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METRIC TOPOLOGICAL GROUPS: THEIR METRIC
APPROXIMATION AND METRIC ULTRAPRODUCTS

MICHAL DOUCHA

Abstract. We define a metric ultraproduct of topological groups
with left-invariant metric, and show that there is a countable se-
quence of finite groups with left-invariant metric whose metric
ultraproduct contains isometrically as a subgroup every separa-
ble topological group with left-invariant metric.

In particular, there is a countable sequence of finite groups with
left-invariant metric such that every finite subset of an arbitrary
topological group with left-invariant metric may be approximated
by all but finitely many of them.

We compare our results with related concepts such as sofic
groups, hyperlinear groups and weakly sofic groups.

Introduction

It is a major open problem whether all discrete groups are sofic, i.e.
whether all discrete groups can be metrically approximated, in a cer-
tain sense, by finite permutation groups with the Hamming distance.
On the other hand, when one wants to approximate metric groups, say
with bi-invariant distance, it is clear finite permutation groups with
the Hamming distance cannot serve for that purpose, e.g. the group
of integers with the standard metric cannot be approximated by them.
Since the introduction of sofic groups, many other classes of groups,
defined in a similar manner as groups metrically approximable by cer-
tain class of ‘basic metric groups’, appeared in the literature. Most
notably the hyperlinear groups, formally introduced by Rǎdulescu in
[15], that are directly connected to the Connes’ embedding conjecture
for group von Neumann algebras ([2]). However, let us also mention
linearly sofic groups introduced by Arzhantseva and Pǎunescu in [1],
Fc-approximable groups introduced by Thom in [17], and weakly sofic
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2 M. DOUCHA

groups introduced by Glebsky and Rivera in [9] (see also [8]). Thom in
[17] showed that the Higman’s group is not Fc-approximable, however
for all other classes this is unknown.

In this paper, we consider metric approximation by finite groups
with left-invariant metrics (that do not have to be bi-invariant). We
shall show that in this case we can prove a positive result.

Theorem 0.1. There exists a countable sequence pGnqn of finite groups
with left-invariant metric such that any finite subset of any topological
group with left-invariant metric can be metrically approximated by all
but finitely many Gn’s.

We refer to the last section, where the theorem is proved, for a
precise formulation and definition of approximation.

It is common in the area of group approximations to work with met-
ric ultraproducts of metric groups. Indeed, being C-approximable for
a certain class C of metric groups (with bi-invariant metric) is equiva-
lent with being embeddable as a subgroup into a metric ultraproduct
of groups from C. Metric ultraproducts of metric groups have been
defined only for groups with bi-invariant metric. Here we generalize
the notion and define a metric ultraproduct of arbitrary topological
groups with left-invariant metric and obtain the following theorem.

Theorem 0.2. There exists a countable sequence pGnqn of finite groups
with left-invariant metric whose metric ultraproduct contains isomet-
rically an arbitrary separable topological group with left-invariant met-
ric.

We note that although being C-approximable and being embeddable
into metric ultraproduct of groups from C is rather easily checked to
be equivalent when C contains just groups with bi-invariant metric, it
is not the case in our general situation. The proof of Theorem 0.2 is
substantially more involved than the proof of Theorem 0.1. Indeed,
the tricky issue with metric ultraproducts of groups with left-invariant
metric is that in some cases the ultraproduct collapses to a trivial
group, so one has to choose the sequence pGnqn carefully.

1. Definitions and preliminaries

1.1. Norms and metrics on groups. Let G be a group. A norm (or
a length function) on G is a function λ : G Ñ R�

0 with the following
properties:
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 λpxq � λpx�1q for every x P G,

 λpx � yq ¤ λpxq � λpyq for every x, y P G,

 λpxq � 0 iff x � 1G.

λ satisfying only the right-to-left implication of the last condition is
called a seminorm.

A (semi)norm λ on G satisfying λpg�1�h�gq � λphq for every g, h P G
is called conjugacy-invariant.

Recall that a (pseudo)metric d on the group G is left-invariant if
dpg � x, g � yq � dpx, yq for every g, x, y P G. Right-invariance and
bi-invariance are defined analogously.

There is a one-to-one correspondence between norms and left-invariant
metrics (and analogously between seminorms and left-invariant pseu-
dometrics). Indeed, given a left-invariant metric d, the formula λdpxq :�
dpx, 1Gq gives a norm on G; and conversely, given a norm λ on G, the
formula dλpx, yq :� λpx�1 � yq gives a left-invariant metric.

Moreover, if the metric d was bi-invariant, the the formula above
gives a conjugacy-invariant norm. Conversely, if the norm λ was
conjugacy-invariant, then the formula above gives a bi-invariant met-
ric.

It turns out it is more convenient for us to work with norms rather
than metrics, so we will do so in the sequel.

It follows that (semi)norms on groups define a topology there. How-
ever, the topology on a group G determined by some (semi)norm λ
on G does not in general make it a topological group; i.e. the group
operations are not automatically continuous. The following is a nec-
essary and sufficient condition on a (semi)norm to make the group
operations continuous. We leave the verification to the reader.

Fact 1.1. Let λ be a (semi)norm on a group G. Then G with the
inherited topology is a topological group if and only if for every x P G
and every ε ¡ 0 there exists δ ¡ 0 such that @y P Gpλpyq   δ ñ
λpx�1 � y � xq   εq; in other words, the function y Ñ λpx�1 � y � xq is
continuous at 1G.

We shall call such (semi)norms continuous (semi)norms. Note that
when a (semi)norm is conjugacy-invariant then it is continuous. We
remark that in literature, a norm being continuous often means that
it is continuous with respect to some given topology on the group.
Here however, the only group topologies we consider are those given
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by some norms, resp. pseudonorms.

Recall that when f : X Ñ Y is a function between metric spaces
X and Y which is continuous at the point x P X, then a modulus of
continuity of f at x is a function ω : r0,8q Ñ r0,8q continuous at
0 and vanishing there which quantitatively measures this continuity
(of f at x). That is, we have dY pfpxq, fpyqq ¤ ωpdXpx, yqq. Clearly,
a modulus of continuity for a given function at a given point is not
unique, however one can always take the ‘minimal one’ by defining
ωprq � suptdY pfpxq, fpyqq : y P X, dXpx, yq ¤ ru. We shall use this
notion in the context of normed groups.

Definition 1.2. LetG be a group equipped with a continuous (semi)norm
λ. We say that the functions pΓGx qxPG, where ΓGx : r0,8q Ñ r0,8q for
every x P G, are moduli of continuity, or MOC, for G if for every
x P G:


 ΓGx prq ÑrÑ0 0 and ΓGx p0q � 0;

 ΓGx prq ¥ r for every r ¥ 0;

 for every g P G we have λpx�1 � g � xq ¤ ΓGx pλpgqq;

 ΓGx � ΓGx�1 .

When considering a single element x P G, we say that ΓGx P pΓGx qxPG
is a modulus of continuity (or MOC) for x in G.

We note that in [5], in this context of groups with norms (resp.
left-invariant metrics), these moduli are called scales.

For a given group G with a continuous (semi)norm λ, moduli of
continuity are not determined uniquely. However, it is again possible
to consider the minimal moduli: for x P G and r P r0,8q set

ΓGx � maxtr, suptλpxε � g � x�εq : g P G, λpgq ¤ r, ε P t1,�1uu.

Note that such a MOC satisfies additionally


 ΓGx prq ¤ 2λpxq � r.

Although we shall not always work with the minimal moduli, unless
stated otherwise, ΓGx will denote the minimal MOC for x P G in G.

Example 1.3. Let pG, λq be a normed group. Then λ is conjugacy-
invariant if and only if the minimal moduli pΓGx qxPG are constant func-
tions, i.e. ΓGx prq � r for every x P G and r P r0,8q.

The reason to work with MOC, even though they are not unique,
is to control the ‘uniformity’ of embeddings between normed groups.
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Suppose that pG1, λ1q � pG2, λ2q � . . . is an increasing sequence of
groups with continuous norms. Then the direct union pG, λq, where
G �

�
nGn and λ �

�
n λn, is not in general a group with a continu-

ous norm, i.e. the continuity of λ � limn λn may be lost in the limit.
The reason for that is that when Γix is a modulus of continuity for
some x P Gi in Gi, it may no longer be a modulus of continuity for
x P Gi � Gi�1 in Gi�1. Later on, we will work with embeddings be-
tween normed groups that preserve some moduli of continuity in order
to guarantee that norms on certain limit groups are still continuous.

We shall conclude this section with several other facts concerning
normed groups.

First we want to recall the following geometric notion that will be
useful later.

Definition 1.4. Let pG, λq be a normed topological group. We say
that λ is proper if for every r ¡ 0 the set tg P G : λpgq ¤ ru is compact.
In other words, G with the induced metric is a proper metric space.

In case pG, λq is countable discrete, it means that for every r ¡ 0
the set tg P G : λpgq ¤ ru is finite.

Second, we mention that if we have a group with a continuous semi-
norm we can always quotient to get a genuine norm on the quotient
group.

Fact 1.5. Let G be a group with a continuous seminorm λ. Then the
set N � tg P G : λpgq � 0u is a closed normal subgroup, and λ is
constant on any left coset of N , thus it determines a continuous norm
on G{N .

Proof. N is by the definition of the topology on G closed. Since for
any g, h P G we have λpgq � λpg�1q, λpg � hq ¤ λpgq � λphq and λ
is continuous, it immediately follows that N is a normal subgroup.
Take any x P G and g P N . We show that λpxq � λpx � gq. We have
λpx � gq ¤ λpxq � λpgq � λpxq � λpx � g � g�1q ¤ λpx � gq � λpg�1q �
λpx � gq. �

Finally, in order to persuade the reader that there are indeed a
plethora of groups with continuous (semi)norms, let us mention the
classical result of Birkhoff and Kakutani. It says that a group G with
topology τ is a first-countable topological group if and only if there
exists a continuous seminorm on G which induces the topology τ of
G. Moreover, G is Hausdorff if and only if the seminorm is a norm.
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1.2. Completeness in normed groups. Now for a moment, we
switch to continuous left-invariant (pseudo)metrics rather than (semi)norms,
where by a continuous left-invariant (pseudo)metric we mean a left-
invariant (pseudo)metric whose associated (semi)norm is continuous.
So assume we are given a group G with a continuous left-invariant
(pseudo)metric d. It is well known that a metric completion of G with
respect to d need not to be a group, however it is always a semigroup.
Indeed, it is an exercise to check that the multiplication operation ex-
tends to the metric completion; in other words, whenever pxnqn and
pynqn are Cauchy sequences in G, then pxn � ynqn is a Cauchy sequence
as well. On the other hand, the inverse operation might not extend to
the completion since the sequence pxnqn being Cauchy does not guar-
antee that the sequence of inverses px�1

n qn is also Cauchy. Consider for
example S8, the infinite permutation group of N, with a left-invariant
metric d defined as dpx, yq � maxt1{n : xpnq � ypnqu. Completion of
S8 with respect to this metric is the semigroup of all injective map-
pings from N into N.

However, there is another way how to canonically complete a group
with a left-invariant metric.

Fact 1.6. Let G and d be as before. Consider the metric Dpx, yq :�
dpx, yq� dpx�1, y�1q and the completion of G with respect to D. Then
the group operations and the original metric d extend to this comple-
tion.

We shall call it a Raǐkov metric completion of G, since it pre-
cisely corresponds to the Rǎikov completion of a topological group.
A normed/metric group G whose Rǎikov metric completion coincides
withG is called Raǐkov metrically complete. Note that the Rǎikov met-
ric completion is nothing but adding limits for all Cauchy sequences
pxnqn � G such that the sequence of inverses px�1

n qn is also Cauchy.

1.3. Free groups. Finally, since we shall work with free groups often
we recall some basic facts and fix some notation related to them here.
Let A be a non-empty set. Recall that the free group FA generated by
A is the free group having elements of A as free generators. Consider
the disjoint union t1u

²
A
²
A�1 denoted by Ā, where A�1 is the set

of formal inverses of A, i.e. A�1 � ta�1 : a P Au. One can view the
free group FA as the set of all reduced words over the alphabet Ā. A
word w � w1 . . . wn, where w1, . . . , wn P Ā is reduced if either n � 1
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and w1 � 1, or there is no i ¤ n such that wi � 1 and wi � w�1
i�1.

For any word (not necessarily reduced) w over the alphabet Ā, by w1

we denote the reduction of w, i.e. the unique reduced word obtained
from w by successively removing the pairs wi, wi�1, where wi � w�1

i�1,
and letters 1 from w till it is reduced. In case this procedure leads to
an empty word, we set w1 to be 1. For any word w, by |w| we denote
the length of the word, i.e. the number of letters from alphabet used
to make w.

Then the group multiplication of two reduced words w1 and w2 is
defined to be pw1w2q

1, i.e. concatenation of two words followed by re-
duction. The inverse of a reduced word w1 . . . wn is the reduced word
w�1
n . . . w�1

1 . The unit is the reduced word 1.

We shall also use the following basic observation.

Observation 1.7. Let H be an at most countable group equipped
with a (continuous) norm λ. Then there exists a (continuous) semi-
norm λ1 on F8, the free group of countably many free generators,
such that the quotient F8{N , where N � th P F8 : λ1phq � 0u, is
isometrically isomorphic to pH,λq.

Indeed, just pick some countable set of generators (with possi-
ble repetition) phnqn. For each reduced word w over the alphabet
t1, hn, h

�1
n : n P Nu denote by wH its evaluation in H, i.e. the group

element of H that corresponds to the natural evaluating of w in H.
Then we consider the free group freely generated by phnqn and define
the seminorm λ1 by the formula λ1pwq � λpwHq for any word w over
the alphabet t1, hn, h

�1
n : n P Nu.

2. Normed ultraproducts of normed groups and group
embeddings into them

Metric ultraproducts of groups with bi-invariant metric, resp. conjugacy-
invariant norms are well-known from the literature. We refer to the
appendix in [3] for information about them. Let M be some class of
groups equipped with bi-invariant metric/conjugacy-invariant norms.
It is of great current interest which (discrete) groups can be embedded
into a metric ultraproduct of groups from M.

As already mentioned in the introduction, the most interesting cases
are when M is the set of unitary groups of finite rank equipped with
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the Hilbert-Schmidt distance and when M is the set of finite permu-
tation groups equipped with the normalized Hamming distance. The
former are the hyperlinear groups and the latter are the sofic groups.
We recall they were introduced by Gromov ([11]). They are related to
the Gottschalk’s surjunctivity conjecture. The major open problem is
whether every group is hyperlinear and sofic (we note that every sofic
group is hyperlinear [7]). We refer the reader to the survey [14] and
to the monograph [3] where these classes of groups are defined and
metric ultraproducts of groups with bi-invariant metrics are treated.

Weakly sofic groups are M-approximable groups, where M is the
class of all finite groups with arbitrary bi-invariant metric. Weakly
sofic groups as a generalization of sofic groups were introduced by
Glebsky and Rivera in [9] (see also [8]) as the existence of a non-
weakly sofic group is equivalent to a certain conjecture about pro-finite
topology on finitely generated free groups.

We also recall from the introduction the linear sofic groups intro-
duced by Arzhantseva and Paunescu in [1], which are groups approx-
imable by general linear groups with the normalized rank distance.
When M is the set of finite groups with a commutator-contractive
bi-invariant metric, then such M-approximable groups were called as
Fc-approximable groups in [17]. Finally, let us mention that when M
consists of all finite groups with the trivial metric (i.e. taking only
t0, 1u as values), then such groups were called LEF (locally embed-
dable into finite) by Gordon and Vershik ([10]) (similarly, M is LEA if
it consists of finitely generated amenable groups with trivial metric).

So far, it has been widely open whether there are groups which are
not approximable by any such classes M mentioned. The only ex-
ceptions besides the rather simple case of LEF groups (or analogously
LEA groups) is when M is Fc, as it was proved by Thom in [17] that
the Higman’s group is not Fc-approximable.

2.1. Definition of the metric ultraproduct. Let now pGn, λnqnPN
be a sequence of general normed groups and fix some non-principal
ultrafilter U on N. We would like to define a metric/normed ultra-
product of them. Before we proceed any further let us remark here
that in this paper we consider only ultraproducts of countable se-
quences of groups, thus all ultrafilters are over N. Also, whenever we
say ultraproduct we automatically mean an ultraproduct determined
by a non-principal ultrafilter.
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We begin with recalling some standard constructions of metric ul-
traproducts. At first, one takes the direct product

±
nGn. In or-

der to define an ultraproduct norm there one has to restrict to a
subgroup of the product of those elements whose coordinates have
norm bounded by one common constant. That is, using a Banach
space theory notation, let pGnq`8 � tpgnqn : supn λnpgnq   8qu.
Let λ8 be the supremum norm on pGnq`8 . Consider then the sub-
group N � tpgnqn P pGnq`8 : limU λnpgnq � 0u. If all the λn’s were
conjugacy-invariant, then N is a normal subgroup and the quotient
pGnq`8{N � pGnqU with the quotient norm is the metric ultraproduct
of the sequence pGn, λnqn.

Alternatively, one might equip pGnq`8 with the ultraproduct semi-
norm λU , where λUppgnqq � limU λnpgnq and again consider the kernel
N � tpgnqn P pGnq`8 : λUppgnqq � 0u. If the norm λU is continuous,
N will be a normal subgroup and we can take the quotient. Again,
if all λn’s are conjugacy invariant then λU will be conjugacy-invariant
as well, and thus continuous. So N is a normal subgroup.

If not all λn’s are conjugacy-invariant then λU is an ultraprod-
uct seminorm which however does not have to be continuous, thus
ppGnq`8 , λUq is not a topological group and the kernel subgroup does
not have to be normal. In such a case, one has to restrict the sub-
group pGnq`8 ¤

±
nGn more. More precisely, we shall restrict to a

subset of pGnq`8 ¤
±

nGn (which will turn out to be a subgroup) of
elements that obey some modulus of continuity. That is the content
of the following definition.

Definition 2.1. Call an element pgnqn P pGnq`8 continuous in the
ultraproduct if

(2.1) @ε ¡ 0 Dδ ¡ 0 DA P U such that @n P A @hn P Gn

if λnphnq ¤ δ then λnpg
�1
n � hn � gnq   ε and λNpgn � hn � g

�1
n q   ε.

Equivalently, one can view elements that are continuous in the ultra-
product as follows. For each pgnqn P pGnq`8 take some corresponding
sequence pΓnqn of moduli of continuity (provided they do exist), i.e
Γn is an MOC for gn in Gn. We take the ultralimit of this sequence
of moduli, i.e. we define ΓUprq � limU Γnprq. If this ultralimit ΓU is
again a MOC (for pgnqn in pGnq`8), then pgnqn is continuous in the ul-
traproduct. Conversely, if pgnqn is continuous in the ultraproduct then
there exists a sequence pΓnqn of moduli of continuity such that Γn is an
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MOC for gn in Gn and the ultralimit ΓU is an MOC for pgnqn in pGnq`8 .

Denote by pGnqC ¤ pGnq`8 the subset of elements continuous in the
ultraproduct.

Lemma 2.2. pGnqC is a subgroup of pGnq`8. Moreover, if λn’s were
conjugacy-invariant, then pGnqC � pGnq`8.

Proof. If pgnqn P pGnqC then by definition also pg�1
n qn P pGnqC, thus

pGnqC is closed under taking inverses. Now pick some pgnqn, phnqn P
pGnqC. We show that pgn � hnqn P pGnqC. Take some ε ¡ 0 and we
must find corresponding Aε P U and δ ¡ 0 from the definition. By
assumption, there are some δ1 ¡ 0 and Ag P U such that for all n P Ag
and fn P Gn such that λnpfnq ¤ δ1 we have λnpg

ι
n � fn � g

�ι
n q   ε,

for ι P t1,�1u. Similarly, by assumption, there are some δ ¡ 0 and
Ah P U such that for all n P Ah and fn P Gn such that λnpfnq ¤ δ we
have λnph

ι
n �fn �h

�ι
n q   δ1, for ι P t1,�1u. Now it is clear Aε � AgXAh

and δ ¡ 0 are as desired.
The moreover statement from the lemma is easy and left to the

reader. �

We consider the ultraproduct seminorm λ on pGnqC.

Lemma 2.3. The ultraproduct seminorm λ on pGnqC is continuous,
thus the kernel subgroup is normal and we can quotient.

Proof. Indeed, take some pgnqn P pGnqC and ε ¡ 0. By definition,
there is some B P U and δ ¡ 0 such that for every n P B we have
λnpg

�1
n � h � gnq   ε for every h P Gn such that λnphq   δ. Take now

some phnqn P pGnqC such that λpphnqq   δ. We need to show that
λppgnq

�1 � phnq � pgnqq   ε. It suffices to find Aε P U such that for every
n P Aε we have λnpg

�1
n � hn � gnq   ε. Since λpphnqq   δ there is some

C P U such that for every n P C we have λnphnq   δ. Thus it suffices
to take Aε � B X C. �

We note that one typical element of pgnqn P pGnqC is such that there
is a single MOC Γ such that Γ is a MOC for gn in pGn, λnq for every
n.

2.2. Rǎikov metric completeness. Finally, we make some observa-
tions regarding the Rǎikov metric completeness defined in the previ-
ous section. It is known that ultraproducts of normed vector spaces or
groups with conjugacy-invariant norms are complete. A group with a



METRIC APPROXIMATION OF GROUPS AND THEIR ULTRAPRODUCTS 11

norm cannot be always complete as noted in Subsection 1.2. However,
they may be Rǎikov metrically completed as mentioned in Fact 1.6.

Lemma 2.4. A metric ultraproduct of normed groups pGn, λnq is
Raǐkov metrically complete, regardless of whether Gn’s were Raǐkov
metrically complete.

Proof. Suppose we have a sequence (of sequences) ppgn,mqnqm � pGnqC
of elements, resp. representatives from the equivalence classes, from
the metric ultraproduct such that both the sequence and the sequence
of its inverses are Cauchy. We shall show that the limit is in pGnqC.
The limit is constructed as in the case of normed vector spaces or
groups with conjugacy-invariant norms. That is, let pAnqn be a strictly
decreasing sequence of sets from the ultrafilter U such that

�
nAn �

H, and pknqn a strictly increasing sequence of natural numbers such
that for every m and every i, j ¥ km we have

@n P Ampλnpg
�1
n,i � gn,jq   1{2m ^ λnpgn,i � g

�1
n,jq   1{2mq.

The limit sequence phnqn is defined so that for all n R A1 we have
hn � 1 and for any m and n P AmzAm�1 we have hn � gn,km . We
claim that phnqn P pGnqC and that it is the limit of ppgn,mqnqm, while
ph�1

n qn is the limit of ppg�1
n,mqnqm. The latter is verified as in the classical

case of groups with conjugacy-invariant norms, so we only check the
former, i.e. that phnqn P pGnqC.

By definition, we must check that for every ε ¡ 0 there are δ ¡ 0
and Aε P U such that for every n P Aε and fn P Gn with λnpfnq   δ
we have λnph

�1
n � fn �hnq   ε and λnphn � fn �h

�1
n q   ε. Pick l such that

1{2l   ε{3. Since pgn,klqn P pGnqC we have that there is some A1 P U
and some δ ¡ 0 such that for every n P A1 and every fn P Gn with
λnpfnq   δ we have

(2.2) λnpg
�1
n,kl

� fn � gn,klq   ε{3, λnpgn,kl � fn � g
�1
n,kl

q   ε{3.

Set Aε � A1 X Al P U . For any n P Aε � Al and any i ¡ kl we thus
have

(2.3) λnpg
�1
n,i � gn,klq   ε{3 ^ λnpgn,i � g

�1
n,kl

q   ε{3.

Putting (2.2) and (2.3) together we get that for every n P Aε and
every fn P Gn with λnpfnq   δ we have

λnph
�1
n � fn � hnq ¤ λnph

�1
n � gn,klq � λnpg

�1
n,kl

� fn � gn,klq � λnpg
�1
n,kl

� hnq  

ε{3 � ε{3 � ε{3 � ε.
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Analogous inequalities give that

λnphn � fn � h
�1
n q   ε,

and so we are done. �

2.3. Some pathological examples. We finish this section by pre-
senting some pathological examples which show that metric ultraprod-
ucts of groups with general continuous norms are rather delicate. We
show, as mentioned in the introduction, that a metric ultraproduct
of normed topological groups may collapse to a trivial group. Also,
we show that for some normed topological groups it may happen that
their metric ultrapower is the group itself.

Let us start with the former.

Lemma 2.5. There exists a sequence of non-trivial normed topological
groups pGn, λnq such their metric ultraproduct, over any non-principal
ultrafilter, is a trivial group.

Proof. For every n P N, let Gn be F2, the free group on two free gener-
ators. Let | � | be the canonical length function on F2, i.e. identifying
F2 with the set of reduced words over the alphabet ta, b, a�1, b�1u, |x|,
for x P F2, is the length of x as a word. Let λn be the rescaling | � |{n.
We claim this sequence is as desired. Fix any non-principal ultrafilter
U on N. Suppose there exists a non-trivial element pgnqn P pGnqU
in the metric ultraproduct, or rather its representative from pGnq`8 .
Since λUppgnqq ¡ 0, there exist ε ¡ 0 and A P U such that for all
n P A, λnpgnq ¡ ε. Then we claim that there are no δ ¡ 0 and
B P U such that for all n P B and hn P Gn with λnphnq   δ we
have λnpg

�1
n � hn � gnq   ε, thus violating the condition that pgnqn

is continuous in the ultraproduct. Suppose otherwise and fix corre-
sponding δ ¡ 0 and B P U . We may suppose that B � A. Pick
n P B such that 1{n   δ. Recall that gn is some reduced word
w1 . . . wm over the alphabet ta, b, a�1, b�1u. Take x P ta, bu such that
x � w1 and x � w�1

1 . We have that λnpxq � 1{n   δ. However,
λnpg

�1
n � x � gnq ¡ 2ε� 1{n. Indeed, by assumption there is no cancela-

tion in the word w � w�1
m . . . w�1

1 xw1 . . . wm, thus g�1
n �h�gn corresponds

to the reduced word w. This finishes the proof. �

Next, we present an example of a normed topological group whose
metric ultrapower is equal to the original group itself.

Lemma 2.6. Consider the group S8 of all permutations of N with the
norm λppq, for p P S8, defined as maxt1{n : ppnq � nu, which was
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already considered in this section. Then its metric ultrapower (over
any ultrafilter on N) is equal to S8 itself.

Proof. Let us start with an observation.

Observation 2.7. Take any p P S8. For any n we want to compute
the δ ¡ 0 such that whenever λpsq   δ then we have λpp�1 �s�pq   1{n,
and conversely that there exists s P S8 such that λpsq ¥ δ and
λpp�1 � s � pq ¥ 1{n. Set m � maxtpplq : l ¤ nu. We claim that
we may take δ � 1{m. Indeed, suppose that for some s P S8
we have λpsq   1{m. Then s æ t1, . . . ,mu � id. It follows that
p�1 � s � p æ t1, . . . , nu � id, thus λpp�1 � s � pq   1{n. Conversely,
let m1 � ppnq ¤ m. Let s P S8 be arbitrary with the property that
spm1q ¡ m. Then λpsq ¥ 1{m and p�1 � s � p æ t1, . . . , nu � id, thus
λpp�1 � s � pq ¥ 1{n.

Now consider the ultrapower of S8 with respect to some non-principal
ultrafilter U (on N). Let ppnqn be some sequence representing an ele-
ment of the ultrapower. We claim that

@n Dm DA P U @i P A @l ¤ n ppiplq ¤ mq.

Otherwise, we would get that there is n such that for every m there
is A P U such that for every i P A we have pipnq ¡ m. Note that
the preceding formula is not a formal negation of the formula above,
however it is equivalent to it. However, it follows from Observation 2.7
that such a sequence is not continuous in the ultrapower. The same
argument gives that

@n Dm DA P U @i P A @l ¤ n pp�1
i plq ¤ mq.

Now it follows that for any n there is An P U and sn P S8 such that for
every i P A and every l ¤ n we have piplq � snplq and p�1

i plq � s�1
n plq.

A straightforward argument gives that psnqn converges to some s P S8,
and that ppnqn is equal to the constant sequence consisting of s in the
ultrapower. �

3. Proof of the main theorems

In the last section, we prove Theorems 0.1 and 0.2. The meaning of
Theorem 0.2 is now clear after we have defined metric ultraproducts of
normed groups in the previous section. We precisely restate Theorem
0.1 here. We start with a definition first.
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Definition 3.1. Let pG, λq and pH, ρq be normed groups, and let
F � G be a finite subset and ε ¡ 0 arbitrary. We say that φ : F Ñ H
is an ε-homomorphism if


 ρpφpg �hq�1 �φpgq �φphqq   ε, for all g, h P F such that g �h P F ;

 |ρpφpgqq � λpgq|   ε for all g P F .

Theorem 3.2. There exists a countable sequence pGn, λnqn of finite
normed groups such that for any normed topological group pH, ρq, in
particular for any discrete group, and any ε ¡ 0 and any finite sub-
set F � H there exists i0 such that for all i ¥ i0 there is an ε-
homomorphism φ : F Ñ Gi.

Moreover, we may require that for every f P F , ΓGi

φpfq ¤ 2ΓHf � εid.

The rest is devoted to the proofs of the main theorems. We prove
Theorem 0.2 and then show how Theorem 3.2 follows.

Again, we need some definitions before we can continue.

Definition 3.3. Let G be a finitely generated group. Let A � G
be some finite symmetric subset, i.e. A � A�1 � ta�1 : a P Au,
containing the unit 1G and generating G. Consider a function λ1 :
AÑ R satisfying the following conditions:


 For x P A, λ1pxq � 0 if and only if x � 1G;

 For any x P A, λ1pxq � λ1px�1q.

Then we call λ1 a partial pre-norm. If λ1 additionally satisfies condition


 For any x1, . . . , xn P A such that x1 � . . . �xn P A, λ1px � . . . �xnq ¤°n
i�1 λ

1pxiq

then we call λ1 a partial norm.

Construction 3.4. Let G be a group, A a finite symmetric subset
containing the unit and generating G, and let λ1 : AÑ R be a partial
pre-norm. Then the following formula defines a norm λ on G. For any
x P G we set

λpxq � mintλ1px1q � . . .� λ1pxnq : x1, . . . , xn P A, x � x1 � . . . � xnu.

Indeed, it immediately follows from the definition that for any x, y P
G we have λpx � yq ¤ λpxq � λpyq. Since λ1 was a symmetric function
vanishing at 1G we get that also λ is symmetric and vanishes at 1G.

We shall call such λ finitely generated.
Moreover, if G is a finitely generated free group then observe that

if λ1 is a partial norm then λ extends λ1, and λ is proper.
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Now suppose we have finitely many finitely generated free groups
F1, . . . , Fn. For each i ¤ n, suppose that Fi is freely generated
by xi,1, . . . , xi,ni

. Suppose also that for each i ¤ n there is a pre-
norm λ1i : defined on some finite symmetric Ai � Fi that contains
t1, xi,1, . . . , xi,ni

u, which thus defines some norm λi on Fi. pFi, λiq is a
discrete normed group, thus a topological group. For any i ¤ n and
j ¤ ni denote by Γji the minimal MOC for xi,j in Fi. That is, for any
r P r0,8q define

Γji prq � maxtr, suptλipx
ε
i,j � g � x

�ε
i,j q : g P Fi, λipgq ¤ r, ε P t1,�1uu.

Now consider the free product F � F1 � . . . � Fn. We would like to
define a finitely generated norm F which extends the particular norms
on Fi’s in such a way that the minimal moduli of continuity of the free
generators in F are ‘close’ to the minimal moduli of the generators in
the appropriate Fi’s. Before doing so, we need the following definition,
first used in [4] and implicitly present already in [16].

Definition 3.5 (Match). Let A be some symmetric alphabet, i.e.
if a P A, then also its formal inverse a�1 belongs to A. Let w �
wm . . . wm�n be some word over A, for technical reasons enumerated
by an arbitrary interval of natural numbers. Denote by J that interval,
i.e. J � tm, . . . ,m� nu. A match on J for w is a bijection ρ : J Ñ J
such that


 ρ � ρ � idJ , i.e. for every i P J we have ρ � ρpiq � i,

 for no i, j P J we have i   j   ρpiq   ρpjq,

 if ρpiq � i, for some i P J , then wi � w�1

ρpiq.

Notice that for any match ρ on J for a word w enumerated by J and
for any i P J such that i   ρpiq, we have that ρ æ ri� 1, . . . , ρpiq � 1s
is a match on ri� 1, . . . , ρpiq� 1s for the corresponding subword of w.

Also, if J and K are disjoint intervals such that max J�1 � minK,
and ρJ is a match on J for some word wJ while ρK is a match on K
for some word wK , then ρJ Y ρK is a match on J YK for wJwK .

The reader should view a match ρ for some word w as a way
how to build w from its subwords by means of concatenation and
conjugation. For example, for a word w � a�1bca and a match
ρp1q � 4, ρp4q � 1, ρp2q � 2, ρp3q � 3 for w one sees w as being
built first by concatenating letters b and c to obtain the word bc, and
then conjugating bc to obtain a�1bca.

Now we are ready to state the proposition.
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Proposition 3.6. There exists a finitely generated norm λ on F sat-
isfying


 that for any i ¤ n, λ æ Fi � λi, i.e. λ extends λi,

 for every i ¤ n and j ¤ ni and any y P F , ε P t1,�1u we have
λpxεi,j � y � x

�ε
i,j q ¤ 2Γji pλpyqq, i.e. 2Γji is a MOC for xi,j (and

x�1
i,j ) in F .

Remark 3.7. We stress the importance of the second item in the propo-
sition, i.e. that there are moduli of the free generators in the free
product that are close to the minimal moduli of the free generators in
the original free groups.

Proof. The norm λ will be constructed in three steps. In the first step,
we shall construct a finitely generated norm on F that extends each
λi. However, this norm will not yet satisfy the second condition from
the statement of the proposition. In the second step, we shall modify
the norm from the first step so that it still extends λi’s and moreover
the minimal moduli satisfy the second condition. While doing so, we
shall however break the condition that the norm is finitely generated.
That will be fixed in the last third step.

Step 1. First, set B1 �
�n
i�1Ai and σ1 �

�n
i�1 λ

1
i. We view B1 as a

finite subset of F � F1 � . . . � Fn. It is clearly symmetric, contains the
generators and the unit and σ1 is a partial pre-norm. Moreover, the
norm σ on F determined by σ1 extends λi for each i ¤ n. Indeed, take
any i ¤ n and y P Fi. It follows from the definition that σpyq ¤ λipyq.
Suppose that σpyq   λipyq. Then there exists y1, . . . , ym P B1 such
that y � y1 � . . . � ym and σpyq �

°m
j�1 σ

1pyjq. For any j ¤ m if yj R Ai
then set ỹj � 1, if yj P Ai then let ỹj � yj. Since y P Fi we have that
y �
±m

j�1 ỹj and

λipyq ¤
m̧

j�1

σ1pỹjq ¤
m̧

j�1

σ1pyjq � σpyq,

a contradiction.
However, 2Γji is not necessarily a MOC for every xi,j (and its in-

verse) anymore. That will be fixed in the next step.

Step 2. Denote by I the set tpi, jq : i ¤ n, j ¤ niu. Then for every
pi, jq P I and r P R we set Γi,jprq � Γji � r. Clearly, for every r,

Γi,jprq ¥ 2r and Γi,j ¤ 2Γji .
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Now denote by W̄ the alphabet txεi,j : pi, jq P I, ε P t1,�1uu Y t1u.
We recall that the elements of F correspond to reduced words over
the alphabet W̄.

Let now w � w1 . . . wn be any word (not necessarily reduced) over
W̄ and let ρ be a match on I � t1, . . . , nu for w. Then we define the
value λρpwq by induction on n.

For technical reasons we also allow the case when n � 0, i.e. w is
an empty word. Then we set λρpwq � 0.

Suppose that n � 1. Then the match ρ is trivial and we set λρpwq �
σpwq � σpw1q.

Suppose now that n ¡ 1 and we have defined λρpwq for every w of
length less than n and every match ρ for w. If ρp1q � n then w �
xεi,jw̃x

�ε
i,j for some pi, jq P I and ε P t1,�1u, where w̃ � w2 . . . wn�1.

By ρ1 we denote the match ρ æ r2, . . . , n� 1s for w̃ and we set

λρpwq � Γi,jpλρ1pw̃qq.

Suppose now that ρp1q R t1, nu. Then denote by ρ1 the match ρ æ
r1, . . . , ρp1qs for w1 . . . wρp1q and by ρ2 the match ρ æ rρp1q � 1, . . . , ns
for wρp1q�1 . . . wn. And we set

λρpwq � λρ1pw1 . . . wρp1qq � λρ2pwρp1q�1 . . . wnq.

Finally, suppose that ρ � idt1,...,nu. Then we set λρpwq � σpw1q,
where, we recall, w1 is the reduced word obtained from w; i.e. an
element of F .

We may now define the norm λ̃ as follows. For any x P F we set

λ̃pxq � mintλρpwq : w1 � x, ρ is a match on t1, . . . , |w|u for wuu.

Note that since F and σ are finitely generated we may indeed use the
minimum in the formula above.

It follows from the definition that λ̃ is a norm. Indeed, clearly it
is symmetric, since σ was symmetric, and it vanishes only at 1 since
the minimum is used in the definition. Take now some x, y P F . Let
wx be a word satisfying w1

x � x and ρx a match for wx such that

λρxpwxq � λ̃pxq. We also take ρy and wy with analogous properties for
y. Then we get that

λ̃px � yq ¤ λρxYρypwxwyq � λρxpwxq � λρypwyq.

We now show that for each pi, jq P I and ε P t1,�1u and any

y P F we have λ̃pxεi,j �y �x
�ε
i,j q ¤ Γi,jpλ̃pyqq. Let wy be a word satisfying
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w1
y � y and ρy a match for wy such that λρypwyq � λ̃pyq. Suppose that

|wy| � l and let ρ be a match on t1, . . . , l�2u, defined by ρp1q � l�2,
ρpl � 2q � 1 and for any 1   i   l � 2, ρpiq � ρypi � 1q, for the word
xεi,jwyx

�ε
i,j . Then

λ̃pxεi,j � y � x
�ε
i,j q ¤ λρpx

ε
i,jwyx

�ε
i,j q � Γi,jpλ̃pyqq.

Moreover, we claim that λ̃ still extends λi on Fi for each i ¤ n. This is
done completely analogously as we did it for σ. That is, for any i ¤ n
and x P Fi, if λ̃pxq   λipxq, then there would be a word wx over W̄
and a match ρ for wx such that w1

x � x and λρpwxq   λipxq. Replace
in wx each letter from W̄ztxεi,j : j ¤ ni, ε P t1,�1uu by 1 and denote
the obtained word vx. Since x P Fi we still have that v1x � x and it
follows directly from definition that λipxq ¤ λρpvxq ¤ λρpwxq.

Step 3. Now, for every pi, jq P I, let ri,j be (the minimal number)
such that Γi,jpri,jq ¥ 2λipxi,jq � ri,j. Set r1 � maxpi,jqPI ri,j and r �

maxpi,jqPI Γi,jpr
1q. Since, as it it straightforwards to check, λ̃ is still

proper, the set Y � ty P F : λ̃pyq ¤ ru is finite.
Finally, we define a finitely generated norm λ with the desired prop-

erties. We let λ be generated by values of λ̃ on B � B1 Y Y , i.e. for
any x P F we set

λpxq � mintλ̃px1q � . . .� λ̃pxmq : x1, . . . , xm P B, x � x1 � . . . � xmu.

Clearly, λ extends λi on Fi since λi was generated by Bi, Bi � B1 �
B and λ̃ extends λi. Also, λ coincides with λ̃ on Y .

And moreover, for any pi, jq P I and ε P t1,�1u and any y P F we
have

λpxεi,j � y � x
�ε
i,j q ¤ Γi,jpλpyqq.

Indeed, take any pi, jq P I, ε P t1,�1u and y P F . If λpyq ¡ r1 then
Γi,jpλpyqq ¥ 2λpxi,jq�λpyq. However, λpxεi,j �y �x

�ε
i,j q ¤ 2λpxi,jq�λpyq.

Thus suppose that λpyq ¤ r1. Then y P Y and λpyq � λ̃pyq. We

have that λ̃pxεi,j � y � x
�ε
i,j q ¤ Γi,jpλ̃pyqq ¤ Γi,jpr

1q ¤ r. It follows that

xεi,j � y � x
�ε
i,j P Y and thus λpxεi,j � y � x

�ε
i,j q � λ̃pxεi,j � y � x

�ε
i,j q ¤ Γi,jpλpyqq.

That finishes the proof. �

Remark 3.8. Matches were originally used by Ding and Gao in [4] for
a convenient computation of the Graev bi-invariant metric. The same
authors then used matches for constructing also continuous norms, or
continuous left-invariant metrics in [5], which is close to the approach
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we used in the previous proposition. The reader is invited to compare
the construction in Step 2 in Proposition 3.6 with the construction
in Definition 3.3 in [5]. The same constructions were later used by
Ding in [6] to construct surjectively universal Polish groups. A reader
familiar with these results will recognize that our construction is, in a
sense, a generalization of those in [5].

The next proposition is a, sort of, metric residual finiteness of
normed free groups. It shows that normed free groups may be ap-
proximated by finite normed groups. That will be used in producing
the desired sequence of finite normed groups from Theorems 3.2 and
0.2.

Proposition 3.9. Let F be a finitely generated free group with a norm
λ. Then for any finite subset A � F containing the generators there
exists a finite group H with a norm σ and a partial monomorphism
φ : A � F ãÑ H which is also an isometry with respect to λ and σ.

Moreover, if λ is proper and for any free generator x of F some
MOC Γx of x in F is given, such that it is eventually greater than
2λpxq � id, then, provided A is large enough, Γx remains a MOC for
φpxq in H.

Proof. Let M � maxtλpxq : x P Au, let m � mintλpxq : x P Azt1uu
and let K � maxt|x| : x P Au. Let B � tx P F : |x| ¤ K � rM

m
su. Note

that A � B. Since F is residually finite there exists a finite group H
together with a partial monomorphism φ : B � F ãÑ H. Moreover,
we may assume that φrBs generates H. Note that then in fact φrAs
generates H as A contains the (free) generators of F .

To simplify the notation, for every x P B denote by x1 the element
φpxq P H. For every x P A set σ1px1q � λpxq. Let σ be a norm on
H generated by σ1. It suffices to prove that for every x P A we have
σpx1q � σ1px1q (� λpxq).

Note that although σ1 is a partial norm on φrAs, it does not follow
automatically that σ extends σ1 as H is not free, it is a finite group.

Suppose that for some x P A we have σpx1q   σ1px1q. Then there
exist x1, . . . , xn P A such that x1 � x11 � . . . � x

1
n and

σpx1q �
ņ

i�1

σ1px1iq   λpxq.
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We claim that n ¤ M
m

. Indeed, we have σ1px1q ¤ M and for every

i ¤ n, σ1px1iq ¥ m. Thus if n ¡ M
m

, then
°n
i�1 σ

1px1iq ¡ m � M
m
¡ M , a

contradiction.
Moreover, for each i ¤ n we have |xi| ¤ K. Thus |x1�. . .�xn| ¤ K �M

n
.

Consequently, x1 � . . . xn is in B, so in the domain of φ. However, then
it follows that x � x1 � . . . � xn as φ is a partial monomorphism. But
we have

λpxq ¤ λpx1q � . . .� λpxnq � σ1px11q � . . .� σ1px1nq � σpx1q,

a contradiction.

It remains to prove the ‘moreover’ part from the statement of the
proposition. Suppose that pF, λq is such that λ is proper, e.g. λ is
finitely generated. Take some generator x P F and let Γx be a MOC
for x in F such that there is some r1 such that Γxpr

2q ¥ 2λpxq� r2 for
r2 ¥ r1. Set r � Γxpr

1q. Then the set B � ty P F : λpyq ¤ ru is finite.
Suppose now that pH, σq is a finite normed group and φ : A � F Ñ H
a partial monomorphism on some finite set A containing B which is
isometric. Then we claim that Γx is a MOC for φpxq in H. Indeed,
take some y P H. If σpyq ¡ r1 then Γxpσpyqq ¥ 2σpφpxqq � σpyq ¥
σpφpxq�1 � y � φpxqq. If σpyq ¤ r1 then y � φpy1q for some y1 P B and
λpy1q � σpyq. Since λpx�1�y1�xq ¤ Γxpλpy

1qq ¤ r we have x�1�y1�x P B,
thus σpφpxq�1 � y � φpxqq � λpx�1 � y1 � xq ¤ Γxpλpy

1qq � Γxpσpyqq. �

Construction 3.10. Let tpFn, νnq : n P Nu be an enumeration of all
finitely generated free groups with rational finitely generated norms,
i.e. norms taking values in the rationals. We shall denote the gen-
erators of Fi by xi,1, . . . , xi,ni

, for each i. For each n P N we use
Proposition 3.6 to define a norm λn on Gn � F1 � . . . � Fn which ex-
tends νi for i ¤ n, and moreover, for each i ¤ n, j ¤ ni we have
that 2Γji is a modulus of continuity of xi,j in Gn (where Γji was the

minimal MOC for xji in Fi). Suppose that λn is generated by some
λ1n defined on a finite set An � Gn. Set kn � maxxPAn |x| and let
Bn � tx P Gn : |x| ¤ knu. We use Proposition 3.9 to get a finite
group Hn with a norm ρn such that there is a partial monomorphism
φn : Bn ãÑ Hn which is isometric with respect to λn and ρn, and
moreover, for every generator xi,j, i ¤ n, j ¤ ni, Γi,j � 2Γji is a MOC
for φnpxi,jq in Hn.
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Finally, consider any non-principal ultrafilter on N and set G to be
the corresponding metric ultraproduct of the sequence pHn, ρnqn.

Theorem 3.11. G contains isometrically every separable normed topo-
logical group.

Remark 3.12. Theorem 3.11 covers Theorem 0.2 from the introduction.
Theorem 0.1, resp. 3.2 will follow by a rather standard argument
which we shall provide after the proof of Theorem 3.11.

Proof. Let pE, ρq be an arbitrary separable normed group. Let penqn
be an infinite set of generators such that the Rǎikov metric completion
of the subgroup generated by penqn contains E. By Observation 1.7,
we may suppose that the subgroup generated by penqn is free if we
view ρ as a seminorm. For any x P E by Γx we shall denote ΓEx , i.e.
the minimal modulus of continuity for x in E.

For any n, let En be the free group freely generated by e1, . . . , en.
Let Cn be the set tx P En : |x| ¤ nu.

We define a rational partial norm (note that ρ in contrast may be
just a seminorm) σ1n on Cn. We take as σ1n any rational partial norm
σ1 on En with the property that for every w P Cn we have

(3.1) σ1pwq ¥ ρpwq,

σpwq � ρpwhq ¤ 1{m,

where m � |Cn|.

Claim 3.13. Such a rational partial norm σ exists.

To show it enumerate Cn as c1, . . . , cm in such a way that ρpc1q ¥
ρpc2q ¥ . . . ¥ ρpcmq. Let Cmin � mint1{m,mint|ρpciq � ρpcjq| : i, j ¤
m, ρpciq � ρpcjquu. Let pδiq

2m�1
i�1 be an increasing sequence of positive

real numbers such that for each i ¤ 2m� 1


 δi   Cmin,

 if for some i � j, ρpciq � ρpcjq, then δi � δj,

 ρpciq � δi P Q.

Then for ci � 1 we set σ1pciq � ρpciq � δi, and σ1p1q � 0. Clearly,
it is rational, and it is symmetric since if ci � c�1

j then δi � δj, thus
σ1pciq � ρpciq � δi � ρpcjq � δj � σ1pcjq. Let ci � ci1 � . . . � cij . If for
any l ¤ j we have il ¥ i, i.e. ρpciq ¤ ρpcilq, then we have

σ1pciq � ρpciq � δi ¤ ρpciq � pρpcilq � ρpciqq ¤
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ρpcilq � δil � σ1pcilq ¤
j̧

l�1

σ1pcilq.

If for every l ¤ j we have ρpciq ¡ ρpcilq, then for every l ¤ j we have
δi ¤ δil and thus

σ1pciq � ρpciq � δi ¤
j̧

l�1

ρpcilq � δil �
j̧

l�1

σ1pcilq.

This proves the claim.

We set σn to be the (rational finitely generated) norm on En gen-
erated by σ1n.

For each n, there is ipnq such that pEn, σnq is equal to pFipnq, νipnqq. It
follows that we can find a strictly increasing sequence of natural num-
bers i1   i2   . . . such that for each k P N and every ik ¤ l   ik�1,
Gl contains Fipkq � Ek as a subgroup. Thus for every n, m ¥ n and
im ¤ l   im�1 fix some isometric monomorphism φ : pEm, σmq Ñ Gl

and denote by eln the element φpenq P Gl. For l   in, set eln � 1. So
we have defined elements eln for all n, l P N.

Now notice that by (3.1), for any w P E we have

(3.2) ρpwq � lim
n
σnpwq.

For any n ¤ m P N, let Γmen be the minimal MOC for en in pEm, σmq
and Γen the minimal MOC for en in pE, ρq. It follows from (3.1) and
(3.2) that

(3.3) Γen � lim
m

Γmen ,

i.e. for any r, Γenprq � limm Γmenprq. By Proposition 3.6, we have

(3.4) ΓGl

eln
¤ 2Γmen @n @m ¥ n @im ¤ l   im�1.

Thus, if we denote by fmn the element φmpe
m
n q in Hm, for all n,m P N,

we still have that ΓHm
fmn

¤ 2Γmen (by Proposition 3.9). Recall that φm is

the partial isometric monomorphism from Construction 3.10 (where
it was obtained using Proposition 3.9).
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For each n consider the sequence pfmn qm. By (3.3) and (3.4), the
elements pfmn qm are bounded by a common MOC, thus pfmn qm is con-
tinuous in the ultraproduct and belongs to G. We shall denote the
corresponding element there by gn.

We now claim that xgn : n P Ny ¤ G is isometrically isomorphic to
xen : n P Ny ¤ E. For each n P N and w P En, denote by wG the
corresponding element in xgn : n P Ny, i.e. an element obtained by
a canonical evaluation where en is evaluated as gn. Similarly, for all
m ¥ in denote by wm the evaluation of w in xfmi : i ¤ ny ¤ Hm. Then
for any n and w P En we have

λpwGq � lim
U
λmpwmq � lim

mÑ8
λmpwmq � ρpwq.

Since G is Rǎikov metrically complete, it contains isometrically E.
�

Proof of Theorem 3.2. We claim that the sequence pHn, ρnqn from Con-
struction 3.10 is as desired. Fix some normed topological group pG, λq,
some finite subset F � H and some ε ¡ 0. We may without loss of
generality suppose that G is separable; otherwise we could replace G
by some separable subgroup of G containing F . Suppose, to reach a
contradiction, that there is an infinite subset A � N such that for all
i P A there is no ε-homomorphism from F into Gi. Let U be an arbi-
trary non-principal ultrafilter on N such that A P U . By Theorem 3.11,
the metric ultraproduct of the sequence pGnqn using U contains G iso-
metrically. Moreover, it follows from the proof of Theorem 3.11 that
if we choose some generating sequence penqn of G so that it contains
the elements of F , then we obtain an isometric embedding ψ : GÑ G,
where G is the ultraproduct, such that for every f P F ,

ΓG
ψpfq ¤ 2ΓGf .

As usual, we shall suppose that for each g P G, ψpgq is a sequence from±
nGn rather than some equivalence class, and for each i P N, by ψpgqi

we denote the corresponding projection on the i-th coordinate.
Then by a standard ultraproduct argument (essentially by the clas-

sical  Loś theorem) there exists a set B P U such that for all i P B the
map φi : F Ñ Gi defined by f Ñ ψpfqi is an ε-homomorphism such
that moreover ΓGi

φipfq
¤ 2ΓGf � εid. Taking any i P A X B leads to a

contradiction. �

Let us conclude with few problems. First, we want to ask whether
the analogous result holds in the category of groups with bi-invariant
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metric. Thus we want to ask whether not only every discrete group is
weakly sofic, which is the problem of Glebsky and Rivera, but whether
actually every group with bi-invariant metric is weakly sofic.

Question 3.14. Does every group with bi-invariant metric isometri-
cally embed into a metric ultraproduct of finite groups with bi-invariant
metric?

Let us offer also a weakening of the previous question. As weakly
sofic groups generalize sofic groups, one can generalize the notion of hy-
perlinear groups by defining weakly hyperlinear groups as those groups
that can be approximated by compact groups with bi-invariant metric,
or equivalently, as those groups that embed as subgroups into metric
ultraproducts of compact groups with bi-invariant metric. This notion
was introduced by Jakub Gismatulin. Clearly, the notion of weakly
hyperlinear groups makes again sense also for metric groups with bi-
invariant metric.

Question 3.15. Is every group with bi-invariant metric weakly hyper-
linear?

Remark 3.16. During the review process of the paper, Question 3.14
was answered negatively. Nikolov, Schneider and Thom in [13] prove
that no compact connected non-abelian Lie group with a compatible
bi-invariant metric embeds into a metric ultraproduct of finite groups
with bi-invariant metric.
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[1] G. Arzhantseva, L. Pǎunescu, Linear sofic groups and algebras, Trans. Amer.
Math. Soc. 369 (2017), no. 4, 2285–2310

[2] A. Connes, Classification of injective factors, Ann. of Math. 104 (1976), 73–
115

[3] V. Capraro, M. Lupini, Introduction to Sofic and Hyperlinear groups and
Connes’ Embedding Conjecture, Lectures Notes in Mathematics, 2136, 2015

[4] L. Ding, S. Gao, Graev metric groups and Polishable subgroups, Adv. Math.
213 (2007), no. 2, 887–901

[5] L. Ding, S. Gao, New metrics on free groups, Topology Appl. 154 (2007), no.
2, 410–420

[6] L. Ding, On surjectively universal Polish groups, Adv. Math. 231 (2012), no.
5, 2557–2572
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