifugal forces, and thus it proves its rotation
in an absolute sense. Whether the water rotates or not we can thus determine from the shape
of its surface in an absolute sense, regardless of what is happening with the bucket. Thus this
thought-experiment is another argument against the Cartesian definition of motion.

Newton introduced his concept of absolute space and absolute time in confrontation with
Descartes’ definition of motion. Mach subjected these concepts to fundamental criticism. Al-

43 Newton’s second component of the Cartesian extended body, namely matter, is also interesting. Descartes, by
raising geometric form to physical substance, eliminated the ancient amorphous hylé, which was considered the onto-
logical substrate of the world. When Newton split the Cartesian extended body into its spatial and material components,
he did not return to the amorphous Aylé of ancient philosophy. Newton’s matter took from the Cartesian substance its
mathematical definiteness. All attributes of the Newtonian matter are clear and distinct. So, even if Newton rejected
Descartes’ identification of matter with space and returned to the separate categories of matter and space, he retained the
main achievement of Cartesian physics, namely the mathematization of the ontological substrate of the world. Newton’s
matter is a purely mathematical substance, just as Descartes’ extended body was. Thus the ancient hylé was definitively
destroyed by Descartes.

4 Later Foucault devised a better experiment for the demonstration of the motion of the Earth.
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though Mach’s criticism is justified and it can be seen as a first step towards the theory of relativ-
ity, we cannot agree with Mach’s view that: “This absolute time can be measured by comparison
with no motion; it has therefore neither a practical nor a scientific value. .. It is an idle meta-
physical conception.” (Mach 1883, p. 224). As we tried to show in (Kvasz 2011), the concepts
of absolute space and absolute time form a formal structure.*> Mach was able to criticize these
concepts because he had at his disposal a richer language through which it was possible to an-
alyze the language of Newton’s theory and discover its weaknesses. However, the language of
Mach’s theory has an analogous formal structure which Mach cannot criticize. He has to accept
it uncritically, just like Newton accepted the concepts of absolute space and absolute time.

3.1.6 Newton’s correction of the Cartesian notion of state

Despite the fact that Descartes introduced the concept of interaction into physics and for its
sake he created the concept of state, he was not able to describe the process of change of state.
According to Descartes, bodies change their state abruptly in moments of collisions. Cartesian
physics is able to describe the state before the collision and the state after the collision, but it fails
to describe what happens at the moment of collision. The changes of state are singular events that
defy physical description. As we will see below, Newton radically changed the Cartesian picture
of interaction when he turned interaction into a continuous process, during which infinitely small
impulses of forces cause infinitely small changes of states. Absolute space and absolute time are
elements of the framework in which the infinitely small impulses of forces can be tied to infinitely
small changes of states and to infinitely small changes of position. It is the framework that makes
possible the integration of the phenomenal and the ontological level of description of a physical
system into a single structure. In Cartesian physics, these two levels were separated and their
separation was probably the greatest weakness of the Cartesian system. When Newton tried to
unite the phenomenal and the ontological levels of description of a physical system, he needed
for this a stable linguistic framework within which it would be possible to represent these two
levels. Absolute space and absolute time are elements of such a unifying framework in which
the differentials of state variables are continually integrated into the process of generating the
trajectories. In order to accomplish this integration, Newton had to introduce a fundamental
change in the description of the state. Descartes described the state of a physical body by means
of its quantity of motion. Newton transformed Descartes’ quantity of motion into momentum
(which he, however, continued to call by its Cartesian name ‘quantity of motion’).

The first difference between the Cartesian description of state by means of quantity of motion
and its Newtonian description by momentum is that the Newtonian momentum is a vector quan-
tity. Newton realized that the changes of direction of motion in elastic bounces from an obstacles
or in uniform circular motion involve also changes of velocity, and hence, (despite Descartes’
denial) changes of state. This transition is of great importance for the understanding of planetary
motion. When Descartes claimed that the Earth is with respect to her surroundings at rest, it
meant that it is not exposed to any interaction, and orbits plunge into the vortex of fine matter.
It is a natural idea which everyone, who has ever swum in a river, knows well. The water of the
river carries us with a relatively high velocity, but locally we do not feel this drift, because we are
moving with the same velocity as the surrounding water. This situation is in conformity with the

45 Howard Stein called this structure in (Stein 1970) a kinematic connection.



592 Galileo, Descartes, and Newton — Founders of the language of physics

Cartesian thesis that a body (e.g. Earth) in a uniform circular motion does not change its state,
because it moves in concordance with the bodies that surround it. Newton realized that this idea
is false. In a uniform circular motion the body constantly changes the direction of its motion,
thus changes also the momentum, which means that it changes its state. For the description of
this change of direction in circular motion Newton introduced the concept of centripetal force
which is the cause of this change.

Clarification of the vector character of momentum is important not only for the understanding
of the uniform circular motion, but also for the clarification of the relation between the soul and
the body, and it led finally to the causal closure of the physical description of nature. Descartes
described the action of the soul on the body, hence of a non-physical system onto a physical
one, as changing the direction of the flow of the animal spirits. Since changes of the direction
of motion do not violate the law of conservation of the quantity of motion, such mechanism of
action of the soul on the body was in principle possible. When Newton proclaimed the changes
of direction to be changes of state, the action of the soul on the body was no longer possible.
Newton thus closed the causal description of nature. The price for this was that the interaction
between body and soul became a philosophical problem.

The second change Newton introduced into the description of state concerns the fact that the
Cartesian quantity of motion was the product of the (scalar) velocity and the size of the body. For
Descartes, that definition was natural because the geometric substance was the ontological basis
of the world; therefore its ‘quantity’ in the form of the size of the body entered the definition of
the quantity of motion. When Newton divided the Cartesian extension into matter and space, he
defined quantity of matter as the product of volume and density. The Cartesian concept of size is
thus divided into two components: one geometrical, namely volume, and one dynamical, namely
density.

The third change Newton introduced into the description of state has to do with the fact
that, in addition to momentum, state also involves the position of the body. In Descartes, there
was a lack of clarity on this issue because, as a consequence of the identification of matter
with space, bodies lost position in the ordinary sense of the word. According to Descartes, the
body’s position is determined solely by the bodies in its vicinity, and as such position is hardly
distinguishable from motion which is defined almost by the same words. More specifically, the
concept of rest and the concept of position coincide in the Cartesian system. Only when Newton
separated matter and space could these two terms be clearly distinguished. Rest is a motion with
zero velocity (it is a particular value of the vector of momentum), while position is a value of the
vector of position. The introduction of absolute space and time was an important step bringing
clarity into the description of motion. Only when Newton included position into the concept of
state, it became possible to interpreted state as a characteristic of the system allowing to predict
its complete future temporal evolution. The Cartesian concept of state was incomplete, and as
such it did not allow any such prediction.

3.1.7 Replacement of the law of conservation of the quantity of motion by the law of
action and reaction

In the previous two paragraphs we described the changes introduced by Newton into the spatio-
temporal framework on which the description of motion is based. Only after the articulation of
this framework was it possible to turn to the formulation of the laws of dynamics. We will start
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interpretation of the laws of Newtonian dynamics with the law of action and reaction because this
law has a direct predecessor in Descartes’ law of conservation of the quantity of motion. Never-
theless, just like in the case of the state, also in this case Newton introduced several changes.

The first change was that Newton did not refer by his law to the entire universe but only to a
closed physical system. For Descartes, the quantity of motion included the motions of all bodies
in the universe and therefore it was impossible to calculate its actual value. In contrast to this,
Newton’s momentum was defined for relatively small systems and so it was possible to determine
its value. It is true that Descartes used specification of the value of the quantity of motion in his
description of collision of bodies. For instance, he asserted that the quantity of motion before
and after the collision is the same. But such descriptions were counterfactual because in reality,
according to Descartes, all bodies are submerged in the vortex of fine matter which can take
away a portion of the quantity of motion. Therefore, strictly speaking, in the Cartesian system
the law of conservation of the quantity of motion holds only for the entire universe. The quantity
of motion of any restricted system of bodies cannot be constant. Only after Newton turned to
the empty space as the background of mechanics, the conservation of momentum in smaller
systems became possible. By eliminating the Cartesian vortex of fine matter, Newton opened
the possibility to describe closed mechanical systems. Galileo did not have any mechanical
systems at all; he described only isolated bodies (as his bodies did not interact). On the other
hand, Descartes included into his system the whole universe. Only Newton was able to describe
something between these two extremes.

The second change concerns the role of the law of conservation of the quantity of motion.
For Descartes, it was a fundamental principle on which the description of interactions rested.
In Newtonian physics, the fundamental level of description of interaction is that of forces. The
law of conservation of momentum in the Newtonian system is only one of the consequences
of the law of action and reaction. When every action is accompanied with a reaction of the
same magnitude and opposite direction then the momentum a body acquires during a period
of time from the acting force will be precisely equal to the momentum another body or bodies
lose as an effect of the force of reaction.*® Therefore, the total momentum of a closed system
remains constant. Thus the fundamental principle of the Cartesian physics became Corollary 3
to Newton’s third law of motion.

3.1.8 Newton’s representation of interaction as an action of forces

In the interpretation of Cartesian physics we have mentioned as its main advantage over Galilean
physics the notion of interaction that Descartes brought into physics. Descartes understood in-
teractions as collisions and described them by means of the law of conservation of the quantity
of motion. Despite its ground-breaking novelty, this way of describing interaction had a number
of conceptual limitations. In section 2.2 we described the most important of them (the inabil-
ity to incorporate friction into the description of interaction, and the inability to mathematically
describe gravity). In addition to these conceptual limitations, the Cartesian theory of collisions
has a further serious drawback: in does not work. If we translate the rules by means of which

46 In this derivation, it is essential to understand the momentum as a vector. In Cartesian physics, the quantity of motion
is a scalar, and therefore from the Cartesian point of view the force of action and the force of reaction would produce the
same positive quantity of motion. So the action of Newtonian forces violates the Cartesian law of conservation of the
quantity of motion.
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Descartes described collisions into the language of Newtonian physics, we find out that most of
them are false. By means of a formal reconstruction in section 2.1.4.a we have tried to show
that these rules have, in spite of their falsity, a correct core. Nevertheless, this does not change
the fact that they contradict experience. Newton was aware of the limitations of the Cartesian
description of interaction as well as of the falsity of the Cartesian theory of collisions. Therefore,
he abandoned the Cartesian description of interaction by means of the law of conservation of
the quantity of motion and started to describe interactions as an action of forces. Initially, he
perhaps did not want more than to increase the precision of Descartes’ theory, and so he left the
basis of the Cartesian model of interaction (i.e. collisions) unchanged. He only introduced into
it the instantaneous forces. However, in order to be able to formulate the theory of interaction
mathematically, he had to make a number of changes which we will discuss briefly.

3.1.8.a The replacement of inertial forces by forces of interaction The role of forces in the
Cartesian system was to preserve the state of a body. They did not act between the bodies, but
they bound each body to its present state of rest or uniform rectilinear motion. Therefore, we can
represent them using arrows oriented downwards. They play a role only during the moments of
collision when they decide the direction and velocity of the next interval of uniform rectilinear
motion of the body. Let us consider a moving body B colliding with a resting body C. Depending
on which force is greater—whether the force for proceeding Fp in the body B, or the force of
resisting F in the body C—the outcome of the collision will be either that B imposes its motion
on C, or that B will simply rebound, while C preserves its rest.*” Thus, according to Descartes,
the force of a body acts upon the body itself and it simply preserves its state of motion or rest.

Fep Fpc
[ ] o— 9
l my mcl
F B F C
Fig. 1 Descartes’ notion of force. Fig. 2 Newton’s notion of force.

According to Newton, a force is something by the virtue of which one body acts on another
body and causes a change of its state. The role of the preservation of the state, which Descartes
ascribed to forces, is in the Newtonian system played by masses.*® By introducing the notion
of mass, Newton liberated the forces from the role of binding bodies to their own states and
thus opened the possibility to ascribe forces a new role—the role of changing the states of other
bodies. Newtonian forces are forces of interaction; they act along the line connecting the two
bodies (see Jammer 1957)

47 The derivation of the formulas for the force of proceeding and the force of resistance is in (Gabbey 1980).

48 Newton retained the Cartesian terminology and, in the context of inertia, he spoke about the ‘inherent force of
matter’. The fact that it is a residuum of the Cartesian terminology is evident from the fact that this force is the only force
that is subject neither to the second law nor to the law of action and reaction. Newton formulated his second law only for
impressed forces, but it is still strange to introduce a force that is without any effect.
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3.1.8.b The replacement of the notion of interaction understood as a singular event by the
notion of interaction understood as a continuous process (of change of state) The Cartesian
notion of interaction is based on the idea of a contest, understood as the collision of two tenden-
cies to preserve the previous state (of rest and motion respectively). The result of the contest is
the victory of one tendency at the expense of the other. The paradigmatic model of interaction is
the collision of two bodies. According to Descartes, the greater body determines the outcome of
the collision and thus the further motion of the bodies. If the moving body is greater, then after
the collision both bodies will move together in the direction of the original motion. If, on the
contrary, the resting body is greater, then it will remain in its state of rest also after the collision
and the moving body will bounce. The description of interaction is separated from the descrip-
tion of motion. As long as a body can, it moves uniformly in a straight line. When such motion
becomes impossible, a collision occurs causing the transition into a new dynamic state. Thus
the motion of a body consists of periods of uniform rectilinear motion separated by singular
events—collisions during which the state of the body is changed.
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Fig. 3 Descartes’ notion of interaction. Fig. 4 Newton’s notion of interaction.

In contrast to Descartes, Newton understands interaction as cooperation. In the process of
interaction the faster body accelerates the slower body and at the same time the slower body
decelerates the faster one. The resulting motion is a compromise; it is the result of the action of
both bodies. Thus the result of a collision is neither a simple re-bouncing from the obstacle, nor
is it a coupling of the two bodies into one, but something in-between. A second, maybe even
more important, change is that motion and interaction happen simultaneously. They are not
separated from each other as in Descartes. According to Newton, the forces act all the time and
their action accompanies the whole motion. A third change is that interaction is not a singular
event, it happens not during isolated moments in time as in Descartes. According to Newton, a
body acts on the other body during an infinitesimal time interval dt (or 0). It is true that Newton
still speaks about impulses of forces, but in all concrete calculations he makes a limit transition.
In the limiting case the impulses are becoming infinitesimally dense, and the magnitude of each
separate impulse becomes infinitesimally small, thus at the end we are getting a continuous
picture. And it is this continuous picture, which is important, because all the relations, which
Newton uses in his calculations, hold only for this limiting case.

3.1.8.c The connection of the action of forces with the transition of momentum As we
stated in our description of the Cartesian theory of collisions, Descartes described collisions
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on two levels. On one level the forces decide the outcome of the collision—whether the moving
body will simply bounce or whether it will subdue the resting body to its motion. After the forces
decided the next course of motion, they do not enter into further description of the interaction
and the bodies exchange the particular quantity of motion independently of the forces, just on
the basis of the law of conservation of the quantity of motion.

Newton radically changed this scenario. He excluded the decision about the outcome of
the collision from the description of the collision and asserted that the moving body always
transmits some portion of its momentum to the body with which it interacts. Thus a bounce
without a change of state is not possible. The forces that he liberated from their Cartesian role
of contest he engaged in the transfer of momentum. This is the content of his second law: “A
change in motion is proportional to the motive force impressed and takes place along the straight
line in which that force is impressed.” (Newton 1687, p. 416). We see that the impressed force
has the form of an impulse and causes directly a change of (the quantity of) motion, that is, of
momentum. As a consequence of the law of action and reaction, every action causes a reaction
that changes the state of the acting body.

Newton’s Principia are built on the idea of the description of interaction by means of im-
pulses of forces. According to Howard Stein (Stein 1970), one of the central arguments of New-
ton’s book was the derivation of the law of universal gravitation. This derivation consisted of
three steps. In the first step, using a purely mathematical argument, Newton proved that Kepler’s
laws are equivalent to the statement that the planets are attracted to the Sun by a centripetal force
inversely proportional to the square of the distance. In this argument, the action of the centripetal
force is represented by a set of discrete impulses. In the second step, by comparing the accelera-
tion of the motion of the Moon with the acceleration of free fall on the Earth’s surface, Newton
shows that the gravity on the Earth’s surface obeys the same law as the centripetal forces that
control the motion of the planets. That means that all planets have around them a gravitational
force just like the Earth. On the basis of the law of action and reaction, however, we further
get that also the bodies on the surface of the Earth attract the Earth itself, from where Newton
concluded that (as the Earth is just a large piece of matter) the bodies also mutually attract each
other, even though with a force that is too small to be directly measured. The postulation of
the gravitational attraction among all bodies was a great success of Newtonian physics. Before
Newton nobody knew that the macroscopic bodies attract each other, and this prediction could
be experimentally confirmed only more than hundred years later.

In the derivation of the law of universal gravitation we can see an illustration of the prevalence
of the Newtonian description of interaction by means of forces over its Cartesian description
by means of collisions. It was the precise quantitative formulation of the gravitational force
which made it possible to discover the universal character of gravity. Newton perhaps initially
believed that the gravitational force is a result of an unknown mechanism of contact action, and he
perhaps considered the quantitative law that describes this force only as an effective mathematical
description which will be later derived mechanistically. This belief explains the fact that Newton
in his description of the gravitational force in the Principia represented this force still as a result
of a large number of discrete impulses, i.e., as if it was the result of collisions with some aether.
But despite this Cartesian representation of the gravitational force, the advantage of Newton’s
effective mathematical description of gravitational interaction in comparison with its Cartesian
description is the possibility of precise quantification of the size of impulses of the gravitational
Jorce.
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As in the case of gravity, Newton’s way of representing interaction by means of forces has
an advantage also in the description of friction. As we have mentioned, Cartesian physics was
unable to incorporate friction into the description of motion, because friction violates the law of
conservation of the quantity of motion. For Newtonian physics friction presents no problem; it
is a force like any other.

3.1.9 Newton’s analytical idealization of interaction by means of continuous forces

We are coming to one of the central moments of Newtonian physics—to the idealization of
action. We interpreted Galileo’s contribution to the development of physics as the idealization
of the phenomena of the lifeworld (i.e. as the replacement of these phenomena by physical
quantities), and Descartes’ contribution as the idealization of the ontology of the lifeworld (i.e.
as the replacement of ordinary things by extended bodies). Similarly, we propose to interpret
Newton’s contribution as the idealization of action (i.e. as the replacement of action understood
as a contact—as action is encountered in the lifeworld—by action of continuous forces).

In the description of the gravitational interaction, a force entered the Newtonian theory which
does not have the character of discrete impulses and which could not be reduced to contact
interaction. It was a force that is acting at a distance. Thus we put the Newtonian forces acting
at a distance besides the Galilean physical quantities and the Cartesian states of physical systems
as the third kind of ideal objects by means of which physics replaces aspects of the lifeworld. The
introduction of these forces is an example of idealization, since such force is a (vector) function,
i.e. a mathematical object; just as mathematical objects are the physical quantities or the states
of physical systems.

Cartesian physics describes the world on two levels: an ontological and a phenomenal. The
description of the collisions between bodies and particles of the fine matter belongs to the on-
tological level. These collisions give rise to gravity that we perceive on the phenomenal level.
Nevertheless, these two levels of description are unconnected. There is no way how to determine
from the phenomena the properties of the fine matter, or conversely how to deduce from the prop-
erties of fine matter the features of the phenomena. One of Newton’s methodological insights
was the idea that the relation between the phenomenal and ontological levels of description of
interaction among bodies was analogous to the relation between the known and the unknown
quantities in algebra or analytical geometry. In the case of forces, which belong to the ontologi-
cal level of description, and are thus inaccessible to direct measurement, this insight means that
we can mark them with letters like ' and then work with them as if they were measurable quan-
tities: with the letter F' we can perform all formal manipulations as if it denoted a measurable
quantity. We can represent it as a function of other measurable quantities, for instance, we can
represent the gravitational force as a function of distances and masses of the other bodies. This
incorporates the forces, i.e. ontological quantities, into the network of analytical relations and
thanks to Newton’s analytical notion of experiment its empirical examination can start. Due to
the fact that Newton considered forces as functions of other quantities, he was able to deduce
from Kepler’s laws his famous law of gravity
mi.mo

5 -

F=k

(3.3)
;

Here F' is the gravitational force by means of which a body with a mass ms acts on the body
with the mass m;, which is at a distance r. Neither Leibniz nor Huyghens were willing to accept
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Newton’s derivation of this law, because they were not able to imagine a mechanism that would
be so incredibly regularly structured that it could ensure that every body would be attracted by
every other body in the universe with a force precisely equal to (3.3). Leibniz and Huyghens
apparently remained in the captivity of the image of interaction by contact; that is in the captivity
of how we encounter interaction in the lifeworld. They were not willing to replace this idea by a
mathematical ideality—a functional relation.

Newton did not list the law of universal gravitation among his basic laws of nature, because
he understood the laws in the list as fundamental principles of the description of nature. The law
of gravitation, on the other hand, is an empirical law which can be derived from the astronomical
data. Nevertheless, if we abstract from the specific form of this law (the determination of which
is an empirical problem), then there still remains a principle. We suggest calling it the principle
of analytic representability of forces and adding it to the three laws of Newtonian physics. This
principle is a rather general assumption that forces are functions of measurable quantities. Thus
even if forces are not measurable directly, the quantities from which they depend are measurable.
The task of physics is then to experimentally determine the particular functions that express the
different kinds of forces. This is a further point in which Newtonian mathematization trans-
gresses the boundaries of the Galilean approach. Galileo understood mathematics as a language
suitable to express the phenomena. According to Newton, not only the phenomena but also the
forces can be expressed using mathematics.

Newton’s basic premise is that the forces (i.e. hypothetically postulated causes) can be
expressed as a function of measurable quantities, and thus incorporated into the language of
physics. McGuire notes that [Newton’s] “earliest program in dynamics was probably the hope of
extending the scope of the concept of force essential for analyzing collisions, to all forces what-
soever.”” (McGuire 1970, p. 187). Newton, however, gradually abandoned the perspective of
collisions and developed a mathematical description of forces independent of their mechanistic
explanation. This transition was gradual, but it had dramatic consequences for the entire physics.

3.1.10 Newton’s syntactic closure of the description of motion

Idealization of interaction allowed Newton to initiate perhaps the most radical transformation of
the language by means of which we describe nature. This transformation was, in our opinion,
more radical than the one introduced by the theory of relativity or by quantum mechanics. New-
ton syntactically closed the language of physics; he created a formal language of a new kind
that allows calculating the temporal evolution of the state of a physical system in an analytical
way. The temporal evolution of the state is described by Newton’s second law. If we want to
understand the meaning of this law, is not sufficient to analyze its wording, and to show that it is
based on the idea of discrete impulses of a force (i.e. to show that Newton’s second law is a trans-
lation of the Cartesian understanding of interaction into the language forces). We also have to
analyze the examples in which this law is used. These examples show that in the background of
Newton’s notion of interaction there is the continuous process of change of state under the action
of forces. By syntactically closing the language of physics, Newton created an ideal object of a
new kind, ideal object into the constitution of which time enters in a fundamental way. We get
thus to the reconstruction of the most important aspect of the birth of physics. Newton developed
an analytical representation of a dynamic process, and thus completed the mathematization of
nature. He turned motion that we encounter in the lifeworld into an ideal object. This change has
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several aspects which we will describe briefly.

3.1.10.a Unification of the phenomenal and the ontological levels of description Cartesian
physics describes motion on two levels: on the kinematic (or phenomenal) level of the descrip-
tion of changes of the measurable quantities, such as position or velocity, and on the dynamic
(or ontological) level of the description of interaction by means of forces. To create an analyti-
cal representation of a dynamic process means to create a mathematical language, that makes it
possible to merge the kinematic and the dynamic levels of description of motion into a single pro-
cess. Newton created such a linguistic framework by immersing the kinematic and the dynamic
changes into the continuous flux of absolute time. Let us see how this merging works.

x(%) x(t+o0)= x(©)+ op)/m

p(0) p(t+0) = p(t) + 0.F(x(1))

Fig. 5 Newton’s merging of the phenomenal and the ontological levels of description.

On the one hand, the actual state of the system represented by the momentum p(t) (i.e. a
dynamic quantity), gives after the division by the mass of the body its velocity, and manifests
itself in the changes of the position of the body (i.e. on the kinematic level). Thus the (phenom-
enal) changes of position are determined by the dynamic state of the body—this relation is in
Fig. 5 represented by the arrow pointing upwards. On the other hand, the actual position of the
body x(t) appears in the formula expressing the force (for instance in (3.3)), and so, thanks to
the equation (3.2) it determines the changes of state. So the changes of state are determined by
the position of the body—this relation is in Fig. 5 represented by the arrow pointing downwards.
These two relations connect the kinematic and the dynamic levels of description, and they are
indicated by bold arrows in Fig. 5.

The kinematic (or phenomenal) as well as dynamic (or ontological) levels are further embed-
ded into the flux of time. On the kinematic level, the change of the coordinate during a short
moment of time is given by a kinematic equation known already by Galileo: we obtain the posi-
tion z(t + dr) in the moment ¢ + dr, when we add to the position z(t) in the moment ¢ the distance
dt.p(t)/m that the body traversed during the infinitesimal period dr with the velocity p(t)/m that
it had in the moment ¢.*° This is indicated by the thin horizontal arrow in the first line of the
diagram. Similarly, on the dynamic (or ontological) level the temporal change of momentum is
described by Newton’s second law: we obtain the momentum p(¢ + df) in the moment ¢ + df,

49The infinitesimal time interval is here represented by the Leibnizian symbol dr. Perhaps it would be more appropriate
to use the Newtonian symbol o, but our aim is to make the text as readable as possible. Also in the formulation of
Newton’s second law we will use the symbolism of the Leibnizian calculus, because it is more convenient than the
symbolism of the theory of fluxions. In his Principia, Newton suppressed the language of his calculus and made all
derivations by means of synthetic geometry. We are thus faced with the choice to use Newton’s geometric language,
the symbolism of the theory of fluxions or the Leibnizian differentials. We have chosen the third option, but there is in
principle no problem rewriting the entire paper in any of the other two.
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when we add to the momentum p(¢) at the moment ¢ the impulse dr.F'(x(t)) of the force F that
acted at the place x(¢) where the body was at the moment ¢. This is indicated in Fig. 5 by the
thin horizontal arrow in the second row of the diagram.

The diagram in Fig. 5 represents how the infinitesimal changes on the phenomenal and
the ontological levels are interconnected to create a single dynamic system.”® The force F(x)
transfers the changes of position of the bodies onto the changes of their states. The momentum
p(t) acts in the opposite direction and transfers the actual state of the bodies into changes of their
positions.

3.1.10.b The embedding of interaction into the flux of time An important aspect of New-
ton’s new way of describing action is the continuity of the action of force. A body is exposed
to the action of forces from the other bodies during an infinitesimal time interval dt, and not
during a singular moment as was the case in the Cartesian physics. Even if Newton still speaks
about impulses of forces, in most examples he passes to the limit where these impulses are be-
coming infinitely dense and indefinitely weak, until finally he obtains the continuous image. It
is this continuous image that corresponds to physical reality, because Newton uses geometrical
relations that are valid only in the limit. Therefore, we will focus on the continuous image. When
we compare it with the Cartesian description of collisions, we will find a number of important
differences.

According to Descartes, the result of a collision depends on the question which force is
greater, whether the force for proceeding F'p in the body B, or the force of resisting F in the
body C. The collision is thus determined by a relation of the form>!

B2><VB>C><B><VB
B+C B+C

The quantity on the left-hand side is the force for proceeding in the body B, the quantity on the
right-hand side is the force of resisting in the body C. These quantities have the same denomi-
nators, and actually the only difference between them is the magnitude of the bodies. The other
quantities cancel each other. Thus we arrived at the Cartesian result that the moving body B
“wins the contest” if and only if B > C, i.e. if the magnitude of the body B is greater than the
magnitude of the body C.

Now we see why Descartes maintained (in spite of contrary evidence) that a moving body
can bring a resting body into motion only if it is greater. It is a necessary consequence of the
formula (3.4). When this happens, the moving body B must pass a portion of its quantity of
motion to the resting body C' in order to start its motion. We see that Descartes saw correctly
that interaction consists in the transference of a particular quantity of motion from one body to

(34)

50 Here it is important that the second law has the form (3.2) and not (3.1), so that the evolution of the position x(t)
and the evolution of the momentum p(t) are embedded into a common continuous flux of time.

51 In the presentation of Descartes’ theory we will use his symbolism. We will talk about size B of the body instead
of its mass m . It may seem that we contradict the spirit of the footnote 46, where we in the presentation of Newton’s
theory decided to use the Leibnizian notation. However, there is a fundamental difference here. Newton’s and Leibniz’s
versions of the infinitesimal calculus are to a large extent equivalent, so the symbolism of one theory can be used
in the interpretation of the other without distortion of its content. Newton’s and Descartes’ theory, however, are not
equivalent. Therefore, if we want to understand the differences between them, it is better to present Descartes’ system
by its own means. Similarly, we retained Descartes’ symbolism in section 2.1.4.b (unlike in section 2.1.7.a, which was a
reconstruction Descartes’ system in the framework of Newton’s theory.)
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the other. Nevertheless, in the Cartesian system, the passing of motion from one body to another
was separated from the action of forces. The forces decided the outcome of the contest, they
decided whether the result will be the re-bouncing of the moving body or a common motion of
the two bodies. The forces did not play any role in the following transference of motion from one
body to the other. This transference was governed only by the law of conservation of the quantity
of motion. Descartes thus represented interaction on two levels. The first level consisted in the
contest of the forces and it was governed by the formula (3.4). The second level consisted in the
transference of motion between the bodies, and was governed by the conservation law. But these
two levels were separated from each other.

The unfolding of the interaction from a singular moment into the time interval dr and the
new notion of forces as forces of interaction enabled Newton to join the action of forces with

the transference of momentum. Descartes defined the force for proceeding as F'g =
that is as the product of the magnitude of the moving body B and the common velocity after
the collision V' = %X!CB . The force of resisting Fo = CXBBiJrXCVB he defined as the product of
the magnitude of the resting body C' and the common velocity after the collision. Even if these
two definitions seem similar, there is a remarkable conceptual conflict hidden in them. Descartes
defines the force for proceeding equal to the residual momentum, which is left to the body B
after the collision, while he defines the force of resisting equal to the gain of momentum, which
the body C acquires in the collision. Thus it seems as if Descartes hesitated between two ways

of connecting forces with momentum.

According to Newton, force is equal neither to momentum nor to change of momentum, but
to the velocity of the change of momentum. Descartes could not understand this connection,
because he described interaction as a singular event in time. Therefore, in the Cartesian system,
there is no way how to introduce the notion of velocity of change of momentum. We see the
fundamental importance of the fact that Newton embedded the transference of momentum into
the flux of time. This made it possible to connect force with the velocity of the change of
momentum in his second law

F.dt = dp. 3.5)

Thus one of the fundamental achievements of Newton was that he connected the change of mo-
mentum with the action of a force. The importance of this fact is often misunderstood, and the
law (3.5) is considered as a mere definition of the concept of force. The fundamental conceptual
work which lies behind it is thus veiled. Newton had to make profound changes in both the con-
cept of force and the concept of momentum, and above all to embed the whole interaction into a
continuous flux of time, to be able to connect the action of a force with the change of momentum.
To describe Newton’s second law as a definition is from an epistemological point of view a deep
mistake.

3.1.10.c The closing of the description of a physical system Newton closed the description
of a physical system in many respects. First of all, he closed it causally. In section 3.1.5 we
stated that Newton replaced the Cartesian scalar quantity of motion by the vector of momentum,
and thus causally closed the physical systems to the action of non-physical causes, such as the
soul. Form Newton onwards, only physical causes can causally act on a physical system.
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The second respect in which Newton closed the description of a physical system is related to
the fact that he replaced the Cartesian vortex of fine matter by forces acting at a distance. As these
forces decrease with the square of the distance, Newton was able to close the description of a
physical system extensionally, to the action of very distant objects. The possibility of describing
a limited dynamic system, consisting of a small number of bodies, dates back to Newton.

As a consequence of Newton’s causally closing the physical description of nature, the relation
between mind and body became a philosophical problem, in the solutions of which one side
of the problem is usually deprived of significance. On the one hand, there are the proposals
that take seriously the physical description of nature and try to construe the freedom of the
will as an epiphenomenon. On the other hand, there are the approaches that try to restrict the
validity of the physical description in order to exclude from it the description of human behavior.
However, we have to realize that this problem arises only if we accept Newton’s causal closure
of the description of nature, but ignore his extensional closure thereof, i.e. if we make a strange
mixture of Newtonian deterministic causality and Cartesian all encompassing extensionality of
the physical description of nature. In Descartes’ system, there is no mind-body problem, because
its causality is not physically closed, and thus the soul can influence the body. But neither is
there any problem in Newton’s system, because its extensionality is limited and thus the human
body is not (in all its aspects) a physical system. When we are interested in the details of human
behavior (and not just for example in the velocity at which a human body hits the surface of the
Earth after a free fall from a particular altitude), we simply have no idea how to ascribe to the
human body a state that would give sufficiently detailed information about its behavior.

3.1.10.d The analyticity of the rules of dynamic The merging of the phenomenal and the
ontological levels of description creates a single process from motion so that the temporal evo-
lution of this process can be analytically calculated. This means that using fully explicit and
purely formal rules of language we can pass from one state of a physical system to its subsequent
states. This situation is the following scheme:

x(7) x(t+dft) = x(t) + dt.p(t)/m x(t+2dt) = x(t+df) + dt.p(t+dt)/m x(++3dt) =
...etc.
p(0) p(ttde) = p(0) + dt.F(x(r)) p(e+2df) = p(t+dr) + dt. F(x(t+dr))  p(r+3dr) =

Fig. 6 Newton’s merging of the infinitesimal steps into a continuous motion.

Figure 6 shows that Newton found a set of rules that fully determine the temporal evolution of
a physical system. He thus changed a system of physical objects into a dynamical system, i.e. an
ideal object that is analogous to a number or a mathematical structure. We consider the dynamic
system an ideal object, because just like in the case of numbers or mathematical structures it is
constituted by language. Dynamic systems differ from the two other kinds of ideal objects in
that time enters into the language that constitutes them. Numbers and mathematical structures
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are atemporal idealities; dynamic systems are temporal idealities.

3.1.11 Newton’s notion of motion as dynamic flow

The diagram in Fig. 7 represents the relationships between Aristotle’s, Galileo’s, Descartes’” and
Newton’s conception of motion. Aristotle and Galileo developed geometric theories of motion
(first row), while Descartes and Newton were building dynamic theories (second row). Aristotle’s
and Descartes’ theories were formulated using ordinary language (first column), while Galileo’s
and Newton’s theories were formulated using the language of mathematics (second column).

ARISTOTLE:
GEOMETRIC TRANSITION

GALILEO:

/ GEOMETRIC FLOW

DESCARTES:
DYNAMIC TRANSITION \

NEWTON:
DYNAMIC FLOW

Fig. 7 Scheme representing the basic notions of motion.

Aristotle represented motion as geometric transition, as a transition of the body from one
place to another. According to Aristotle, the universe is a geometrically ordered whole in which
each body has a natural place. When something disrupts this geometric order and a body finds
itself outside of its natural place, a motion starts, in the course of which the body reaches its
natural place and the order gets restored. The terminal place is the carrier of the identity of
motion. Aristotle’s theory represents each motion by a pair of “photographs”—a photograph of
its initial place and a photograph of its terminal place. Nevertheless, this theory does not describe
what happens between these two places.

Galileo inserted between the initial and the terminal place of an Aristotelian motion a tra-
jectory in the form of a geometric curve. Thus he converted motion into a geometric flow, a
continuous sliding of the body along a trajectory. The geometric shape of the trajectory became
the carrier of the identity of motion. For Galileo, motion is thus a series of static photographs
put on the thread of time. This understanding of motion is still a geometric and not dynamic
one, which we express by saying that Galileo’s pictures are static, i.e. they capture only the
geometric position and not dynamic state of the body. The velocity of the body is on the Galilean
photographs invisible. In order to determine the velocity, we need to take two photographs: one
at the time ¢, the other at the time ¢ + df, and find out how much the position of the body in
the second photograph has changed compared to its position in the first one. When this change
of position is divided by the time interval dr, we get the velocity of the body. The motion is
a geometric flow, because it is a set of positions that are inserted into the continuous flow of
time (the photographs are put on the thread of time), and thus time is added to the photographs,
so to say, from the outside. If we stretched the thread of time so that the distance between the
photographs would double, the Galilean formalism would not notice it. A deceleration of time is
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from the Galilean point of view unobservable. That is what we want to express by the metaphor
of photographs put on the thread of time.

Descartes has enriched the concept of motion by the description of the interaction between
bodies. He, nevertheless, interpreted this interaction as a collision, which he described as a
transition. In contrast to the Aristotelian geometric transition from the initial position to the
terminal position, Descartes described motion as a dyramic transition from the initial state (the
state before the collision) to the final state (the state after the collision). In the language of our
metaphor of photographs put on the thread of time, Descartes turned to dyramic photographs:
on each photograph is captured, together with the position of the body, also its instantaneous
Velocity.52 But Descartes, just like Aristotle, was satisfied with taking only two of them, one
photograph of the state before the collision, and one photograph of the state after the collision.
The difference is, of course, that Descartes’ photographs were not geometric, but dynamic.

Newton inserted, between the initial state and the final state of an interaction, a continuous
process of the action of forces which he described by means of a differential equation. For
Newton, motion is a series of dynamic photographs integrated by the flux of time. His notion
of motion was a dynamic one, which means that his photographs captured the dynamic state
of the body. We can see directly in the photograph what the velocity of the body is. If we
take two photographs, one at the time ¢, the other at the time ¢ + dt, and look at how much the
position of the body in the second photograph has changed in comparison to its position in the
first one, the change of position of the body read off from the two photographs must correspond
with the value that we get when we multiply by dt the velocity of the body taken from the first
photograph. Newton’s motion is a dynamic flow, it develops from itself (the photographs are
integrated by the flux of time), i.e. time is not added to the photographs from the outside, but
on the contrary, from the inside, it is present in the photographs (in the form of velocity). If we
stretched Newton’s series of dynamic photographs so that the distance between the photographs
doubled, the equation of motion would cease to function. The changes of position would not be
in accordance with the data in the photographs.>?

We call Newton’s notion of motion a dyramic flow, because his law F.dt = dp tells not only
that a certain amount of momentum dp was added to a body (as Descartes’ conservation law
would tell), but the differential of time dr indicates the time interval during which this increase
of momentum occurred. The embedding of interaction into the flux of time is one of the most

52 Instead of a dynamic photograph, it would be perhaps more appropriate to speak about an infinitely short video.
An infinitely short video contains in addition to information about the positions also information about the instantaneous
velocity of all bodies. But not quite, because the real video is a sequence of static images and the illusion of motion arises
only in our head. In contrast, a dynamic photograph (i.e. the state of a dynamic system) contains only a single image,
but that image itself is dynamic.

33 In the language of infinitely short videos Newton’s contribution can be expressed as follows: If we take two infinitely
close videos, we let the first video run for the infinitely short period of time that separates these videos; it will end with
a picture that is identical to the first picture of the second video. Time is thus integrated into the syntax of the language.
The transition from one video to another through the period of time that separates the infinitely close videos is equivalent
to an infinitely short run of the video. This is something that Galileo’s pictures lacked. When we stretch the thread of
time on which the pictures are hanging, Galileo cannot notice it. When we do the same thing with Newton’s videos,
he will notice it, because if we take two videos separated by an infinitely short period of time dr, the first frame of the
second video will not be identical with the picture that we obtain by running the first video for the infinitely short time
dt (because the video was removed from its appropriate place). Here we see that in Galileo, time is only an external
parameter on which static pictures are hung, while Newton’s time is a parameter entering into the syntax of the language
(i.e. the equation of motion).
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important contributions of Newton. The notion of a dynamic flow is fundamental for the en-
tire physics. Whether we take hydrodynamics, thermodynamics, electrodynamics, and quantum
mechanics, everywhere we find the change of state of the physical system described as a dy-
namic flow. The motion of fluids, heat, charge, or quanta is represented as a continuous process
described by a differential equation.

It is interesting to compare Newton’s notion of motion also with that of Galileo. Galileo
understood motion as a continuous process. Nevertheless, he introduced regularity into this
process using geometry. According to Galileo, a specific kind of trajectory corresponds to each
kind of motion and the regularity of a motion is given as the regular sliding of the body along this
trajectory. Unfortunately, such a notion of motion is not able to represent interactions. This is so
because an interaction disturbs the regular sliding of the body along the trajectory, and often it
even deters the body from the trajectory itself. Newton replaced the geometric curve as the basis
of the regularity of motion by the regularity of the flux of time. The flux of time became a form,
common to all motions. Thus, whereas in Galileo each body followed its own trajectory and
ignored the motion of the other bodies, Newton integrated the motions of all bodies in a common
flux of time. In this flux, the trajectories of all bodies are generated simultaneously under the
influence of mutual interactions. Newton called this regular flux of time, which is the common
form unifying the motions of all interacting bodies into a dynamic system, absolute time.

Diagram in Fig. 7 shows that Descartes moved in many respects against Galileo and New-
ton. First of all, he went against Galileo’s and Newton’s use of mathematics back to ordinary
language. At this point, Descartes seemingly returned to Aristotle. But we must not let us be
deceived, as it happened to many historians of science. Newton’s physics is a continuation of
Descartes’, and not of Galileo’s project. Only positivist historiography, which excluded Aristotle
and Descartes from the history of physics, had no other choice than to connect Newton’s project
directly with that of Galileo.

The four conceptions of motion differ in how time enters into the description of motion.
In the Aristotelian theory of geometric transition, time is not present; the theory says nothing
about when the motion started, how long it took and when it ended. It conceptualizes motion in
terms of position rather than time. In the Galilean theory of geometric flow, time is present as a
parameter t that parameterizes the trajectory of a given motion, and for each particular moment
of time it indicates the point of the curve where the moving body is situated (in case of the free
fall x = % g.t?). In the Cartesian theory of dynamical transition, we are comparing states at two
consecutive moments, but the distance between them is not yet part of the description. Finally,
in the Newtonian theory of dynamic flow, time is present in the equation of motion as variable
according to which we differentiate.

3.2 Accomplishment of the mathematization of nature:
Mathematics as a form of representation

HusserI’s notion of idealization can be characterized as a substitutive idealization; as a replace-
ment of an aspect (a phenomenon or an object) of the lifeworld by an ideal object, i.e. the
intentional object, constituted by means of a formal language. In this context, we propose to dis-
tinguish between a substitutive idealization and a constitutive idealization. In the case of Galileo
and Descartes, the ideal objects that they needed for their substitutive idealizations were already
present—they were supplied by mathematics. Nevertheless, in the case of Newtonian idealiza-
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tion the ideal objects of mathematics were not sufficient and thus Newton had to create a new
kind of formal languages (the language of physics), the intentional objects of which he then used
in the process of idealization. We suggest calling constitutive idealization the process of creating
a new kind of formal language, the intentional objects of which can be used later in the process
of substitutive idealization.

In the history of civilization, we can identify three constitutive idealizations. The first of them
was the constitutive idealization of number, which consisted in the creation of the formal lan-
guage of arithmetic. In the ordinary understanding, the number sequence ends at a more or less
fixed horizon where all counting stops. In ancient agricultural civilizations, symbolic number
systems were created which simply prolonged the number sequence beyond any given horizon.
By means of these number systems, i.e. formal linguistic systems, these civilizations constituted
numbers as ideal objects, i.e. as intentional objects that exist independently of whether in reality
there is something we can count by means of them. The language of arithmetic led to the re-
placement of the phenomenon of number that we use in the lifeworld by numbers constituted in
the formal language of arithmetic.

The second constitutive idealization was the constitutive idealization of shape consisting in
the creation of the language of classical geometry, by means of which the natural phenomenon of
shape, i.e. the shape nestled within the natural horizon of similarities was replaced by geometric
form. In the natural understanding, shape is an individual form, something like the face of the
object. According to this understanding, each shape is unique, different from all others. In the
ordinary understanding of shape, there is no perfect geometric cube but only individual cubes,
each of which is slightly different from the others. The constitutive idealization of shape took
place in ancient Greece between Thales and Euclid. It consisted in the creation of a language by
means of which all imperfections, typical for shapes of the bodies of the lifeworld, were deleted.
Geometric idealities, i.e. intentional objects constituted by the language of geometry, were born.
The introduction of these ideal forms led to the replacement of the ordinary phenomenon of
shape as an aspect of our experience, by geometric forms. This replacement was so successful
that natural shapes with all their irregularities and imperfections started to be seen as imitations
of these ideal geometric forms.

We propose to include, into this sequence, as the third constitutive idealizations the consti-
tutive idealization of motion, i.c. the process that took place in the period between Galileo and
Newton. As in the previous two cases, also here the constitutive idealization consisted in the
creation of a new language, the language of physics. We have seen that the process of consti-
tutive idealization of motion consisted of three consecutive steps of substitutive idealizations.
The first of these was the substitutive idealization of phenomena, i.e. the Galilean replacement
of the phenomena of the lifeworld by mathematical quantities obtained in measurement. This
step consisted in the introduction of the notion of motion conceived as a geometric flow and was
accomplished by means of the language of classical mathematics: the curves, by means of which
Galileo described motion, were the curves of ancient geometry—the circle and the parabola. The
second step was the substitutive idealization of state, the Cartesian replacement of the objects of
the lifeworld by extended bodies in motion. Descartes’ extended bodies are objects of classical
geometry elevated onto the ontological level of real entities and endowed with motion. The third
step was the substitutive idealization of action, Newton’s replacement of action, understood as
pushing or pulling, by the mathematical description of action using forces. During this third step,
however, Newton had to turn from substitutive idealization of action to a more radical change,
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to the constitutive idealization. He had to create a new formal language—the language of dy-
namical systems—in order to mathematize interaction, and so to finish the process of idealization
started by Galileo. By means of this new language we are able to calculate the temporal evolution
of a dynamic system analytically, i.e. by formal manipulations with symbols.

The objects of physics are thus ideal objects; they are intentional objects constituted by the
language of physics. Probably the strangest among them are forces acting at a distance. In
this case, the replacement of the natural phenomenon by an ideal object is perhaps most visible.
Newtonian forces act at a distance—a body does not need to touch another body in order to
act on it. Nevertheless, there exists no explanatory model of this strange action. Instead of
an explanatory model, Newton offers a mathematical description. Our suggestion is to put the
Newtonian forces acting at a distance alongside Galilean quantities and Cartesian states simply as
a further sort of mathematical objects by which science replaces different aspects of the lifeworld.
Thus we maintain that in this case, just like in the other two, there is nothing to be explained or
justified.

Galileo understood mathematics as a language that enables us to describe nature. According
to Descartes, mathematics does not describe nature; nature itself is mathematical. Newton in-
troduced an even more radical conception of the relationship between mathematics and nature.
Mathematics is a form of representation of nature, a form of representation of time, space, and
action. This form is something more than just a language to describe phenomena. It captures
not only the phenomenal side of reality, it describes not only what appears—it captures also the
ontological basis that causes the phenomena, thus it describes what there really is. Mathemati-
cal description is not limited to what is apparent or measurable, but passes beyond the apparent
towards the ontologically real, as Descartes wanted. But Newton did not stop even at ontology.
Mathematics describes, according to Newton, not only the ontological basis of the world, it says
not only what is real. Mathematics describes also how this ontological basis changes with time,
it describes the process of the temporal development of state, and so it says also what is possible
and what, from that which is possible, becomes real.

Since antiquity, there has been a tradition that connects mathematics with the eternal. This
was the core of Aristotle’s arguments against the applicability of mathematics to describe na-
ture. Mathematics embodies the eternal, while nature is the realm of the variable. Descartes
refuted Aristotle’s argument when he declared mathematics the ontological basis of reality, but
in the description of nature even he could not overcome the connection of mathematics with the
eternal. When Descartes formulated his three laws, he expressed by these laws only what is not
changing—the principle of inertia expresses the constancy of the dynamic state, while the law of
conservation of the quantity of motion expresses the immutability of the quantity of motion in
the universe. Only now are we ready to appreciate Newton’s radicalism. His laws are not laws
of conservation (of the velocity, the direction, or the quantity) of motion, but they are laws of
generation of motion. Nature is lawful not in its being, but in its becoming. Mathematics, ac-
cording to Newton, is the form allowing description of these changes. Mathematics is the form
of description of the change of state.

The three layers of mathematization of nature—the Galilean, the Cartesian and the Newton-
ian—can be nicely illustrated by the Newtonian equations of motion

Fdt = dp. (3.5)

Here dt is an element of the Galilean layer of mathematization, grasping time as a physical
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quantity. Galilean time is read off from a watch, i.e. from an instrument which allows us to
grasp its passing in a reproducible way. When we measure time, we have it in front of us;
we hold it away from our body. Galilean time is “external” with respect to us; it is a regular
repetition of a periodic process that “does not concern us”. F' and dp are elements of the Cartesian
layer of mathematization. They represent the fundamental idea of Descartes that we must move
from the description of phenomena to the description of the changes of state. Descartes also
understood that a change of state can be described as a transfer of a quantity of motion p, and
that the direction, in which this transfer takes place, is decided by forces F'. Thus we see that
all the ingredients that occur in Newton’s equation were known already before him.>* However,
these ingredients were isolated. In Descartes the forces were separated from the exchange of
momentum. The inertial forces decided the outcome of the collision, i.e. the direction in which
the momentum was transferred, but they did not enter into the transfer as such. In Descartes,
forces were separated also from the flux of time. He described interaction as a singular event
comparing states in two isolated moments. The time that elapsed between these moments was
from the Cartesian viewpoint irrelevant.

The equation (3.5) can be seen as Newton’s contribution to the mathematization of nature. It
is a differential equation representing a form that integrates the Galilean flow with the Cartesian
change of state. The change of state is not a singular event as in Descartes, but it takes place in
an interval of time. The time in which this change occurs, however, cannot be kept away from
the body by means of an instrument. The time in the equation of motion is not the Galilean time
measured on a watch. It is the mathematical (absolute) time in which the new state of the system
is born as a result of the action of forces. Newton’s time is a form that integrates all systems and
all phenomena.
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