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Abstract

This paper builds upon the results in the article “G-matrices,J-orthogonal matrices, and their sign
patterns”, Czechoslovak Math. J. 66 (2016), 653–670, by Hall and Rozloznik. A number of further
general results on the sign patterns of theJ-orthogonal matrices are proved. Properties of block diagonal
matrices and their sign patterns are examined. It is shown that all4 × 4 full sign patterns allowJ-
orthogonality. Important tools in this analysis are Theorem 2.2 on the exchange operator and Theorem
3.2 on the characterization ofJ-orthogonal matrices in the paper “J-orthogonal matrices: properties and
generation”, SIAM Review 45 (3) (2003), 504–519, by Higham. As a result, it follows that forn ≤ 4 all
n × n full sign patterns allow aJ-orthogonal matrix as well as a G-matrix. In addition, the3 × 3 sign
patterns of theJ-orthogonal matrices which have zero entries are characterized.

AMS Subj. Class.:15A80; 15A15; 15A23
Keywords:G-matrix;J-orthogonal matrix; Sign pattern matrix; Sign patterns that allowJ-orthogonality.

1 Introduction

Following [6], we say that a real matrixA is a G-matrix if A is nonsingular and there exist nonsingular
diagonal matricesD1 andD2 such that

A−T = D1AD2, (1)

whereA−T denotes the transpose of the inverse ofA. Denote byJ a diagonal (signature) matrix, each of
whose diagonal entries is+1 or−1. As in [10], a nonsingular real matrixQ is calledJ-orthogonalif

QT JQ = J, (2)

or equivalently, if
Q−T = JQJ. (3)

∗This research is supported by the Czech Science Foundation under the project GA17-12925S.
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Of course, every orthogonal matrixQ is a J-orthogonal matrix, whereJ is the identity matrix. And
clearly, from (3), everyJ-orthogonal matrix is a G-matrix. On the other hand, as shown in [9], a G-matrix
can always be transformed to aJ-orthogonal matrix.

Definition 1.1. We say that two real matricesA andB arepositive-diagonally equivalentif there are diag-
onal matricesD1 andD2 with all diagonal entries positive such thatB = D1AD2.

Theorem 1.2. [9, Theorem 2.6] A matrixA is a G-matrix if and only ifA is positive-diagonally equivalent
to a column permutation of aJ-orthogonal matrix.

Some easily proved properties ofJ-orthogonal matrices are as follows.

Theorem 1.3. (i) For a fixed signature matrixJ , the set of allJ-orthogonal matrices is a multiplicative
group, which is also closed under the operations of transposition, negation, and multiplication on either
side by any signature matrix of the same order.
(ii) The direct sum of square diagonal blocksA11, . . . , Akk is a J-orthogonal matrix if and only if each
diagonal blockAii is aJi-orthogonal matrix, whereJi is the corresponding diagonal block ofJ .
(iii) The Kronecker product ofJi-orthogonal matrices is aJ-orthogonal matrix withJ equal to the Kro-
necker product of theJi’s.
(iv) If Q is J-orthogonal andP is a permutation of the same order, thenP T QP is J1-orthogonal with
J1 = P T JP .

In qualitative and combinatorial matrix theory, we study properties of a matrix based on combinatorial
information, such as the sign of entries in the matrix. Anm × n matrix whose entries are from the set
{+,−, 0} is called asign pattern matrix(or asign pattern, or apattern). A sign pattern is said to befull if it
does not have any 0 entry. For a real matrixB, sgn(B) is the sign pattern matrix obtained by replacing each
positive (respectively, negative, zero) entry ofB by + (respectively,−, 0). For a sign pattern matrixA, the
sign pattern class ofA is defined by

Q(A) = {B : sgn(B) = A}.

A sign pattern matrixP is called apermutation sign pattern(generalized permutation sign pattern)
if exactly one entry in each row and column is equal to+ (+ or −) and all the other entries are 0. A
permutation similarityof then × n sign patternA has the formP T AP , whereP is ann × n permutation
matrix. A signature patternis a diagonal sign pattern matrix each of whose diagonal entries is+ or−. A
sign patternB is signature equivalentto the sign patternA providedB = S1AS2, whereS1 andS2 are
signature patterns. Asignature similarityof then×n sign patternA has the formSAS, whereS is ann×n
signature pattern.

SupposeP is a property referring to a real matrix. A sign patternA is said torequireP if every matrix
in Q(A) has propertyP ; A is said toallow P if some real matrix inQ(A) has propertyP .

A square sign patternA is sign singularif every matrixB ∈ Q(A) is singular. It is well-known that
ann × n sign pattern matrixA is sign singular if and only ifA has no “composite cycle” of lengthn. The
reader is referred to [3] or [8] for more information on sign pattern matrices.

Of course, whenJ = In, a J-orthogonal matrix is an orthogonal matrix. LetPOn denote the set of
n × n sign patterns that allow an orthogonal matrix. A more general question than characterizingPOn is
the following: what are the sign patterns which allow aJ-orthogonal matrix? Specifically, it is of interest
to find sign patterns which allow aJ-orthogonal matrix, but do not allow an orthogonal matrix. We shall let
Jn denote the set of all sign patterns of then × n J-orthogonal matrices (for various possibleJ), that is,
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the class ofn× n sign patterns that allow aJ-orthogonal matrix. Clearly, ifA ∈ Jn, thenA cannot be sign
singular. As in [6], we letGn denote the class of alln× n sign pattern matricesA that allow a G-matrix.

As already mentioned in [9], from Theorem 1.2 we immediately have the following connection with
G-matrices.

Theorem 1.4. [9, Theorem 4.3] The sign patterns inGn are exactly the column permutations of the sign
patterns inJn.

In particular, if the sign patternA allows aJ-orthogonal matrix, thenA allows a G-matrix.
Now, the all+ (also, all−) n×n sign pattern is the sign pattern of a nonsingular Cauchy matrix, which

is a G-matrix, see [5]. Thus:

Theorem 1.5. [9, Theorem 4.4] The all+ (also, all−) n × n sign pattern allows aJ-orthogonal matrix
(but of course not an orthogonal matrix, unlessn = 1).

The following straightforward result was also mentioned in [9].

Lemma 1.6. [9, Lemma 6.3] The setJn is closed under the following operations:
i) negation;
ii) transposition;
iii) permutation similarity;
iv) signature equivalence.

The use of these operations yields “equivalent” sign patterns, and this will be used subsequently.
Theorem 1.4 may be paraphrased as follows:Gn = JnPn, wherePn is the set of alln× n permutation

sign patterns. Observe thatGT
n = Gn,J T

n = Jn, andPT
n = Pn. By taking the transpose of each element in

the sets in the equationGn = JnPn, we getGn = PnJn, which is the content of the next theorem.

Theorem 1.7. The set of alln × n sign patterns that allow a G-matrix is the same as the set of all row
permutations of then× n sign patterns allowing J-orthogonality.

In fact, we can generalize this result as follows:

Theorem 1.8.The set of alln×n sign patterns that allow a G-matrix is the same as the set of all permutation
equivalences of then× n sign patterns allowing J-orthogonality.

Proof. From Theorem 1.4, we haveGn = JnPn. Thus to complete the proof, it suffices to show that
JnPn = PnJnPn. Since the identity permutation sign pattern is inPn, obviouslyJnPn ⊆ PnJnPn. To
show the reverse inclusion, letP1Q1P2 ∈ PnJnPn, whereP1, P2 are permutation sign patterns andQ1

allowsJ-orthogonality. ThenP1Q1P
T
1 allowsJ-orthogonality and henceP1Q1P2 = (P1Q1P

T
1 )(P1P2) ∈

JnPn.

Let A be ann × n sign pattern matrix. From [9], the very important fundamentalsign potentially
J-orthogonal(SPJO) conditions are that there exists a(+,−) signature patternJ such that

AT JA
c←→ J (4)

and
AJAT c←→ J, (5)
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where
c←→ denotes (generalized) sign pattern compatibility.

These are necessary conditions forA ∈ Jn. If these conditions do not hold, thenA 6∈ Jn. WhenJ = I,
we get the normal SPO conditions for orthogonal matrices, see for example [4]. The SPJO conditions are
not sufficient for ann× n sign pattern matrix to allowJ-orthogonality, as illustrated in [9].

Observe thatAT JA andAJAT are symmetric generalized sign pattern matrices. So, to verify the SPJO
conditions we need only to find aJ which fulfills the upper-triangular part of the compatible conditions. Let
J = diag(ω1, . . . , ωn). Note that (4) and (5) may be restated as

n∑
k=1

ωkakiakj
c←→ δijωj for all i, j (6)

and
n∑

k=1

ωkaikajk
c←→ δijωj for all i, j. (7)

(With ann× n (+,−) sign patternA, for i = j, (6) and (7) automatically hold for anyJ .)
In [9], the following important result was proved.

Theorem 1.9. [9, Theorem 6.11] For alln ≥ 1, eachn×n full sign patternA satisfies the SPJO conditions.

If we allow zero entries, then Theorem 1.9 may fail. For example, ann × n sign patternA with a
zero column does not satisfyAT JA

c←→ J and ann × n sign patternA with a zero row does not satisfy
AJAT c←→ J , for any signature patternJ .

A number of other general results on the sign patterns are also proved in Section 2 and used in subsequent
sections. The3 × 3 sign patterns of theJ-orthogonal matrices which have zero entries are characterized
in Section 3. In Section 4 it is shown that all4 × 4 full sign patterns allowJ-orthogonality; important
tools in this analysis are Theorem 2.2 on the exchange operator and Theorem 3.2 on the characterization of
J-orthogonal matrices in the paper [10] by Nick Higham. As a result, it then follows that forn ≤ 4 all n×n
full sign patterns allow aJ-orthogonal matrix as well as a G-matrix. It is also shown that if ann × n full
sign patternA allows aJ-orthogonal matrix, thenA allows a rationalJ-orthogonal matrix with the same
signature matrix.

2 Block diagonal matrices and their sign patterns

The following structural result of G-matrices was established in [9]. For the notion of fully indecomposable
matrices, we refer the reader to [2].

Theorem 2.1. [9, Theorem 2.1] LetA be a nonsingular real matrix in block upper triangular form

A =

 A11 . . . A1m

...
...

0 Amm

 ,

where all the diagonal blocks are square. ThenA is a G-matrix if and only if eachAii (i = 1, . . . ,m) is
a G-matrix and all the strictly upper triangular blocksAij are equal to 0. Furthermore, ifA is a G-matrix
that has a row (or a column) with no 0 entry, thenA is fully indecomposable.
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Example 2.2. Let

A =


0 + + 0
+ + + +
+ + + +
0 + + 0

 .

Notice thatA is permutationally equivalent to the sign pattern
+ + + +
+ + + +
0 0 + +
0 0 + +

 ,

which by Theorem 2.1 does not allow a G-matrix. Hence,A does not allow aJ-orthogonal matrix. The
same holds for the similarn× n sign pattern.

More generally, by Theorem 2.1 and Theorem 1.8, we have the following.

Theorem 2.3. LetA be ann×n sign pattern matrix, andP andQ be permutation patterns such thatPAQ
has the block upper triangular form

PAQ =

 A11 . . . A1m

...
...

0 Amm

 ,

where all the diagonal blocks are square. IfA ∈ Jn, thenPAQ ∈ Gn, eachAii (i = 1, . . . ,m) allows a
G-matrix, and all the strictly upper triangular blocksAij are equal to 0. IfPAQ /∈ Gn, thenA /∈ Jn.

We note that when the sign patternA in Theorem 2.3 is not sign singular, such aPAQ block upper
triangular form where specifically the square diagonal blocks are fully indecomposable, is always possible
[2, Theorem 4.2.6].

Of specific interest is the following.

Theorem 2.4. If A is ann× n sign pattern matrix with exactlyn + 1 nonzero entries, thenA /∈ Jn.

Proof. If A has no composite cycle of lengthn, then of course,A /∈ Jn. If A has a composite cycle
of lengthn, then for some permutation sign patternP , AP has no zero diagonal entries and exactly one
nonzero off-diagonal entry. By Theorem 2.1,AP /∈ Gn. Hence, by Theorem 2.3,A /∈ Jn.

We can also apply Theorem 1.3 to sign patterns.

Theorem 2.5. Let then× n sign pattern matrixA be the direct sum

A =

 A11 0
...

0 Amm

 ,

where all the diagonal blocks are square. ThenA allows aJ-orthogonal matrix if and only if eachAii

(i = 1, . . . ,m) allows aJ-orthogonal matrix.
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Remark 2.6. The Kronecker product of sign patterns which allow aJ-orthogonal matrix also allows a
J-orthogonal matrix. For a fixed signature matrixJ , a product ofJ-orthogonal matrices can produce a
different sign pattern allowing aJ-orthogonal matrix for the sameJ .

Observe that any generalized permutation pattern allowsJ-orthogonality withJ = I, since ifB is a
generalized permutation matrix, thenBT IB = BT B = I. Hence, we have another result to be subsequently
used in this paper.

Theorem 2.7. If A is ann× n generalized permutation sign pattern, thenA ∈ Jn.

The following can be of general use.

Theorem 2.8. Suppose thatB is ann × n real nonsingular matrix andB is bothJ1-orthogonal andJ2-
orthogonal, whereJ1 = diag(Ip1 ,−Iq1), J2 = diag(Ip2 ,−Iq2), andJ1 6= J2. Then we have that

B =

 B11 0 B13

0 B22 0
B31 0 B33

 ,

where the partitioning ofB results from the partitioning of the matrixJ2J1.

Proof. Since the matrixB is J1-orthogonal, fromBT J1B = J1 we have thatJ1B = B−T J1. Similarly,
from BT J2B = J2 we haveB−T J2 = J2B. The previous two identities give(J2J1)B = B(J2J1), where
J2J1 = diag(Imin(p1,p2),−Imax(p1,p2)−min(p1,p2), Imin(q1,q2)). By partitioningB in the same way asJ2J1,
we have

B =

 B11 B12 B13

B21 B22 B23

B31 B32 B33

 .

Thus, it follows from(J2J1)B = B(J2J1) thatB12 = B21 = B23 = B32 = 0.

Remark 2.9. It is clear that there exists a permutation matrixP such thatJ̃ = P (J2J1)P T = diag(Ip,−Iq),
wherep = min(p1, p2) + min(q1, q2) andq = max(p1, p2) −min(p1, p2). Using this permutation matrix
P the matrixB can be transformed by permutation similarity into the block diagonal matrix

B̃ =

 B11 B13 0
B31 B33 0
0 0 B22


that isJ̃-orthogonal satisfying̃BT J̃B̃ = J̃ .

Corollary 2.10. If A is ann × n full sign pattern matrix, then there does not existB ∈ Q(A) such that is
bothJ1-orthogonal andJ2-orthogonal, whereJ1 6= ±J2.

If A is say ann× n signature pattern, then clearlyA is a sign pattern inJn which allows all the2n sig-
nature matricesJ . A given full sign pattern matrixA also may allowJ-orthogonal matrices corresponding
to more than one distinct (none are negatives of another) signature matricesJ .

6



Example 2.11.Given the sign pattern

A =

 + − −
+ + −
+ − −

 ,

there are two possible choices forJ that satisfy the SPJO conditions, namelyJ1 = diag(1, 1,−1) and
J2 = diag(1,−1,−1).

Ford > 1√
2
, the real matrix  1 −1 −1

d 1
2d −2d2−1

2d

d − 1
2d −2d2+1

2d

 ∈ Q(A)

is J1-orthogonal. For example, ifd = 1, then

B =

 1 −1 −1
1 1/2 −1/2
1 −1/2 −3/2

 ∈ Q(A)

satisfiesBT J1B = J1.
On the other hand, forj > 1√

2
, the real matrix 2j2+1

2j −2j2−1
2j −1

1
2j

1
2j −1

j −j −1

 ∈ Q(A)

is J2-orthogonal. For example, ifj = 1, then

B =

 3/2 −1/2 −1
1/2 1/2 −1
1 −1 −1

 ∈ Q(A)

satisfiesBT J2B = J2.

Notice that in the above example the signature matrices are equivalent (although not all the resulting
J-orthogonal matrices are equivalent). In the following we exhibit non-equivalent signature matrices.

Example 2.12. Consider the4 × 4 all + sign pattern. This pattern isJ-orthogonal with the two non-
equivalentJ matricesJ1 = diag(1, 1, 1,−1) andJ2 = diag(1, 1− 1,−1).

A1 =
1
3


4 1 1 3
1 4 1 3
1 1 4 3
3 3 3 6

 is J1-orthogonal,

A2 =
1
3


4 1 2 2
1 4 2 2
2 2 4 1
2 2 1 4

 is J2-orthogonal.
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An interesting question is the following: Is it true that whenever a square full sign patternA and a
signature patternJ satisfy the SPJO conditions, thenA allowsJ-orthogonality (for this particularJ)? That
the answer is no is seen in [4, Example 3.8] where the6 × 6 pattern is SPO but is not inPO6. However,
specifying the∗ entries as+, this pattern is inJ6, as shown as follows.

Example 2.13.Let

A =



+ + + + + +
+ + + + + −
+ + + + − +
+ + + + − −
+ + − − + +
+ − + − + +


and letJ = diag(1,−1,−1,−1,−1,−1). Then we produced the following decimal approximation of a
matrixB ∈ Q(A) such thatBT JB = J to within four decimal places:

B =



1.8457 0.1748 1.2301 0.5382 0.0023 0.7572
0.4467 0.4877 0.5807 0.5934 0.3467 −0.3900
1.2188 0.1332 0.7813 0.7961 −0.0450 1.1053
0.1207 0.4068 0.1700 0.0456 −0.8983 −0.1055
0.0121 0.7684 −0.0923 −0.4680 0.2659 0.3339
0.8408 −0.1379 1.2361 −0.2876 0.0113 0.2776


3 Characterization of sign patterns inJ3 with 0 entries

We want to identify all those3×3 sign patterns with 0 entries which allowJ-orthogonality. (The2×2 case
should be clear.) To organize our argument, we consider sign patterns with varying numbers of zero entries.

Note that all3× 3 full sign patterns allowJ-orthogonality [9].

Sign patterns with 9, 8, or 7 zero entries.Any 3 × 3 sign pattern with only 2, 1 or 0 nonzero entries
cannot contain a composite cycle of length 3; thus any such pattern is sign singular and hence cannot allow
J-orthogonality, since ifB is J-orthogonal, thenB is nonsingular.

Sign patterns with 6 zero entries.Note that a3 × 3 sign pattern with exactly 3 nonzero entries must
not be sign singular in order to allowJ-orthogonality, so we only consider such sign patterns which have
a composite cycle of length 3, namely, the3 × 3 generalized permutation patterns. By Theorem 2.7, these
patterns allowJ-orthogonality. Thus, the sign patterns inJ3 with exactly 6 zero entries are precisely the
3× 3 generalized permutation patterns.

Sign patterns with 5 zero entries.That no3 × 3 sign pattern with exactly five zero entries allows a
J-orthogonal matrix simply follows from Theorem 2.4.

Sign patterns with four zero entries. In order to determine the sign patterns with four zero entries
that allowJ-orthogonality, we can systematically consider the number of zero entries on the main diagonal.
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Let ? denote a+ or − entry. Note that if we require all nonzero entries on the main diagonal, then up to
equivalence, there are three patterns to consider. Two of these patterns ? ? ?

0 ? 0
0 0 ?

 ,

 ? ? 0
0 ? ?
0 0 ?


do not satisfy the SPJO conditions for anyJ , while it can be seen that ? ? 0

? ? 0
0 0 ?


does allowJ-orthogonality.

Now suppose there is one zero entry on the main diagonal. Then we may permute it to the(1, 1) position.
By systematic inspection it can be seen that no pattern of this form allowsJ-orthogonality.

Now if there are two zero entries on the main diagonal, then up to equivalence, there is one pattern of
this form that allowsJ-orthogonality:  ? 0 ?

? 0 ?
0 ? 0

 .

Finally, with three zero entries on the main diagonal, there is no pattern that allowsJ-orthogonality.

Sign patterns with three or two zero entries. We can conduct a similar investigation of the sign
patterns by systematically inspecting the possibilities. Once again the SPJO conditions come into play.
In this way, we find that there is no3 × 3 sign pattern with exactly three or two zero entries that allows
J-orthogonality.

Sign patterns with one zero entry. In this case, we first eliminate from consideration all those sign
patterns which are sign potentially orthogonal, since forn = 3, every SPO pattern allows orthogonality [1].

So supposeA is a3×3 non-SPO pattern with exactly one zero entry. If the zero is on the main diagonal,
we permute it to the(3, 3) position. Suppose first that the inner product of the first two columns is not0 or
#. Since they are nonzero, these columns are either the same or negative of each other. So we can multiply
on the left and right by suitable signature patterns so that all the entries in the first two columns are+. We
can also multiply the third column by− if necessary to obtain the form

A =

 + + +
+ + ?
+ + 0

 ,

leaving two possible patterns up to equivalence. Note that if? = −, thenA does not satisfy the SPJO
conditions for anyJ . On the other hand, if? = +, then we can obtain aJ-orthogonal matrix of this form;
for example  2 1

√
2

2√
6

2√
6

√
3

1√
3

2√
3

0


9



allowsJ-orthogonality withJ = diag(1,−1,−1).
Similarly, if the first and third columns are not SPO, then by signature equivalence we can obtain the

form  + + +
+ ? +
+ ? 0

 ,

while if the second and third columns are not SPO, we obtain + + +
? + +
? + 0

 .

Upon inspection we find that no matrix of the above forms (except for all the? equal to+, as described
above) allowsJ-orthogonality.

Now suppose that the zero entry is off the main diagonal, and without loss of generality, permute the
zero to the(2, 3) position. Then similar to the above discussion, we obtain three possible forms: + + +

+ + 0
+ + ?

 ,

 + + +
+ ? 0
+ ? +

 ,

 + + +
? + 0
? + +

 .

Of these possible patterns, four allowJ-orthogonality. They are listed below along with examples of
J-orthogonal matrices with those sign patterns:

A =

 + + +
+ + 0
+ + +

 ;

B =


4√
3

2√
3

√
3

1√
3

2√
3

0
2 1 2

 ∈ Q(A) is J-orthogonal withJ =

 1 0 0
0 −1 0
0 0 −1



A =

 + + +
+ + 0
+ + −

 ;

B =

 1 1
2

1
2

1√
3

2√
3

0
1√
3

1
2
√

3
−
√

3
2

 ∈ Q(A) is J-orthogonal withJ =

 1 0 0
0 −1 0
0 0 1



A =

 + + +
+ − 0
+ + +

 ;
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B =

 1 2 2
2√
5
− 1√

5
0

2√
5

4√
5

√
5

 ∈ Q(A) is J-orthogonal withJ =

 1 0 0
0 1 0
0 0 −1



A =

 + + +
− + 0
+ + +

 ;

B =

 1 1 1
− 1√

2
1√
2

0
1√
2

1√
2

√
2

 ∈ Q(A) is J-orthogonal withJ =

 1 0 0
0 1 0
0 0 −1

 .

These are all of the non-SPO3 × 3 sign patterns, up to equivalence, with exactly one zero entry which
allow J-orthogonality.

We have thus proved the following result.

Theorem 3.1. Up to equivalence, the sign patterns inJ3 with at least one zero entry are + + 0
+ ? 0
0 0 +

 ,

 + 0 +
+ 0 ?
0 + 0

 ,

 + + +
+ + +
+ + 0

 ,

 + + +
+ + 0
+ + +

 ,

 + + +
+ + 0
+ + −

 ,

 + + +
+ − 0
+ + +

 ,

 + + +
− + 0
+ + +

 ,

as well as the3 × 3 generalized permutation sign patterns and the3 × 3 SPO sign patterns with one zero
entry, where? denotes a+ or − entry.

4 The4× 4 full sign pattern case

An initial investigation of the question of whether the fulln× n sign patterns always allow aJ-orthogonal
matrix was begun in [9], and forn ≤ 3 it was shown to be true.

Remark 4.1. It was observed in [4] that forn ≤ 4, the SPO patterns are the same as the sign patterns in
POn, and that this is also the case for full sign patterns of order5, see [1] and [13]. So, regarding the above
question withn ≤ 5, we need only to consider non-SPO patterns.

We establish that every4 × 4 full sign pattern matrix allowsJ-orthogonality. As observed above, for
n ≤ 4, the SPO patterns are the same as the patterns inPOn. Therefore, since every orthogonal matrix is
alsoJ-orthogonal, we need only consider those patterns which are not sign potentially orthogonal. Without
loss of generality, we can suppose each pattern is not sign potentially column orthogonal, sinceJ4 is closed
under transposition.
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Note that a given full sign pattern can be multiplied on the left and right by signature patterns so that it
has the form 

+ + + +
+
+
+

 .

Moreover, since we are considering sign patterns which are not sign potentially column orthogonal and
which have no zero entries, this means that two columns must be the same. Thus we can use permutation
similarity and signature equivalence to reduce to the case

+ + + +
+ +
+ +
+ +

 , (8)

which leaves 64 possible sign patterns.
We can reduce the number of cases by noting that the cases

+ + + +
+ + + −
+ +
+ +

 and


+ + + +
+ + − +
+ +
+ +


are equivalent, since we can switch the third and fourth columns, and simultaneously switching the third and
fourth rows.

Using (8) as our template, there are now three possibilities to consider.We first consider the case that
the (2, 3) and (2, 4) entries are both+, for which there are 16 subcases.Four of these are symmetric
staircase patterns and therefore inJ4, [9, Theorem 6.2]. A further 2 patterns are permutationally similar to
symmetric staircase patterns, so these too are inJ4.

Now consider the non-symmetric staircase pattern

A =


+ + + +
+ + + +
+ + + +
+ + − −

 .

If we constructJ1 andJ2 as in [9, Remark 5.7] we see thatJ2 = PJ1P
T whereP = [e1, e2, e4, e3]; and

now similar to [9, Example 5.9],AP = A. This leads us to conclude thatA ∈ J4. The transpose ofA is
also inJ4. Additionally,

B =


+ + + +
+ + + +
+ + − −
+ + + +


is permutationally similar toA, soB,BT ∈ J4.
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Now let

B =


+ + + +
+ + + −
+ + + −
+ + + −


which is inJ4 as in [9, Example 5.9]. LetS = diag(+,+,+,−) andP = [e3, e2, e1, e4]. Then

C = P T BSP =


+ + + +
+ + + +
+ + + −
+ + + +

 ∈ J4; CT ∈ J4.

This leaves 3 patterns up to equivalence which we still must show are inJ4:
+ + + +
+ + + +
+ + + −
+ + − +

 ,


+ + + +
+ + + +
+ + − +
+ + + −

 ,


+ + + +
+ + + +
+ + − +
+ + − −

 .

(The only other case not mentioned is the transpose of the third pattern above.)
Next, we again use (8) as our template and now consider the case that the(2, 3) and (3, 4) entries

are both−. In this case, there is one staircase pattern

A =


+ + + +
+ + − −
+ + − −
+ + − −


for which, following the example in [9, Remark 5.7], we see thatAP = A. SoA ∈ J4. Note fromA we
can also multiply the third and fourth columns by− and permute the first and second lines to obtain

+ + + +
+ + − −
+ + + +
+ + + +

 ∈ J4. (9)

Two more matrices in this case can be obtained as follows:
We begin with the staircase pattern

A =


+ + + +
+ + + −
+ + + −
+ + − −

 .

If we computeP as in [9, Remark 5.7], then we find thatAP 6= A. But in fact,

AP =


+ + + +
+ − + +
+ − + +
+ − − +

 .
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So this pattern is inJ4. Now we can obtain the pattern

B =


+ + + +
+ + − −
+ + + −
+ + + −


from AP by permutation similarity, soB ∈ J4. If P = [e1, e2, e4, e3], thenP T BP is another−,− pattern
in J4.

Similarly, if we begin with the staircase patternA =
[ + + + +

+ + + −
+ + − −
+ + − −

]
, we find that

AP =


+ + + +
+ − + +
+ − − +
+ − − +

 ∈ J4 (10)

and by permutation similarityB =
[ + + + +

+ + − −
+ + − −
+ + + −

]
∈ J4. If P = [e1, e2, e4, e3], thenP T BP is another−,−

pattern inJ4.
We can obtain another pattern by lettingA be the pattern in equation (10), and lettingS = diag(+,−,−,+)

andP = [e2, e4, e3, e1]. ThenB = P T ASP =
[ + + + +

+ + − −
+ + + +
+ + − +

]
∈ J4, and permuting the third and fourth lines

of B yields another−,− pattern inJ4.
There are 5 more−,− patterns up to equivalence still to be determined. They are, for our reference

+ + + +
+ + − −
+ + + +
+ + + +

 ,


+ + + +
+ + − −
+ + − +
+ + + +

 ,


+ + + +
+ + − −
+ + − −
+ + + +

 ,


+ + + +
+ + − −
+ + − +
+ + + −

 ,


+ + + +
+ + − −
+ + + −
+ + − +

 .

The final case to consider is that in our template (8), the(2, 3) entry is + and the (2, 4) entry is −.

The staircase patternA =
[ + + + +

+ + + −
+ + + −
+ + + −

]
is contained in [9, Example 5.9]. If we takeS = diag(+,+,+,−)

andP = [e2, e1, e3, e4], thenP T ASP =
[ + + + +

+ + + −
+ + + +
+ + + +

]
∈ J4.

We can obtain two more patterns from (9) above by taking the transpose and performing permutation
similarity to obtain the patterns

+ + + +
+ + + −
+ + + −
+ + + +

 ,


+ + + +
+ + + −
+ + + +
+ + + −

 .
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The other patterns in this case are equivalent either to previous unresolved patterns or one of the 5
unresolved patterns below:

+ + + +
+ + + −
+ + − +
+ + + +




+ + + +
+ + + −
+ + + −
+ + − −




+ + + +
+ + + −
+ + − −
+ + − −




+ + + +
+ + + −
+ + + −
+ + − +




+ + + +
+ + + −
+ + − +
+ + − −

 .

In summary, to this point, there remain11 unresolved patterns, up to equivalence:

A1 =


+ + + +
+ + − −
+ + − +
+ + + +

, A2 =


+ + + +
+ + + −
+ + − +
+ + + +

, A3 =


+ + + +
+ + + −
+ + + +
+ + − +

, A4 =


+ + + +
+ + + +
+ + − +
+ + + −

,

A5 =


+ + + +
+ + + +
+ + + −
+ + − +

, A6 =


+ + + +
+ + + +
+ + − +
+ + − −

, A7 =


+ + + +
+ + − −
+ + − −
+ + + +

, A8 =


+ + + +
+ + − −
+ + − +
+ + + −

,

A9 =


+ + + +
+ + + −
+ + − −
+ + − −

, A10 =


+ + + +
+ + + −
+ + + +
+ + − −

, A11 =


+ + + +
+ + + −
+ + − +
+ + − −

 .

To settle most of these remaining sign patterns, we use the following result contained in [10]. As stated
in [10], this decomposition was first derived in [7]; it is also mentioned in [10] that in a preliminary version
of [12] (which was published later) the authors treat this decomposition in more depth.

Theorem 4.2. [10, Theorem 3.2] We define

J =
[

Ip 0
0 −Iq

]
, p + q = n.

Assume also thatp ≤ q. Let

B =
[

B11 B12

B21 B22

]
beJ-orthogonal withB11 ∈ Rp,p, B12 ∈ Rp,q, B21 ∈ Rq,p andB22 ∈ Rq,q. Then there are orthogonal
matricesU1, V1 ∈ Rp,p andU2, V2 ∈ Rq,q such that

[
UT

1 0
0 UT

2

] [
B11 B12

B21 B22

] [
V1 0
0 V2

]
=

 C −S 0
−S C 0
0 0 Iq−p

 , (11)
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whereC = diag(ci), S = diag(si) and C2 − S2 = Ip (ci > si ≥ 0). Any matrixB satisfying (11) is
J-orthogonal.

Remark 4.3. In the casen = 4 andJ = diag(1, 1,−1,−1), everyJ-orthogonal matrixB has a factoriza-
tion of the form

B =
[

B11 B12

B21 B22

]
=

[
U1 0
0 U2

] [
C −S
−S C

] [
V T

1 0
0 V T

2

]
=

[
U1 0
0 −U2

] [
C S
S C

] [
V T

1 0
0 −V T

2

]
.

For J = diag(1, 1,−1,−1), with suitable choices of2 × 2 orthogonal matricesU1, U2 andV1, V2, we
can generate4× 4 J-orthogonal matrices with some prescribed sign patterns. Note that some sign patterns
are quite difficult to achieve by a product of two2×2 orthogonal matrices and a diagonal matrix. For a fixed
pairV1, V2 the two block rows of the matrixB can be interpreted as two orthogonal transformations of four
vectors in the plane. The sign pattern will allow aJ-orthogonal matrix only if there exists an orthogonal
transformation mapping the four vectors with the sign pattern of the first block row to the four vectors with
the sign pattern of the second block row. This is clearly not always possible.

Remark 4.4. In the casen = 4 andJ = diag(1,−1,−1,−1), everyJ-orthogonal matrixB has a factor-
ization of the form

B =
[

B11 B12

B21 B22

]
=

 c1u1v1 −s1u1(V2e1)T

−s1v1U2e1 U2

[
c1 0
0 I2

]
V T

2

 , (12)

whereu1, v1 ∈ R, U2, V2 ∈ R3,3 are orthogonal ande1 = [1 0 0]T ∈ R3.
It was noted that a given4 × 4 full sign pattern can be multiplied on the left and right by signature

patterns so that it has the form 
+ + + +
+
+
+

 . (13)

ForJ = diag(1,−1,−1,−1) this sign pattern essentially leads to the conditionu1v1 = 1 due toc1 > 1.
Takingu1 = −1 andv1 = −1 we get to the conditions that bothU2e1 andV2e1 should have the sign pattern
equal to(+ + +)T . So, given the orthogonal matricesU2, V2 ∈ R3,3 such thatsgn(U2e1) = sgn(V2e1) =
(+ + +)T , then there exists aJ-orthogonal matrix of the form (12) with the sign pattern (13). The sign
pattern of the lower right diagonal block is given by the sign pattern of the matrix

U2

[
c1 0
0 I2

]
V T

2 = U2V
T
2 + (c1 − 1)U2e1e

T
1 V T

2 .

Note that the sign pattern ofU2e1e
T
1 V T

2 is the3×3 matrix of all+. In addition, for sufficiently smallc1−1,

the sign pattern ofU2

[
c1 0
0 I2

]
V T

2 becomes equal to the sign pattern of the3 × 3 orthogonal matrix

U2V
T
2 . This is the way we can generate3× 3 J-orthogonal matrices with some prescribed sign patterns of

the form (13).
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We can handleA3 by the approach mentioned in Remark 4.4. Let us take the orthogonal3× 3 matrices
U2 andV2 as

U2 =
1
3

 2 1 −2
1 2 2
2 −2 1

V2; V2 =
1
7

 6 −3 2
3 2 −6
2 6 3

 .

Then the matrixU2V
T
2 has exactly the same sign pattern as the lower right block of the patternA3 and it

can be also verified that the first column of the matrixU2 has all positive entries. Then, as can be checked,
the matrix

B =


2 6

7

√
3 3

7

√
3 2

7

√
3

11
21

√
3 164

147
82
147 − 76

147
16
21

√
3 145

147
146
147

130
147

8
21

√
3 146

147 − 74
147

65
147


is J-orthogonal with respect toJ = diag(1,−1,−1,−1). Eight other patterns from the list of unresolved
patterns can also be handled by this approach. The key is that the lower right block allows a3×3 orthogonal
matrix.

A7 is equivalent to the sign pattern 
− + − +
+ + + +
+ + + +
+ − + −

 .

This latter sign pattern can be handled by the approach mentioned in Remark 4.3. We choose

U1 =
[

0 −1
1 0

]
,−U2 =

[
1 0
0 1

]
, V T

1 = −V T
2 =

1√
2

[
1 1
1 −1

]
,

C1 =
[

3 0
0 2

]
, S1 =

[
2
√

2 0
0

√
3

]
.

Then, as can be checked, the matrix

B =


−
√

2
√

2 −
√

3√
2

√
3√
2

3√
2

3√
2

2 2
2 2 3√

2
3√
2√

3√
2
−
√

3√
2

√
2 −

√
2


is J-orthogonal with respect toJ = diag(1, 1,−1,−1).

ThusA9 is the only remaining unresolved4× 4 full sign pattern.
In order to state another very elegant and useful structural characterization ofJ-orthogonal matrices, we

need the notion of the exchange operator. Letp andn be positive integers withp ≤ n. Let B be ann × n

matrix partitioned asB =
[
B11 B12

B21 B22

]
such thatB11 is p × p and is nonsingular. The exchange operator

applied toB with respect to the above partition yields

exc(B) =
[

B−1
11 −B−1

11 B12

B21B
−1
11 B22 −B21B

−1
11 B12

]
.
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The following theorem found in [11, Theorem 2.1] and [10, Theorem 2.2] characterizes the close con-
nections between orthogonal matrices andJ-orthogonal matrices.

Theorem 4.5. Let p andn be positive integers withp ≤ n. LetB be ann × n real matrix partitioned as

B =
[
B11 B12

B21 B22

]
such thatB11 is p× p. LetJ = diag(Ip,−In−p). If B is J-orthogonal, then the leading

p×p principal submatrix ofB is nonsingular and exc(B) is orthogonal. Conversely, ifB is orthogonal and
B11 is nonsingular, then exc(B) is J-orthogonal.

Therefore, everyJ-orthogonal matrix can be constructed from a suitable orthogonal matrix using the
exchange operator and permutation similarity. This approach can be used to show that a given full sign
pattern allowsJ-orthogonality for a particularJ . This process can be done for hundreds of thousands of
“random” rational orthogonal matrices using MATLAB.

It turns out for every4× 4 full sign patternA that satisfies the SPJO conditions for a specific signature
patternJ , we can generate aJ-orthogonal matrix inQ(A). In particular, note thatA9 satisfies the SPJO
conditions with the signature patternJ1 = diag(+,−,+,−). With the help of MATLAB running the
preceding procedure, forJ = diag(1, 1,−1,−1), we obtain the followingJ-orthogonal matrix

B =
1
12


8 18 12 10
26 −9 18 −17
20 6 24 −2
14 −15 6 −23

 ,

which satisfiesP T BP = A9, whereP = [e1, e3, e2, e4]. It follows thatA9 allows aJ1-orthogonal matrix
with J1 = P T JP = diag(1,−1, 1,−1), and hence,A9 ∈ J4.

We now reach the following conclusion.

Theorem 4.6. Every4× 4 full sign pattern allows aJ-orthogonal matrix.

Combined with known results on full sign patterns of orders at most 3, we get the following result.

Corollary 4.7. For n ≤ 4, everyn× n full sign pattern allows aJ-orthogonal matrix.

In view of Theorem 1.4, we also have

Corollary 4.8. For n ≤ 4, everyn× n full sign pattern allows a G-matrix.

Thus, we have the following nice result.

Corollary 4.9. For everyn× n full sign patternA with n ≤ 4, A ∈ Gn iff A ∈ Jn.

Suppose a fulln× n sign patternA allows aJ-orthogonal matrixB ∈ Q(A). Without loss of general-
ity, we may assume that all the positive entries ofJ occur at the leading diagonal entries. By Theorem 4.5,
exc(B) is an orthogonal matrix. Observe that exc(exc(B))=B. Write exc(B) as a product of real House-
holder matricesHv1 , . . . ,Hvk

(wherek ≤ n). Replace eachvi with a rational approximatioñvi. Since
matrix multiplication and exchange operator are continuous, we see that when the rational approximations
ṽi are sufficiently close tovi, B̃ = exc(Hṽ1 · · ·Hṽk

) is a rationalJ-orthogonal matrix inQ(A). Thus we
have shown the following interesting result.

Theorem 4.10. Let A be a full n × n sign pattern. IfA allows aJ-orthogonal matrix, thenA allows a
rational J-orthogonal matrix with the same signature matrixJ . In particular, if A allows orthogonality,
thenA allows a rational orthogonal matrix.

As a consequence, if then× n full sign patternA does not allow a rationalJ-orthogonal matrix for any
signature matrixJ , thenA does not allow a realJ-orthogonal matrix.
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5 Concluding remarks

The question of whether everyn × n full sign pattern allows aJ-orthogonal matrix is still open. It seems
to be a complicated and impressive problem. Even forn = 5 the number of cases is daunting. Some other
techniques will need to be developed.
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