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Abstract

We study the Cauchy problem for a system of equations corresponding to a singular limit of radiative hydrody-
namics, namely the 3D radiative compressible Euler system coupled to an electromagnetic field through the MHD
approximation. Assuming the presence of damping together with suitable smallness hypotheses for the data, we
prove that this problem admits a unique global smooth solution.
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1 Introduction

In [4], after the study of Buet and Després [5] we considered a singular limit for a compressible inviscid radiative flow
where the motion of the fluid is given by the Euler system with damping for the evolution of the density o = o(¢, x),
the velocity field @ = (t,x), and the absolute temperature ¥ = 9(t,x) as functions of the time ¢ and the Eulerian
spatial coordinate z € R? and we proved that the associated Cauchy problems admits a unique global smooth solution,
provided that the data are small enough.

In the present work we couple the previous model to an electromagnetic field through the so called magnetohydro-
dynamic approximation (MHD) [3].

Recall briefly that Maxwell’s electromagnetic theory relies on Ampere-Maxwell equation

8tﬁ+j:curlxﬁ (1.1)
where D = €E is the electric induction and H is the magnetic field, Faraday’s law
8B + curl ,E =0, (1.2)

where B = ,uﬁ is the magnetic induction. Here, the constant p > 0 stands for the permeability of free space.
The two last laws are Coulomb’s law .
div,D = ¢, (1.3)

where ¢ is the electric charge density, and Gauss’s law

—

div, B = 0. (1.4)

We first suppose that the electric current density J is related to the electric field E and the macroscopic fluid velocity
i via Ohm’s law

J=0(E+1ix B), (1.5)

where o is the electrical conductivity of the fluid.

The magnetic force acting on the fluid (Lorentz’s force) and the magnetic energy supply E,, are given by

—

fm:fx E,

—

fm
By :=J-E. (1.6)



The MHD approximation consists in neglecting the displacement current Bt (for the electric induction given by
D= eE) in Ampere-Maxwell equation and supposing that the charge ¢ is negligible, so we obtain

,ufz curl, B, w>0, (1.7)

where, as mentioned above, the constant p is the permeability of free space.
Accordingly, equation (1.2) can be written [6] in the form

8, B + curly (B x @) + curly (Acurl, B) = 0, (1.8)

where A = (uo)~! is the magnetic diffusivity of the fluid.
Finally, from Faraday’s law we get

1 Lo 1 - =
O ( B2> +J - E=div, < B x E> . (1.9)
2p 1%
Concerning radiation, we consider the non equilibrium diffusion regime where radiation appears through an extra

equation of parabolic type for the radiative temperature which is a priori different from the matter temperature.
More specifically the system of equations to be studied for the five unknowns (g, @, ¥, E,, B) reads

Opo + divg (o) =0, (1.10)
1 — —
(o) + divy (i @ @) + Vi (p + pr) + —B x curl, B + vii = 0, (1.11)
i

1 . . L2
0 (0F) + divy, ((0F +p)@) + U - Vapr + . (ﬁ X B) -curl, B = div, (kV,9) — o, (a194 - E,)+ % ‘curle‘ , (1.12)

1
O E, + div, (E, 1) + p,div, @ = div, (3 - r> — 0o, (Er — a194) , (1.13)
s
8t§ + curlx(g X 1) 4 curly, ()\ curl, E) =0, (1.14)
where B is a divergence-free vector field, E = 31d? + e(o,9), E, is the radiative energy related to the temper-

ature of radiation T, by E, = aT* and p, is the radiative pressure given by p, = %aTﬁ = % FE,., with a > 0.
We have also supposed for simplicity that u,o,,0s,0 and a are positive constants which implies in particular that
curl, (; curl, ( E)) = fﬂiu AB.

Extending the analysis of [4] and using stability arguments introduced by Beauchard and Zuazua in [1], our goal is
to prove global existence of solutions for the system (1.10) - (1.14) when data are sufficiently close to an equilibrium
state.

The plan of the paper is as follows: in Section 2 we state our main result (Theorem 2.1) then in Section 3 we study
the MHD model and prove our first result.

2 Main result

Hypotheses imposed on constitutive relations are motivated by the general existence theory for the Euler-Fourier system
developed in [20, 21]. Hypotheses on transport coefficients are reasonable physical assumptions for the radiative part
[17, 19]. We impose that pressure p(p,¥) > 0, internal energy e(p,¥) > 0 and specific entropy s(o,?) are smooth
functions of their arguments. Moreover, we impose the following monotony assumptions:

@(0,19) >0, %

v > 0, Vo >0,
do

(0,9) > 0. (2.1)



Moreover, in our simplified setting, transport coefficients k, 04,0 and the Planck’s coefficient a are supposed to be
fixed positive numbers. Finally the damping term with coefficient ¥ > 0 of Darcy type can be interpreted here as a
diffusion of a light gas into a heavy one.

We are going to prove that, under the above structural assumptions on the equation of state, system (1.10)-(1.14)
has a global smooth solution close to any equilibrium state.

Theorem 2.1. Let (@, 0,9, E,, E) be a constant state with g > 0,9 > 0 and E, = a@4 > 0. Consider d > 7/2. There

exists € > 0 such that, for any initial state (go, o, Vo, B, EO) satisfying

H (907110’1907Ef9a§0) - (550,57Ea§> S g, (22)

HHd (R?%)
there exists a unique global solution (Q, ﬂ,ﬂ,ET,B) to (1.10)-(1.11)-(1.12)-(1.13)-(1.14), such that

(g —0,4,9—0,E, —E,,B— E) € C ([0, +o0); H* (R*)) N C* ([0, +00); H*! (R?)).
In addition, this solution satisfies the following energy inequality:

2

(R */0 |- (2.0, .. 5) (S)HHM(RB) s
[ <|w<s>||’;d<R3) VB o ey + [V, (R3)> ds

SCH(QO_E,ﬁOaﬁO_a7EE_E7T7§0_§)H

=

|(ot) = . 3(0), 06) = 9, E,(t) - Er, B(t) - B)

2
Hd (R3) ’
for some constant C > 0 which does not depend on t.
3 The Euler-MHD system
3.1 The linearized Euler-MHD system
Multiplying (1.11) by @ and using (1.10) we get
1 1 ~
00§ ol?) + v (§ 0l?0) + Tulp ) -+ vl =

Subtracting this relation from (1.12), using the definition C, = 0Jge and the thermodynamical identity d,e =
Q% (p — ¥0yp) (Maxwell’s relation), equation (1.12) can be replaced by an equation for temperature

0C, (349 + @ - V0) + Opydiv,d — vi® = divy (kV,9) — 04 (a9 — E,) + Ep — fin - . (3.1)

Linearizing the system (1.10)(1.11)(3.1)(1.13)(1.14) around the constant state (

0,0, 9, Er,g) with the compatibility
condition E, = ad" and putting o =749, 9 =T+, E, = e, + E, and B=b+Bw

e get

Or + o div,u = 0, (3.2)

D ) 1 1= -
g+ eV + 22V T4 — Ve, + —B x (curle) +vir =0, (3.3)

0 0 30 I

5ﬁ,§ . 5 . < K > Oq —3
T + = divyu =div, [ =V.T | — —= (4&19T—6), 3.4
t EOU T T @CU T ECU T ( )



(3.5)
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, the linearized system (3.2) - (3.6) rewrites
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Using the vector notation U :=
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U + > Aj0;U

(3.7)
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In order to apply the Kreiss theory we have to put the system (3.7) in a symmetric form [2]. For that purpose it is

sufficient to consider a diagonal symmetrizer
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Multiplying the first equation (3.7) by Ag on the left, we get

(3.9)

= DAU — BU,

A;0;U

3
j=1

./ZlvoatU +

.Zo.Aj are symmetric, for all j = 1,2,3. More specifically,

where the matrices A,

S OO OO
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The hyperbolic part of system (3.9) is now symmetric while its symmetric dissipative part is given by
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where one checks the positiveness condition of B

, for any vector X e RY.

tXBX >0

Applying the Fourier transform in z to (3.9) we get

(3.11)

DU - BU,

—~l¢f?

I
(=)

&A;

—
el Il

Aoat(:j +1

or

(3.12)

= E@QU,

Ao U

with

E(&) = =B(£) — i A(¢),

where



0 pa'&y pa’Es pa'€s 0 0 0 0 0

pe' &y 0 0 0 pB'é pB’& —B2b — Bs&s  Babi Bs&
pol' & 0 0 0 nB'& pB"E Bi1& —B1& —Bs&s Bs&
pe/'&s 0 0 0 nB'&s pB"Es B1&s B¢ —B:1& — B
0 1B'& 1B'E 1P 0 0 0 0 0
0 1B"& up" & 1B"Es 0 0 0 0 0
0 —Bfs— B3z  Bi& Bi&s 0 0 0 0 0
0 By —B1& — Bsfs  Bals 0 0 0 0 0
0 B3¢, B3&, —B1& — Baés 0 0 0 0 0
(3.13)
and
0 0 0 O 0 0 0 0 0
0 v 0 O 0 0 0 0 0
0 0 v O 0 0 0 0 0
0 0 0 v 0 0 0 0 0
Be)=B+|gfD=| 0 0 0 0 HE4psZTgp om0 00 (3.14)
0000  —em M MEZSEP 0 00
000 0 0 NERE 00
000 0 0 0 0 A2 0
0000 0 0 0 0 AP

Solving this equation with initial condition ﬁo(f) we get
U(t,€) = exp [tﬂglE(g)} Ty (€). (3.15)
In the strictly hyperbolic case D = 0, under the Kalman rank condition [12] for the pair (A(£),B), it can be proved
[1] that
30 >0, AME)>0 : exp [tﬂglE(g)} < Ce MO,
Observing the partially parabolic character of the system, one can expect a similar result when D # 0 with a parabolic
smoothing effect at low frequencies and an extra damping in the high frequency regime.

Taking benefit of the damping, we can use the Shizuta-Kawashima condition (SK) [22] which applies to the previous
system. Following the arguments of Beauchard and Zuazua [1], we have

Lemma 1. For any & € S%, a necessary and sufficient condition for the matrices B(¢) and A(€) defined by (3.13) and
(3.14) satisfy the Shizuta-Kawashima condition (SK):

{eigenvectors of (Ao)_l A(E)} Nker B(¢) = {0}, (3.16)

s that v > 0.
Proof:

1. If v # 0. One checks that ker B(£) is the 1-dimensional subspace spanned by the vector (1,0,0,0,0,0,0,0,0).
JURNS
Therefore, if X € ker B(£) \ {0} is an eigenvector of (Ao) A(&), we have X = (21,0,0,0,0,0,0,0,0), 21 # 0,

and

A(OX = M\ X,

for some A € R. According to the values of Ag and A(€), this implies that A = 0, & = & = & = 0, which is in
contradiction with the hypotesis £ € S2.



2. If v = 0. One checks that ker B(&) is the 4-dimensional subspace spanned by the vectors (z1, z2, 3, 24,0,0,0,0, 0).
Let us denote by (A, X) an eigenpair of A(£), with non zero eigenvector X € ker B(£). X satisfies the system

po €1 + pod Eows + pal €3y = Ay,

pa'&1xy = Az,
pa'&ory = Axs,
po' sy = Ay,
pB'&rza + pf'aws + pfB 34 =0,
uB" &1 + pfB" oz + B €34 = 0,
—(B22 + Bas)xs + Biéowy + Bi&wa = 0,
Baéiwy — (B1é1 + Bsés)as + Balswy =0,
Bs&iaa 4 Baéaws — (B1&y + Baba)ry = 0.
Denoting B = (B1, Bs, B3), 5: (&1,&2,&3), and & = (z2, x3,24), the system rewrites

In particular, this implies & - E = 0, which in turn implies Az; = 0. As a consequence, we have

)\xl = 0,

—

Z-£=0,
po/ 1€ = A,
€ B)z=0.

Choosing A = 0, we see that any & € &+ for € € BL gives a nontrivial eigenpair (A, X) with A = 0 and
X =(0,2,0,0,0,0,0). Then the SK condition is not satisfied.

As in the equilibrium case (3.16) is equivalent to the existence of a compensating matrix:

Proposition 3.1. For any £ € S2, the matrices Ay, B(€) and A(E) being defined by (3.8), (3.13) and (3.14), there

exists a matriz-valued function
K: §* — R
w — Kw)
such that
1. w K(w) is a C* function, and satisfies K(—w) = —K(w) for any w € S2.
2. K(w)/(o is a skew-symmetric matriz for any w € S2.

3. Denoting by [A] = 3 (A+ A7) the symmetric part of A, the matriz [K(w)A(w)] + B(w) is symmetric positive
definite for any w € S2.



3.2 Entropy properties
Adding equations (1.9), (1.12) and (1.13) we get

1 1 _ 1 = _
O (29 jil” + oe + E, + o IB|2> + divy <(QE + Ey)i+ (p+pr)i+ " Ex B)
1
= div, (kV0) + div, (3 VzET) . (3.17)
Os

Introducing the entropy s of the fluid by the Gibbs law ¥ds = de + pd (%) and denoting by S, := %an the radiative

entropy, equation (1.13) rewrites

1 1 E, — a¥*
85, + divy (S,@) = —div, <3 vxE,) _g =
Os

T, T,
or g
. . . 1 4a E.—a
atSr + le;L- (S7u) = le"L‘ (?)O_STr V£E7> . . — GQT. (318)
Replacing equation (1.12) by the internal energy equation
1 .,
9y (0e) + div, (oeid) + pdiv,@ — v @) = divy (kV,0) — 04 (a194 - E,)+ o |curl, B|?, (3.19)
o
and dividing it by ¢}, we may write an entropy equation for matter
I/ﬁ :1319 2 7.94 - Er ]. —
B4 (0s) + divy (0sid) — % @ = div, (”Vﬂ ) + “‘Vw ® 5 Tt o lcurl, BJ2. (3.20)
So adding (3.20) and (3.18) we obtain
=¥ 1
O (08 + Sy) + divy ((es + S, ) @) — div, a + V.E,
¥ 30T,
K|V 9|? 2 aaa 9 o 1 =9 V9
=~ +3 CTVLE [ + (19 T2 9+ Ty (9 +Tr)+(w219 Jeurl, BI? + = [i]”. (3.21)

Introducing the Helmholtz functions Hy(o,?) := o (e — UJs) and H, 5(T;) == E, — 98,., we check that the quantities
Hy(0,9) — (0 — 2)0,Hy5(0,9) — Hy(0,9) and H, 5(T;) — H,5(T T,) are non-negative and strictly coercive functions
reaching zero minima at the equilibrium state (2,9, E,.).

Lemma 2. Let 0 and ¥ = T, be given positive constants. Let Oy and Oy be the sets defined by

< p < 20,

| |

O, = {(97 ¥) € R? < <20, } ) (3.22)

N ||

T _
Oy = {T,« eR : 7? < T, < 2T,, } (3.23)

There exist positive constants C1 2(9,9) and C3 4(T,) such that
1.

C1 (le—a* + 9 = 9) < Hy(o,9) — (¢ — 0)9,Hy(e,9) — Hy(a,9)
<Cy(lo—af +9—-9%), (3.24)
for all (p,9) € Oy,



Cs|T, —T,|* < H,5(T,) = H,5(T,) < Cy|T, — T,|?, (3.25)
for all T, € Os.

Proof:

1. Point 1 is proved in [9] and we only sketch the proof for convenience.

We have the decomposition

0 — Hy(o,9) — (0 — 0)0,Hy(0,9) — Hy(o,9) = F(o) + G(0),

where F(0) = Hy(0,9) — (0 — 0)9,H5(2,9) — Hy(2,9) and G(0) = Hy(o,9) — Hy(0,9). Using Gibbs law
dds = de + pd (%), one easily proves that 83H5(g75) = g%agp(@@L which is positive according to (2.1).

Hence, F is strictly convex and reaches a zero minimum at p. Turning to G, we have, still using Gibbs law,

(%Hg(@@) = 9191,%19&96(9,5). Thus, using (2.1) again, we infer that G is strictly decreasing for ¥ < 9 and strictly
increasing for ¢ > . Computing the derivatives of Hy leads directly to the estimate (3.24).

4

2. Point 2 follows from the properties of the function z — H, 5(z) — H,_ 3 (T)) = az®(z — 39) + 49 O

,r,i

[SN1F

From this simple result, we can obtain an identity leading to energy estimates. In fact, multiplying (3.21) by ¥,
subtracting the result to (3.17) and using the conservation of mass, we get

1 _ = _ — 1 =
00 (51" + Hy(o0) ~ (o~ D2, Hy@.0) (e, ) + H, 5(T) ~ H,5 (T,) + 5157

_ 1= iR
+div, ((Q(E —e)+E )i+ (p+pr)d— D o(s—3) + Sp)u+ ;E X B)

1 _ 0 1
= div, (vaﬁ + VxEr) — ddiv, <”v + szr)
T

9 30,1,
—k|V, 92 —4da 9 —a0g 2 9 o Vo 1 2
gt T E.|?2 — - T T T2 — — — 1.B| . 2
gr Vg LIVabl® =0 (0 = To)" (0 + 1) (9 + 17) = S lal” — — jeurl 5] (3.26)

NT _ _— =\7T
In the sequel, we define V = (p,ﬁ,z?,Er,B> , V= (ﬁ,O,ﬁ,ET,B) , and

N(t)> = sup ||V (s) —VHZd(Rs)

0<s<t

" /ot (vaws)”;dl(Rg) IV (o) + VB oy + Hvzé(s)H;(Rg)) ds

+f (nﬂ(s) ~ Ty oy + ||ﬁ<s>||Hd1(Ra)) ds. (3.27)

Recall that T;. = E,%/4a’1/4. Note also that, since div,, (E) =0, we have

/R3 ‘ curlzg

as far as B € H 1(}R?’)7 and similarly for any H® norm. This allows, in the sequel, to replace curlIE by VQEE in all
bounds.

2 .
= /]R" |V.B|?, (3.28)

10



3.2.1 L>*(HY) estimates
Using these entropy properties, we are going to prove the following result:

Proposition 3.2. Let the assumptions of Theorem 2.1 be satisfied. Consider a solution (o, 4,9, E;) of system (1.10)-
(1.11)-(1.12)-(1.13)-(1.14) on [0,t], for some t > 0. Then, the energy defined by (3.27) satisfies

V) = VIl (o)

+/ (||w<s>||L2<Rs> IV B ) ey + 1906) = Tol) g ey + 1T ey + [V B6)|

2
2 (R3)> s

< C(N(t))N(0)2, (3.29)
where the function C is non-decreasing.

Proof: Following the proof of [13, Lemma 3.1] we define
We multiply (3.21) by 9, and subtract the result to (3.17). Integrating over [0,t] x R®, we find

1 2 1|52 ! 15 , 4a -
/11@3 (29(15) ] (t)+77(t7:r)+ﬂ‘B‘ )dw+/0 /R3 rs Vet + TV B, 2D

30,
t
—aoy,
7
+/0 / + VT,

2

(O +Tp) (0 — T,)* (92 + T?) + %u @|* +

9 .
5 ’curlzB
ou?d

2

—

Lo 1
§/R37](0,x)dx+/R3go|uo| +ﬂ/3 B

M(t) = suwp sup [max (Jo(s, @) - al, (s, )], [9(s,2) - V],
0S5t R

0

Defining o
B-B

ET(S,CIJ) _E| )

)} 7 (3.31)

and applying Lemma 2, we find that

V) 71 a

+ (nvm(sn; () + IV B oy + 1905) = Tolo) o sy + 1T oy + et Bs) | (R3)> ds
< C(M()N (),

where C : RT — R is non-decreasing. Equation (3.28) allows to replace curl, B by V. B in the above estimate.
Finally, we point out that, since d > 7/2 > 3/2, due to Sobolev embeddings, there exists a universal constante Cy
such that M(t) < CyN(t). Since C' is non-decreasing, this proves (3.29). O

AT
Proposition 3.3. SettingV = (g, i, , By, B) , under the same assumptions as in Theorem 2.1, we have the following
estimate:

||3tV(t)||Hd,1(R3) < C(N(@)) (lIVzV|Hd1(R3) + IIVxﬁllHd(w)

T2l ey + 19 = Tl oy + 0l ey + || V2] (R3)> . (332)

11



Proof: The system satisfied by V may be written formally

3
AV +> A;(V)d,,V =D(V)AV — B(V) =0, (3.33)
j=1
where
0 o 0 0 0 0 0 0 0
& 0 0 0 F B 0 Byjou Bs/op
0 0 0 0 0 0 0 —Bi/ou 0
R 0 0 0 0 0 0 0 0 —Bi/op
A = 0 3 0 0 0 0 0 0 0 ,
0 7" 0 0 0 wu 0 0 0
0 0 0 0 0 0 wu 0 0
0 B2 —B1 0 0 0 0 U1 0
0 By 0 —B; 0 0 0 0 U
0 0 o 0 0 0 0 0 0
0 0 0 0 0 0 —Byou 0 0
& 0 0 0 B B BiJou 0 Bs/op
N 0 0 0 0 0 O 0 0 —Bs/op
Ay = 0O 0 & 0 0 0 0 0 0
0 0 3" 0 0 wu 0 0 0
0 —BQ B1 0 0 0 u 0 0
0O 0 0 0 0 O 0 U 0
0 0 Bg —BQ 0 0 0 0 (%)
0 0 0 o 0 0 0 0 0
0 0 0 0 0 0 -—Bs/ou 0 0
0 0 0 0 0 0 0 —Bs/op 0
. a 0 0 0 7 B BiJou BaJou 0
Az = 0 0 0 % 0 0 0 0 0o |,
0 0 0 7" 0 wus 0 0 0
0 By 0 B 0 0 u3 0 0
0 0 —Bg Bg 0 0 0 us 0
0 0 0 0 0 0 0 0 us
and
0000 0 0 00 0
00000 0 0O 0 0
00000 0 0O0 O vy, ,
00000 0 000 % (a0 — B, Lg‘wﬂmg‘ vla?
5=l 00005 0000]| =] © )+ o T |
N oq(ad* — E,)
000004 00O 0
00000 0O X OO 0
00000 0O 0 XO 0
00000 O 0 0 X
where ) » ) 30p - A )
~/ ] Y 4 Y ~/ (4 N ~11 N7
O Py Py T, Oy TR U5

It is possible to symmetrize this nonlinear system in the same spirit as what we have done for the linearized system
(3.7). However, we do not need to do so here. So we write

ov=-Y [ﬁjm — A, (V)} 0,V — Zn: A,(V)o,,V + [D(V) - ﬁ(V)} AV + D(V)AV — B(V).

Jj=1

12



We first observe that these matrices are Lipschitz continuous with respect to V', away from ¢ = 0 and ¥ = 0 and also
that the matrices B and D have, respectively, the same structure as those defined in (3.10). Note also that, since
d—1>5/2=3/2+1, Sobolev embeddings imply that H9~! (]Rd) is an algebra. Therefore, we have

3
10V ] yus ey < Co | 14 DAV = A, T IVeV a2
(B) ma-1 (R) (R)

Jj=1

~

+Co |1+ DV)=DV)|| oo | LIAD]] sy ey + IAE s, gy + ||ourls (curl, B
Ha-1 (R (R) (R)

Hd—l(R3)>
Hdl(Rs)> (W - Tr||Hd71(R3) + ||ﬁ||Hd1(R3)) :

+Co (1 + HE(V) - E(V)‘
whence,
10010,y < Ci (1 v VHHM(RBQ (nvmvnHM(Rs) 180 s ey + 1B s )

+ HAEHH“(RS) 19 = Tl oy + |ﬁ||Hd1(Rs)> :

which proves (3.32). O

Next, we bound the spatial derivatives as follows:

Proposition 3.4. Assume that the hypotheses of Theorem 2.1 are satisfied. Let k € N* be such that 1 < |k < d,
where d > 7/2. Then, we have

05V ooy + [ (nafw(s)n; () VB2, oy + 080 =T O]

d

9.8 g + 08 (RS)) s
< CoN(0)* + CoN(t) V2V ()1 g2y + VD)5 gy + IV Bl ey +
0 (=) (=) (®)

1905) = To(6) s (o) + 106) s (o) + [ VB, (R3)> ds (3.34)

Proof: Here, we need to symmetrize the nonlinear system. For this purpose, we multiply (3.33) on the right by the
matrix

pZ 0 00 0 0 000
0O o 00 0 0 000
0 0 g O 0 0 000
0 00 u 0 0 000
A(V)y=| 0 00 0 % 0 00 0 (3.35)
0000 0 u 000
0O 000 0 0 100
0O 000 0 0 010
0000 0O 0 001

[t
w



This gives
V),V = Z A;(V)0,,V +D(V)AV — B(V) =0, (3.36)

where A;(V) = Ay(V)A;(V), B(V) = Ay(V)B(V), and D(V) = Ag(V)D(V) are all symmetric matrices. Applying 0¥
to (3.36) then taking the scalar product with the vector ¥V, and integrating over [0,¢] x R®, we find

71/ Kﬁoal"V)-akV}tdaB—i—/t/ (T)V (8’“[/)) Vi 8k dxdt—l—// (8k )dwdt
2 Jr? ’ o o JR? cAE
/ / ( (IL + 1) 13[415) dxdt,

where

I =0, (ﬁo(V)) oV - 9k, I 23:8%. (th(V)) oV .Y, I = [aj;,ﬁo(V)} 0,V - kv,
j=1

3

L= [a;;,th(V)} 0, V-0V,  I;=0k (B(V)) RV

j=1

We estimate separately each term of the right-hand side.
First, we have

t t t
/ / || < c/ / |8§V|2|8tV| < C/ / ya’;vy2(|v$V|+ |B(V)| + |DAV])
o JR? o JR? o JIR®

gC’N(t)/O ||a§V(s)||2LQ(R3) ds,

where we have used Sobolev embeddings and the fact that d > 7/2. A similar computation gives

// | < CN(t /Hak )3 ey do

We estimate I3 by applying Cauchy-Schwarz inequality:

[ il = [ 101y 28 Aot] 2] gy

Then, we apply the same estimate for commutators and composition of functions (see [15, Proposition 2.1]), and
|k| < d:

[0t An] av] . oy = 08 A0(v) - Ao o

2(R°)
<c (atvnm (&) [ VA0 s oy + 10 s e |70V (R3)> .

Moreover, we have

[v. A, < OV =Vl yu(rey < ONG),

- ()
and

|V do(v) < CUVaV s (gey < ON ().

= (RY)
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Hence, I3 satisfies

t t 9
| [l < covenve | (mw s ey IO oy + 19 6 e

2

)

FI96) = T3y ey + N s (g + | V2B o)

Here, we have used (3.32).
The integral of I is dealt with using similar computations.
Turning to I5, we use the particular form of 8’;B(V) More precisely, we have

ok (B( )) L9V = ak<fm—uz>-a§ﬁ—ag (‘T;(aﬁ‘*—Er)JrW)-a’;ﬁ

+a’; (oa(a194 — ET)) . GI;ET,

from which, using estimates for composition of functions (see Proposition 2.1 in [15]) we infer

[ fo i sene [ ot g

Collecting the estimates on I3, Is, Is, Iy and I5, we have proved (3.34). O

The above results allow to derive the following bound:

Proposition 3.5. Assume that the assumptions of Theorem 2.1 are satisfied. Then, there exists a non-decreasing
function C : RT — R such that

HV*VH;(RS) /t <||v Ao (o) + 1V () ey + 19() = Tl o sy

2
) Hd<R3)>dS
< C(N(t)) lN(0)2+N(t)/O (HV V(s )||Hd ‘(R )4-||V V(s )|| we(R?) + | Ve Er(s )||Hd(R ) +

) ey + [[B s

19(5) = To(s) 3y (me) + 1T s gy + [V B sz(Rg)>ds]. (3:37)

Proof: We sum up estimates (3.34) over all multi-indices k& such that |k| < d, and add this to (3.29). This leads to
(3.37). O
3.2.2 L%(H? ') estimates

In this section, we derive bounds on the right-hand side of (3.37). For this purpose, we adapt the strategy of [22], which
was further developed in [10]. We apply the Fourier transform to the linearized system and use the compensating
matrix K to prove estimates on the space derivatives of V.

Proposition 3.6. Assume that the assumptions of Theorem 2.1 are satisfied. Then there exists a non-decreasing
function C : RT — R such that

[ 19Vl oy ds < €OV D) (N(t) -7, (R3)> (3.38)

15



Proof: As a first step, we apply the symmetrizer of the linearized system (3.7) (which leads to (3.9)) to the nonlinear
system (1.10)-(1.11)-(1.12), which then reads

3
Z V).,V = DAV — B(V)V.

Of course, this system is not symmetric. However, the corresponding linearized system (3.9) is symmetric. Next, we
rewrite the nonlinear system by setting U =V — V:

Ao(V 8tU+ZA V)d,,U = DAU — B(V)U — B(V)V

Jj=1
~ -1
Therefore, multiplying this system on the left by Aq(V) (.AO(V)) , we find
~ JE— 3 ~ —
Ao(V)oU + Y A;(V),,U = H, (3.39)

-~ ~ SO -1 -
+ Ao(V) (AO(V)) DAU — Ay(V) (AO(V)) BVU — Ay(V) (AO(V)> B(V)V.
We apply the Fourier transform to (3.39), and then multiply on the left by —i ( ) (‘ g\) where * denotes the

transpose of the complex conjugate, and K is the compensating matrix (see Proposition 3.1). Taking the real part of
the result, we infer

Im ((ﬁ) K (é) Ay (V) aﬁ) +16 (D) K <§|) A (é) U =1Tm <((7) K (é) ﬁ) : (3.40)

where the matrix A (%

Im ((ﬁ) K <§|) Ao (V) aﬁ) — <(z7)K (é) Ao (V) ﬁ) .
Next, we also have

o0 w(§)4(8)0 007 e (§)a(5) +5(§)]o w0 w0 -e) 0.

Hence, still applying Proposition 3.1, there exists a; > 0 and ag > 0 such that
Y k() a(E) T 5 anil |6
SHU) K €] A €] U>ail§||U

agé (‘5 <ﬂ> ’2 + ’5 (E/jf) i 2) . (3.42)

Finally, we estimate the right-hand side of (3.40) using Cauchy-Schwarz inequality and Young inequality:

‘m((ﬁ)* <| |> >‘<5|§|‘U‘ +Oopg ﬁf, (3.43)

16

) is defined by (3.13). According to Proposition 3.1, K Ag(V) is skew-symmetric, hence

— 2
— ey ~|2 —
+1¢2|B - B| +gP|a| +1eP |-




for any € > 0. We choose ¢ small enough, insert (3.41)-(3.42)-(3.43) into (3.40), and find

12 1 —\ |2 — = |2 = ~|2 _—
€l |0 <c[l€|<g(ﬂ—ﬁ> +e(B-F)| 16 |B- B + P[] 1P |7 T

ﬁ A ((ﬁ)*K (é) Ao (V) U)] |

We multiply this inequality by [£]?'~!, for some 1 <1 < d, and get

(2 —\ |2 — 2
e o] < c |2 (\s(ﬂ—ﬂ)] e (B-F)[ e

— 2
— 3 /\2 —_—
B—B’ +1eP[E] + 1R [0 =T

) +ig= |af
—IEI””%Im ((1?)*K <é> Ay (V) ﬁ)] . (3.44)

We integrate this inequality over [0,¢] x R®, and use Plancherel’s theorem:

[ e B twarse [ [ 5

|k|=1—1 |k|=1—1

(ya’;vmf + |0k, B, + a’;vxéf + okl + |a’;H\2)

+C’Im/R3 €2 [(ﬁ)*K <é|> Ao (V) ﬁy. (3.45)

0

The matrix K (é—‘) is uniformly bounded for ¢ € R*\ {0}, so we have

e 0 ()]

t

<c </R (1 +1eP) o +/R3 (1+ 1Py ‘00‘2)

— 2 — (2
< (IV =Tl @y + 1%~ Vi ey

We insert this estimate into (3.45), sum the result over 1 <[ < d, which leads to

0

/Ot 19Vl o sy < € (HV Vo (o) + Vo = V(o)

k 2 2 -2 =112 2
+ | <||vxz9||H“(R3)+||szer1<R3)+||vxu||m1(R3>+HVIBHW1(RB)+||H||W1(Ra> . (3.46)

In order to conclude, we need to estimate the perturbation H. For this purpose, we use that H¢~! (R3) is an algebra:
for any s < t,

HE,, - o) < OV 19V o )
Inserting this into (3.46), we prove (3.38). O

We are now in position to conclude with the

Proof of Theorem 2.1: We first point out that local existence for system (1.10)-(1.11)-(1.12) may be proved
using standard fix-point methods. We refer to [15] for the proof. The existence is proved in the following functional
space:

X0,7)={v, V-VecC(01;H (R, V,VelL*(0T);H""(R?),
V., Vo By, Vo B € L2 (10, T); HY (R?)) }.
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In order to prove global existence, we argue by contradiction, and assume that 7, > 0 is the maximum time existence.
Then, we necessarily have

lim N(t) = +o0,

t—T,
where N (t) is defined by (3.27). We are thus reduced to prove that N is bounded. For this purpose, we use the method
of [13], which was also used in [18]. First note that, due to Proposition 3.5 on the one hand, and to Proposition 3.6
on the other hand, we know that there exists a non-decreasing continuous function C' : R — R™ such that

VT €[0,T.]), N(t)> <C(N(t) (N(0)*+ N(t)*). (3.47)
Hence, setting N(0) = ¢, we have
N(t)?
S < OO, (3.45)

Studying the variation of ¢(N) = N2/ (62 + N3), we see that ¢'(0) = 0, that ¢ is increasing on the interval {O, (252) 1/3}

1/3

and decreasing on the interval [(252) ,—1-00). Hence,

maxg = o ((22)") = % (2>2/3.

3

Hence, the function C' being independent of €, we can choose € small enough to have ¢(N) < C(N) for all N € [0, N*¥],
where N* > 0. Since C' is continuous, (3.48) implies that N < N*. This is clearly in contradiction with (3.47). O
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