Non-linear contributions to interactions in
climate networks:
sources, relevance, nonstationarity

Hlinka, J.; Hartman, D.; Vejmelka, M.; Palus, M.
Institute of Computer Science, Academy of Sciences of the Czech Republic

EGU General Assembly
Vienna 2012



Context: Studying global climate structure



Context: Studying global climate structure

» data-driven analysis



Context: Studying global climate structure

» data-driven analysis
» motivation (aims):



Context: Studying global climate structure

» data-driven analysis
» motivation (aims):

» quantitative characterization

» dimensionality reduction (poster XY400, Wed 15.30)
» feature & change detection (poster XY399, Wed 15.30)

» uncovering (dynamical) mechanisms



Context: Studying global climate structure

» data-driven analysis
» motivation (aims):

» quantitative characterization

» dimensionality reduction (poster XY400, Wed 15.30)
» feature & change detection (poster XY399, Wed 15.30)

» uncovering (dynamical) mechanisms

» typical workflow:



Context: Studying global climate structure

» data-driven analysis
» motivation (aims):

» quantitative characterization

» dimensionality reduction (poster XY400, Wed 15.30)
» feature & change detection (poster XY399, Wed 15.30)

» uncovering (dynamical) mechanisms
» typical workflow:

» dependence quantification (data — global interaction
matrix)



Context: Studying global climate structure

» data-driven analysis
» motivation (aims):

» quantitative characterization

» dimensionality reduction (poster XY400, Wed 15.30)
» feature & change detection (poster XY399, Wed 15.30)

» uncovering (dynamical) mechanisms
» typical workflow:

» dependence quantification (data — global interaction
matrix)

» graph-theoretical analysis or decomposition into
subsystems



Context: Studying global climate structure

» data-driven analysis
» motivation (aims):

» quantitative characterization

» dimensionality reduction (poster XY400, Wed 15.30)
» feature & change detection (poster XY399, Wed 15.30)

» uncovering (dynamical) mechanisms
» typical workflow:

» dependence quantification (data — global interaction
matrix)

» graph-theoretical analysis or decomposition into
subsystems

» characterizing properties or alterations



Context: Studying global climate structure

» data-driven analysis
» motivation (aims):

» quantitative characterization

» dimensionality reduction (poster XY400, Wed 15.30)
» feature & change detection (poster XY399, Wed 15.30)

» uncovering (dynamical) mechanisms
» typical workflow:

» dependence quantification (data — global interaction
matrix)

» graph-theoretical analysis or decomposition into
subsystems

» characterizing properties or alterations



Characterizing dependence
Independence: p(X, Y) = p(X)p(Y)



Characterizing dependence
Independence: p(X, Y) = p(X)p(Y)

S o




Characterizing dependence
Independence: p(X, Y) = p(X)p(Y)

S w

Measuring dependence:
— ov(X,)Y) _ E[(X=px)(Y=py)l

Pearson’s correlation px,y = =7~ vy



Characterizing dependence
Independence: p(X, Y) = p(X)p(Y)

S w

Measuring dependence:
, i — cov(X,Y) _ E[(X=px)(Y=py)]
Pearson’s correlation px,y = =72~ = e

08 0. -0.8 -1

PV N

1 1 1 -1 1 -1
// - T e — \\ \
0 0
ST




Characterizing dependence
Independence: p(X, Y) = p(X)p(Y)
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Measuring dependence:
Pearson’s correlation py, y = <X-Y) — ElX=mo(Youy)]
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Mutual information:

I(X;Y) =Y p(x,y)log (M)
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Methods: interaction/dependence quantification
» nonlinear: mutual information (pdf estimated using
equiprobable binning; N=8)
» linear

» Pearson’s correlation
» mutual information on linear surrogate data
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Statistical testing against surrogates: 8% links above 95th
percentile
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What about remaining ‘non-linearities’?
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Temperature anomalies:
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Thank you for your attention!

This study was supported by the Czech Science Foundation project No. P103/11/J068.



Relevance for graph topology
Donges et al., 2009: nonlinearity key for global topology
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Other datasets: ERA
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