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METRIC TOPOLOGICAL GROUPS: THEIR METRIC
APPROXIMATION AND METRIC ULTRAPRODUCTS

MICHAL DOUCHA

ABSTRACT. We define a metric ultraproduct of topological groups
with left-invariant metric, and show that there is a countable se-
quence of finite groups with left-invariant metric whose metric
ultraproduct contains isometrically as a subgroup every separa-
ble topological group with left-invariant metric.

In particular, there is a countable sequence of finite groups with
left-invariant metric such that every finite subset of an arbitrary
topological group with left-invariant metric may be approximated
by all but finitely many of them.

We compare our results with related concepts such as sofic
groups, hyperlinear groups and weakly sofic groups.

INTRODUCTION

It is a major open problem whether all discrete groups are sofic, i.e.
whether all discrete groups can be metrically approximated, in a cer-
tain sense, by finite permutation groups with the Hamming distance.
On the other hand, when one wants to approximate metric groups, say
with bi-invariant distance, it is clear finite permutation groups with
the Hamming distance cannot serve for that purpose, e.g. the group
of integers with the standard metric cannot be approximated by them.
Since the introduction of sofic groups, many other classes of groups,
defined in a similar manner as groups metrically approximable by cer-
tain class of ‘basic metric groups’, appeared in the literature. Most
notably the hyperlinear groups, formally introduced by Radulescu in
[15], that are directly connected to the Connes’ embedding conjecture
for group von Neumann algebras ([2]). However, let us also mention
linearly sofic groups introduced by Arzhantseva and Paunescu in [1],
F.~approximable groups introduced by Thom in [17], and weakly sofic
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groups introduced by Glebsky and Rivera in [9] (see also [8]). Thom in
[17] showed that the Higman’s group is not F.-approximable, however
for all other classes this is unknown.

In this paper, we consider metric approximation by finite groups
with left-invariant metrics (that do not have to be bi-invariant). We
shall show that in this case we can prove a positive result.

Theorem 0.1. There exists a countable sequence (Gy,), of finite groups
with left-invariant metric such that any finite subset of any topological
group with left-invariant metric can be metrically approrimated by all
but finitely many G, ’s.

We refer to the last section, where the theorem is proved, for a
precise formulation and definition of approximation.

It is common in the area of group approximations to work with met-
ric ultraproducts of metric groups. Indeed, being C-approximable for
a certain class C of metric groups (with bi-invariant metric) is equiva-
lent with being embeddable as a subgroup into a metric ultraproduct
of groups from C. Metric ultraproducts of metric groups have been
defined only for groups with bi-invariant metric. Here we generalize
the notion and define a metric ultraproduct of arbitrary topological
groups with left-invariant metric and obtain the following theorem.

Theorem 0.2. There exists a countable sequence (Gy,), of finite groups
with left-invariant metric whose metric ultraproduct contains isomet-
rically an arbitrary separable topological group with left-invariant met-
ric.

We note that although being C-approximable and being embeddable
into metric ultraproduct of groups from C is rather easily checked to
be equivalent when C contains just groups with bi-invariant metric, it
is not the case in our general situation. The proof of Theorem 0.2 is
substantially more involved than the proof of Theorem 0.1. Indeed,
the tricky issue with metric ultraproducts of groups with left-invariant
metric is that in some cases the ultraproduct collapses to a trivial
group, so one has to choose the sequence (G,,), carefully.

1. DEFINITIONS AND PRELIMINARIES

1.1. Norms and metrics on groups. Let G be a group. A norm (or
a length function) on G is a function A : G — R with the following
properties:
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e \(z) = A1) for every z € G,
e Mz -y) < Ax) + A(y) for every z,y € G,
e \z)=0iff z = 1¢.

A satisfying only the right-to-left implication of the last condition is
called a seminorm.

A (semi)norm X on G satisfying A(g~!-h-g) = A(h) for every g,h € G
is called conjugacy-invariant.

Recall that a (pseudo)metric d on the group G is left-invariant if
d(g-z,g-y) = d(x,y) for every g,z,y € G. Right-invariance and
bi-invariance are defined analogously.

There is a one-to-one correspondence between norms and left-invariant
metrics (and analogously between seminorms and left-invariant pseu-
dometrics). Indeed, given a left-invariant metric d, the formula A\4(x) :=
d(x,1g) gives a norm on G; and conversely, given a norm \ on G, the
formula dy(z,y) := Mz~ - y) gives a left-invariant metric.

Moreover, if the metric d was bi-invariant, the the formula above
gives a conjugacy-invariant norm. Conversely, if the norm A was
conjugacy-invariant, then the formula above gives a bi-invariant met-
ric.

It turns out it is more convenient for us to work with norms rather
than metrics, so we will do so in the sequel.

It follows that (semi)norms on groups define a topology there. How-
ever, the topology on a group G determined by some (semi)norm A
on GG does not in general make it a topological group; i.e. the group
operations are not automatically continuous. The following is a nec-
essary and sufficient condition on a (semi)norm to make the group
operations continuous. We leave the verification to the reader.

Fact 1.1. Let X\ be a (semi)norm on a group G. Then G with the
inherited topology is a topological group if and only if for every x € G
and every € > 0 there exists 6 > 0 such that Vy € G(A(y) < 0 =
Ma=t-y-x) < ¢€); in other words, the function y — ANz~ -y -x) is
continuous at 1g.

We shall call such (semi)norms continuous (semi)norms. Note that
when a (semi)norm is conjugacy-invariant then it is continuous. We
remark that in literature, a norm being continuous often means that
it is continuous with respect to some given topology on the group.
Here however, the only group topologies we consider are those given
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by some norms, resp. pseudonorms.

Recall that when f : X — Y is a function between metric spaces
X and Y which is continuous at the point xz € X, then a modulus of
continuity of f at x is a function w : [0,00) — [0,00) continuous at
0 and vanishing there which quantitatively measures this continuity
(of f at x). That is, we have dy (f(x), f(y)) < w(dx(z,y)). Clearly,
a modulus of continuity for a given function at a given point is not
unique, however one can always take the ‘minimal one’ by defining
w(r) = sup{dy (f(x), f(y)) : vy € X,dx(z,y) < r}. We shall use this
notion in the context of normed groups.

Definition 1.2. Let G be a group equipped with a continuous (semi)norm
A. We say that the functions (I'Y),eq, where TS : [0,00) — [0, 00) for
every z € G, are moduli of continuity, or MOC, for G if for every
r e G:
e I'¢(r) —,0 0 and T'%(0) = 0;
e I'C(r) = r for every r = 0;
e for every g € G we have A(z7! - g-2) < T¢(\(9));
° Ff = Ff_l.
When considering a single element z € G, we say that IT'¢ € (T'9),eq
is a modulus of continuity (or MOC) for z in G.

We note that in [5], in this context of groups with norms (resp.
left-invariant metrics), these moduli are called scales.

For a given group G with a continuous (semi)norm A, moduli of
continuity are not determined uniquely. However, it is again possible
to consider the minimal moduli: for z € G and r € [0, ) set

'Y = max{r,sup{\(z°-g-27°) : ge G, \(g) < r,ee{l,-1}}.
Note that such a MOC satisfies additionally
o TC(r) < 2X\(z) + 7.
Although we shall not always work with the minimal moduli, unless
stated otherwise, 'S will denote the minimal MOC for x € G in G.

Example 1.3. Let (G, \) be a normed group. Then A is conjugacy-
invariant if and only if the minimal moduli (I'Y),eq are constant func-
tions, i.e. [¢(r) = r for every x € G and r € [0, o).

The reason to work with MOC, even though they are not unique,
is to control the ‘uniformity’ of embeddings between normed groups.
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Suppose that (G1,\1) € (Ga,A2) € ... is an increasing sequence of
groups with continuous norms. Then the direct union (G, \), where
G =, Gn and X = [, \n, is not in general a group with a continu-
ous norm, i.e. the continuity of A = lim,, \,, may be lost in the limit.
The reason for that is that when I'’ is a modulus of continuity for
some x € (; in G, it may no longer be a modulus of continuity for
x € G; € G441 in Gi41. Later on, we will work with embeddings be-
tween normed groups that preserve some moduli of continuity in order
to guarantee that norms on certain limit groups are still continuous.

We shall conclude this section with several other facts concerning
normed groups.

First we want to recall the following geometric notion that will be
useful later.

Definition 1.4. Let (G, ) be a normed topological group. We say
that \ is proper if for every r > 0 the set {g € G : A\(g) < r} is compact.
In other words, G with the induced metric is a proper metric space.

In case (G, \) is countable discrete, it means that for every r > 0
the set {g € G : A(g) < r} is finite.

Second, we mention that if we have a group with a continuous semi-
norm we can always quotient to get a genuine norm on the quotient

group.

Fact 1.5. Let G be a group with a continuous seminorm X\. Then the
set N = {g e G: Ag) = 0} is a closed normal subgroup, and X is
constant on any left coset of N, thus it determines a continuous norm

on G/N.

Proof. N is by the definition of the topology on G closed. Since for
any g,h € G we have A\(g) = Mg 1), Mg -h) < A(g) + A(h) and A
is continuous, it immediately follows that N is a normal subgroup.
Take any x € G and g € N. We show that A(z) = A(z - g). We have
Mz-g) < Mx)+A(g) = AMz) = Az -g-g7") <AMz-g)+A(g ) =
Az - g). O

Finally, in order to persuade the reader that there are indeed a
plethora of groups with continuous (semi)norms, let us mention the
classical result of Birkhoff and Kakutani. It says that a group G with
topology 7 is a first-countable topological group if and only if there
exists a continuous seminorm on G which induces the topology 7 of
G. Moreover, GG is Hausdorff if and only if the seminorm is a norm.
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1.2. Completeness in normed groups. Now for a moment, we
switch to continuous left-invariant (pseudo)metrics rather than (semi)norms,
where by a continuous left-invariant (pseudo)metric we mean a left-
invariant (pseudo)metric whose associated (semi)norm is continuous.
So assume we are given a group G with a continuous left-invariant
(pseudo)metric d. It is well known that a metric completion of G' with
respect to d need not to be a group, however it is always a semigroup.
Indeed, it is an exercise to check that the multiplication operation ex-
tends to the metric completion; in other words, whenever (z,), and
(Yn)n are Cauchy sequences in G, then (x,, -y, ), is a Cauchy sequence
as well. On the other hand, the inverse operation might not extend to
the completion since the sequence (), being Cauchy does not guar-
antee that the sequence of inverses (z,!), is also Cauchy. Consider for
example Sy, the infinite permutation group of N, with a left-invariant
metric d defined as d(x,y) = max{1/n : z(n) # y(n)}. Completion of
S with respect to this metric is the semigroup of all injective map-
pings from N into N.

However, there is another way how to canonically complete a group
with a left-invariant metric.

Fact 1.6. Let G and d be as before. Consider the metric D(x,y) :=
d(z,y) +d(z~,y ') and the completion of G with respect to D. Then
the group operations and the original metric d extend to this comple-
tion.

We shall call it a Ratkov metric completion of G, since it pre-
cisely corresponds to the Raikov completion of a topological group.
A normed/metric group G whose Raikov metric completion coincides
with G is called Raikov metrically complete. Note that the Raikov met-
ric completion is nothing but adding limits for all Cauchy sequences

(x,)n S G such that the sequence of inverses (z,!), is also Cauchy.

1.3. Free groups. Finally, since we shall work with free groups often
we recall some basic facts and fix some notation related to them here.
Let A be a non-empty set. Recall that the free group F'4 generated by
A is the free group having elements of A as free generators. Consider
the disjoint union {1} [J A]] A~ denoted by A, where A~! is the set
of formal inverses of A, i.e. A7t = {a™!: a € A}. One can view the
free group F, as the set of all reduced words over the alphabet A. A
word w = w; ... w,, where wy,...,w, € A is reduced if either n = 1
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and wy; = 1, or there is no ¢ < n such that w; = 1 and w; = w;}l.

For any word (not necessarily reduced) w over the alphabet A, by w’
we denote the reduction of w, i.e. the unique reduced word obtained
from w by successively removing the pairs w;, w;,1, where w; = wijrll,
and letters 1 from w till it is reduced. In case this procedure leads to
an empty word, we set w’ to be 1. For any word w, by |w| we denote
the length of the word, i.e. the number of letters from alphabet used
to make w.

Then the group multiplication of two reduced words w; and wy is
defined to be (wyws)’, i.e. concatenation of two words followed by re-
duction. The inverse of a reduced word w; ... w,, is the reduced word

1

w;t...wyt. The unit is the reduced word 1.

We shall also use the following basic observation.

Observation 1.7. Let H be an at most countable group equipped
with a (continuous) norm A. Then there exists a (continuous) semi-
norm N\ on F,, the free group of countably many free generators,
such that the quotient Fi,/N, where N = {h € F, : N(h) = 0}, is
isometrically isomorphic to (H, \).

Indeed, just pick some countable set of generators (with possi-
ble repetition) (h,),. For each reduced word w over the alphabet
{1, hn, bt - m e N} denote by wy its evaluation in H, i.e. the group
element of H that corresponds to the natural evaluating of w in H.
Then we consider the free group freely generated by (h,,), and define
the seminorm \ by the formula N (w) = A wpy) for any word w over
the alphabet {1, h,,h,':n e N}.

2. NORMED ULTRAPRODUCTS OF NORMED GROUPS AND GROUP
EMBEDDINGS INTO THEM

Metric ultraproducts of groups with bi-invariant metric, resp. conjugacy-
invariant norms are well-known from the literature. We refer to the
appendix in [3] for information about them. Let M be some class of
groups equipped with bi-invariant metric/conjugacy-invariant norms.

It is of great current interest which (discrete) groups can be embedded
into a metric ultraproduct of groups from M.

As already mentioned in the introduction, the most interesting cases

are when M is the set of unitary groups of finite rank equipped with
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the Hilbert-Schmidt distance and when M is the set of finite permu-
tation groups equipped with the normalized Hamming distance. The
former are the hyperlinear groups and the latter are the sofic groups.
We recall they were introduced by Gromov ([11]). They are related to
the Gottschalk’s surjunctivity conjecture. The major open problem is
whether every group is hyperlinear and sofic (we note that every sofic
group is hyperlinear [7]). We refer the reader to the survey [14] and
to the monograph [3] where these classes of groups are defined and
metric ultraproducts of groups with bi-invariant metrics are treated.

Weakly sofic groups are M-approximable groups, where M is the
class of all finite groups with arbitrary bi-invariant metric. Weakly
sofic groups as a generalization of sofic groups were introduced by
Glebsky and Rivera in [9] (see also [8]) as the existence of a non-
weakly sofic group is equivalent to a certain conjecture about pro-finite
topology on finitely generated free groups.

We also recall from the introduction the linear sofic groups intro-
duced by Arzhantseva and Paunescu in [1], which are groups approx-
imable by general linear groups with the normalized rank distance.
When M is the set of finite groups with a commutator-contractive
bi-invariant metric, then such M-approximable groups were called as
F_-approximable groups in [17]. Finally, let us mention that when M
consists of all finite groups with the trivial metric (i.e. taking only
{0,1} as values), then such groups were called LEF (locally embed-
dable into finite) by Gordon and Vershik ([10]) (similarly, M is LEA if
it consists of finitely generated amenable groups with trivial metric).

So far, it has been widely open whether there are groups which are
not approximable by any such classes M mentioned. The only ex-
ceptions besides the rather simple case of LEF groups (or analogously
LEA groups) is when M is F,, as it was proved by Thom in [17] that
the Higman’s group is not F.-approximable.

2.1. Definition of the metric ultraproduct. Let now (G, Ay)nen
be a sequence of general normed groups and fix some non-principal
ultrafilter & on N. We would like to define a metric/normed ultra-
product of them. Before we proceed any further let us remark here
that in this paper we consider only ultraproducts of countable se-
quences of groups, thus all ultrafilters are over N. Also, whenever we
say ultraproduct we automatically mean an ultraproduct determined
by a non-principal ultrafilter.
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We begin with recalling some standard constructions of metric ul-
traproducts. At first, one takes the direct product [[, G,. In or-
der to define an ultraproduct norm there one has to restrict to a
subgroup of the product of those elements whose coordinates have
norm bounded by one common constant. That is, using a Banach
space theory notation, let (Gpn)e, = {(gn)n : sup, Au(gn) < 0)}.
Let Ay be the supremum norm on (G,),,. Consider then the sub-
group N = {(gn)n € (Gpn)e, : limy N\, (g,) = 0}. If all the \,’s were
conjugacy-invariant, then N is a normal subgroup and the quotient
(Gn)e, /N = (G,)y with the quotient norm is the metric ultraproduct
of the sequence (G, Ap)n-

Alternatively, one might equip (G,,)s, with the ultraproduct semi-
norm )y, where Ay ((g,)) = limy A, (g,,) and again consider the kernel
N = {(gn)n € (Gn)e,, = Mu((gn)) = 0}. If the norm )Ny is continuous,
N will be a normal subgroup and we can take the quotient. Again,
if all A\,,’s are conjugacy invariant then )y will be conjugacy-invariant
as well, and thus continuous. So N is a normal subgroup.

If not all A\,’s are conjugacy-invariant then )y is an ultraprod-
uct seminorm which however does not have to be continuous, thus
((Gn)e,., M) is not a topological group and the kernel subgroup does
not have to be normal. In such a case, one has to restrict the sub-
group (G,)e, < [[,, Gn more. More precisely, we shall restrict to a
subset of (G,)s, <[], Gn (which will turn out to be a subgroup) of
elements that obey some modulus of continuity. That is the content
of the following definition.

Definition 2.1. Call an element (g,), € (Gy)e, continuous in the
ultraproduct if

(2.1) Ve > 036 >03A €U such that Vne AVh, e G,
if A, (hy,) <0 then )\n(grjl “hy - gn) < e and Ay(gn, - hy, - ggl) <e.

Equivalently, one can view elements that are continuous in the ultra-
product as follows. For each (g,), € (G,)s, take some corresponding
sequence (I',), of moduli of continuity (provided they do exist), i.e
I',, is an MOC for g, in G,,. We take the ultralimit of this sequence
of moduli, i.e. we define I'y(r) = limy, I',,(r). If this ultralimit I}, is
again a MOC (for (g,)n in (G,)e, ), then (g,), is continuous in the ul-
traproduct. Conversely, if (g, ), is continuous in the ultraproduct then
there exists a sequence (T',,),, of moduli of continuity such that T',, is an
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MOC for g, in G,, and the ultralimit I';, is an MOC for (g,,), in (Gy)e, -

Denote by (G)c < (Gr)e, the subset of elements continuous in the
ultraproduct.

Lemma 2.2. (G,)c is a subgroup of (Gy)e, . Moreover, if \,’s were

conjugacy-invariant, then (Gp)e = (Gn)e,, -

Proof. If (gn)n € (Gn)c then by definition also (g '), € (Gp)c, thus
(Gy)c is closed under taking inverses. Now pick some (g,)n, (hn)n €
(Gn)e. We show that (g, - hp)n € (Gr)e. Take some € > 0 and we
must find corresponding A. € U and § > 0 from the definition. By
assumption, there are some ¢’ > 0 and A, € U such that for all n € A,
and f, € G, such that \,(f,) < 0" we have \,(¢% - fn - 9,") < &,
for « € {1, —1}. Similarly, by assumption, there are some § > 0 and
Aj, € U such that for all n € Aj, and f,, € G, such that A, (f,) < we
have A\, (hl, - fn-h,") < ¢, for e {1,—1}. Now it is clear A, = A;n A,
and § > 0 are as desired.

The moreover statement from the lemma is easy and left to the
reader. U

o *

We consider the ultraproduct seminorm A on (G,,)c.

Lemma 2.3. The ultraproduct seminorm X on (G,)c is continuous,
thus the kernel subgroup is normal and we can quotient.

Proof. Indeed, take some (g,), € (Gn)ec and € > 0. By definition,
there is some B € U and 6 > 0 such that for every n € B we have
M(gt - h-gn) < e for every h € Gy, such that \,(h) < . Take now
some (h,), € (Gp)e such that A((h,)) < 6. We need to show that
A(gn) "t (hn) - (gn)) < e. Tt suffices to find A. € U such that for every
n e A. we have \,(g;' - h, - g,) < &. Since A((h,)) < 0 there is some
C' € U such that for every n € C' we have A\, (h,) < ¢. Thus it suffices
to take A, = Bn C. O

We note that one typical element of (g,), € (Gy,)c is such that there
is a single MOC I such that I' is a MOC for g, in (G,, \,,) for every
n.

2.2. Raikov metric completeness. Finally, we make some observa-
tions regarding the Raikov metric completeness defined in the previ-
ous section. It is known that ultraproducts of normed vector spaces or
groups with conjugacy-invariant norms are complete. A group with a
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norm cannot be always complete as noted in Subsection 1.2. However,
they may be Raikov metrically completed as mentioned in Fact 1.6.

Lemma 2.4. A metric ultraproduct of normed groups (Gn,\,) is
Raikov metrically complete, regardless of whether G, ’s were Raikov
metrically complete.

Proof. Suppose we have a sequence (of sequences) ((¢n.m)n)m S (Gn)c
of elements, resp. representatives from the equivalence classes, from
the metric ultraproduct such that both the sequence and the sequence
of its inverses are Cauchy. We shall show that the limit is in (G,)c.
The limit is constructed as in the case of normed vector spaces or
groups with conjugacy-invariant norms. That is, let (A,,), be a strictly
decreasing sequence of sets from the ultrafilter ¢ such that (), A, =
&, and (k,), a strictly increasing sequence of natural numbers such
that for every m and every i,j > k,, we have

Vn e Am()\n(g;} “Gng) < 1/2™ A XNy (gni - g;}) < 1/2™).

The limit sequence (h,), is defined so that for all n ¢ A; we have
h, = 1 and for any m and n € A,,\A,,+1 we have h, = gn,,. We
claim that (h,), € (G,)¢ and that it is the limit of ((gn.m)n)m, While
(hy, ') is the limit of ((g;, 7, )n)m. The latter is verified as in the classical
case of groups with conjugacy-invariant norms, so we only check the
former, i.e. that (hy), € (Gp)e-

By definition, we must check that for every ¢ > 0 there are § > 0
and A. € U such that for every n € A, and f, € G,, with A\, (f,) < ¢
we have A, (h1 - fn - h,) < e and N\, (hy, - fn-h ') < e. Pick [ such that
1/2! < £/3. Since (gn,)n € (Gn)e we have that there is some A’ € U
and some § > 0 such that for every n € A’ and every f, € G, with

An(fn) < & we have

(22) )\n(g;kl ’ fn : gn,kl) < 5/37 )‘n(gn,kl : fn : g;Ikl) < 5/3

Set A, = A’ nAjeU. For any n € A, € A; and any ¢ > k; we thus
have

(2.3) )\n(g;j “Onky) <E/3 A N(Gn - g,;il) < ¢e/3.

Putting (2.2) and (2.3) together we get that for every n € A. and
every f, € G, with \,(f,) < d we have

Ml = f b)) < Aa(hi - Gam) + MGk, Fou s ) + AalGg, - Bn) <
e/3+¢/3+¢/3=c¢.
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Analogous inequalities give that
M(hn - fn - hY) <,

n

and so we are done. O

2.3. Some pathological examples. We finish this section by pre-
senting some pathological examples which show that metric ultraprod-
ucts of groups with general continuous norms are rather delicate. We
show, as mentioned in the introduction, that a metric ultraproduct
of normed topological groups may collapse to a trivial group. Also,
we show that for some normed topological groups it may happen that
their metric ultrapower is the group itself.
Let us start with the former.

Lemma 2.5. There exists a sequence of non-trivial normed topological
groups (G, \,) such their metric ultraproduct, over any non-principal
ultrafilter, is a trivial group.

Proof. For every n € N, let GG,, be Fy, the free group on two free gener-
ators. Let | - | be the canonical length function on Fy, i.e. identifying
[y with the set of reduced words over the alphabet {a,b,a™!, b7}, |z,
for x € [Fy, is the length of z as a word. Let A, be the rescaling |- |/n.
We claim this sequence is as desired. Fix any non-principal ultrafilter
U on N. Suppose there exists a non-trivial element (g,,). € (Gn)u
in the metric ultraproduct, or rather its representative from (Gy)e, .
Since Ay((gn)) > 0, there exist ¢ > 0 and A € U such that for all
n € A, \(gn) > . Then we claim that there are no 6 > 0 and
B € U such that for all n € B and h, € G, with \,(h,) < 0 we
have A\,(g,! - h, - gu) < &, thus violating the condition that (g,)n
is continuous in the ultraproduct. Suppose otherwise and fix corre-
sponding 6 > 0 and B € U. We may suppose that B < A. Pick
n € B such that 1/n < §. Recall that g, is some reduced word
w ... w, over the alphabet {a,b,a™!,b7'}. Take x € {a,b} such that
v # w, and z # w;'. We have that \,(z) = 1/n < §. However,
A(g b - g,) > 2¢ +1/n. Indeed, by assumption there is no cancela-
tion in the word w = w'.. . wi 2w ... wy,, thus g7 '-h-g, corresponds
to the reduced word w. This finishes the proof. O

Next, we present an example of a normed topological group whose
metric ultrapower is equal to the original group itself.

Lemma 2.6. Consider the group So, of all permutations of N with the
norm \(p), for p € Sy, defined as max{1l/n : p(n) # n}, which was
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already considered in this section. Then its metric ultrapower (over
any ultrafilter on N) is equal to Sy, itself.

Proof. Let us start with an observation.

Observation 2.7. Take any p € Si,. For any n we want to compute
the § > 0 such that whenever \(s) < d then we have A(p~'-s-p) < 1/n,
and conversely that there exists s € S, such that A(s) > ¢ and
Ap™-s-p) = 1/n. Set m = max{p(l) : | < n}. We claim that
we may take § = 1/m. Indeed, suppose that for some s € Sy
we have A(s) < 1/m. Then s | {1,...,m} = id. It follows that
ptes-p 1 {1,...,n} =id, thus AM(p™' - s-p) < 1/n. Conversely,
let m’ = p(n) < m. Let s € Sy be arbitrary with the property that
s(m’) > m. Then A(s) = 1/m and p'-s-p | {1,...,n} # id, thus
AMpt-s-p)=1/n.

Now consider the ultrapower of Sy, with respect to some non-principal
ultrafilter U (on N). Let (p,), be some sequence representing an ele-
ment of the ultrapower. We claim that

Vnim3IAeUUVie AVI < n (p;(l) <m).

Otherwise, we would get that there is n such that for every m there
is A € U such that for every i € A we have p;(n) > m. Note that
the preceding formula is not a formal negation of the formula above,
however it is equivalent to it. However, it follows from Observation 2.7
that such a sequence is not continuous in the ultrapower. The same
argument gives that

Yn3Im3IAeUVie AVI <n (p;' (1) <m).

Now it follows that for any n there is A,, € U and s,, € Sy, such that for
every i € A and every [ < n we have p;(I) = s,(I) and p, ' (1) = s;1(I).
A straightforward argument gives that (s, ), converges to some s € Sy,
and that (p,)n is equal to the constant sequence consisting of s in the
ultrapower. |

3. PROOF OF THE MAIN THEOREMS

In the last section, we prove Theorems 0.1 and 0.2. The meaning of
Theorem 0.2 is now clear after we have defined metric ultraproducts of
normed groups in the previous section. We precisely restate Theorem
0.1 here. We start with a definition first.
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Definition 3.1. Let (G, ) and (H,p) be normed groups, and let
F < G be a finite subset and € > 0 arbitrary. We say that ¢ : FF — H
is an e-homomorphism if

e p(d(g-h)t-d(g)-o(h)) < e, for all g, h € F such that g-h € F;
« 10(6(9)) ~ A(g)| << for all g e F.

Theorem 3.2. There ezists a countable sequence (Gp, \n)n of finite
normed groups such that for any normed topological group (H,p), in
particular for any discrete group, and any € > 0 and any finite sub-
set F < H there exists ig such that for all © = 1y there is an e-
homomorphism ¢ : F' — G;.

Moreover, we may require that for every f € I, I‘g("f) < QF? + eid.

The rest is devoted to the proofs of the main theorems. We prove
Theorem 0.2 and then show how Theorem 3.2 follows.
Again, we need some definitions before we can continue.

Definition 3.3. Let GG be a finitely generated group. Let A € G
be some finite symmetric subset, i.e. A = A" = {a™' : a € A},
containing the unit 15 and generating . Consider a function X :
A — R satisfying the following conditions:

e For z € A, N(z) = 0 if and only if z = 1¢;

e For any z € A, N(z) = N(z™1).

Then we call X a partial pre-norm. If \ additionally satisfies condition

e For any z1,...,x, € Asuchthat x;-...-z, € A, N(z-...-z,) <
Qi N (@)

then we call \ a partial norm.

Construction 3.4. Let G be a group, A a finite symmetric subset
containing the unit and generating GG, and let \’ : A — R be a partial
pre-norm. Then the following formula defines a norm A on G. For any
x € G we set

AMz) =min{\N(xy) + ...+ N(z,) 121, .., 2n €Az =21 ... 2, }.

Indeed, it immediately follows from the definition that for any z,y €
G we have Mz - y) < Mx) + A(y). Since \' was a symmetric function
vanishing at 14 we get that also A is symmetric and vanishes at 1.

We shall call such X\ finitely generated.

Moreover, if GG is a finitely generated free group then observe that
if \' is a partial norm then \ extends A, and A is proper.



METRIC APPROXIMATION OF GROUPS AND THEIR ULTRAPRODUCTS 15

Now suppose we have finitely many finitely generated free groups
... F,. For each ¢ < n, suppose that F; is freely generated

by zi1,...,%;n,. Suppose also that for each ¢ < n there is a pre-
norm A, : defined on some finite symmetric A; < F; that contains
{1,2;1,...,%in,}, which thus defines some norm \; on F;. (F},\;) is a

discrete normed group, thus a topological group. For any i < n and
J < n; denote by I'/ the minimal MOC for x;; in F;. That is, for any
r € [0,00) define

Fg(r) = max{r,sup{\;(j,; - g - 7;;) 1 g € Fi, \i(g) < 7€ {1, —1}}.

Now consider the free product F' = F} = ... F,,. We would like to
define a finitely generated norm F’ which extends the particular norms
on F;’s in such a way that the minimal moduli of continuity of the free
generators in F' are ‘close’ to the minimal moduli of the generators in
the appropriate F;’s. Before doing so, we need the following definition,
first used in [4] and implicitly present already in [16].

Definition 3.5 (Match). Let A be some symmetric alphabet, i.e.
if a € A, then also its formal inverse a~! belongs to A. Let w =
Wy « . . Wyyn be some word over A, for technical reasons enumerated
by an arbitrary interval of natural numbers. Denote by J that interval,
ie. J={m,...,m+n}. A match on J for w is a bijection p: J — J
such that

e pop=idy, i.e. for every i € J we have po p(i) = i,

e for no i,j € J we have i < j < p(i) < p(j),

e if p(i) # ¢, for some i € J, then w; = wp’é).

Notice that for any match p on J for a word w enumerated by J and
for any i € J such that ¢ < p(i), we have that p | [t +1,...,p(i) — 1]
is a match on [i +1,..., p(i) — 1] for the corresponding subword of w.

Also, if J and K are disjoint intervals such that max J+1 = min K,
and p; is a match on J for some word w; while pg is a match on K
for some word wpg, then p; U pg is a match on J u K for wywg.

The reader should view a match p for some word w as a way
how to build w from its subwords by means of concatenation and
conjugation. For example, for a word w = a !bca and a match
p(l) = 4,p(4) = 1,p(2) = 2,p(3) = 3 for w one sees w as being
built first by concatenating letters b and ¢ to obtain the word bc, and
then conjugating be to obtain a~'bca.

Now we are ready to state the proposition.
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Proposition 3.6. There exists a finitely generated norm \ on I sat-
1sfying
e that for any i <n, A | F; = \;, i.e. X extends \;,
e foreveryi<n andj <n; and anyy € F, e € {1, —1} we have
)\(xij e x[;) < ZFg()\(y)), i.e. 2Fg is a MOC for z;; (and
z;+)in F.

Remark 3.7. We stress the importance of the second item in the propo-
sition, i.e. that there are moduli of the free generators in the free
product that are close to the minimal moduli of the free generators in
the original free groups.

Proof. The norm A\ will be constructed in three steps. In the first step,
we shall construct a finitely generated norm on F' that extends each
;. However, this norm will not yet satisfy the second condition from
the statement of the proposition. In the second step, we shall modify
the norm from the first step so that it still extends A;’s and moreover
the minimal moduli satisfy the second condition. While doing so, we
shall however break the condition that the norm is finitely generated.
That will be fixed in the last third step.

Step 1. First, set B’ = |J;; 4; and o/ = [J]_, \l. We view B’ as a
finite subset of F' = F} =... = F,,. It is clearly symmetric, contains the
generators and the unit and ¢’ is a partial pre-norm. Moreover, the
norm o on F' determined by ¢’ extends \; for each i < n. Indeed, take
any ¢ < n and y € F;. It follows from the definition that o(y) < A\;(y).
Suppose that o(y) < Ai(y). Then there exists y,...,y, € B’ such
that y = y1 ... ym and o(y) = 7L, 0'(y;). For any j <m if y; ¢ A;
then set g; = 1, if y; € A; then let §; = y;. Since y € F; we have that
y= H;n=1 y; and

Ai(y) < Z o' (7)) < Z o' (y;) = oly),

a contradiction.
However, 2I'/ is not necessarily a MOC for every z;; (and its in-
verse) anymore. That will be fixed in the next step.

Step 2. Denote by I the set {(i,7) : © < n,j < n;}. Then for every
(i,j) € I and r € R we set I';(r) = I + 7. Clearly, for every r,
[ii(r) = 2r and T ; < 2T,
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Now denote by W the alphabet {af; : (i,j) € I,e € {1,—1}} U {1}.
We recall that the elements of F' correspond to reduced words over
the alphabet W.

Let now w = wy ... w, be any word (not necessarily reduced) over
W and let p be a match on I = {1,...,n} for w. Then we define the
value A,(w) by induction on n.

For technical reasons we also allow the case when n = 0, i.e. w is
an empty word. Then we set \,(w) = 0.

Suppose that n = 1. Then the match p is trivial and we set \,(w) =
o(w) = o(wy).

Suppose now that n > 1 and we have defined \,(w) for every w of
length less than n and every match p for w. If p(1) = n then w =
x5 s, ; for some (i,j) € I and € € {1,—1}, where W = wa...w, 1.
By p’ we denote the match p | [2,...,n — 1] for @ and we set

Ao(w) =T j(Ap (0)).
Suppose now that p(1) ¢ {1,n}. Then denote by p; the match p |

[1,...,p(1)] for wy ... w,yay and by py the match p | [p(1) +1,...,n]
for wyy41 ... wy. And we set

)\p(w) = )‘/)1 (’LU1 .. .wp(l)) + )\p2 (wp(l)H .. .wn).

Finally, suppose that p = idg, 3. Then we set A\, (w) = o(w'),
where, we recall, w’ is the reduced word obtained from w; i.e. an
element of F'. ~

We may now define the norm \ as follows. For any x € F' we set

AMz) = min{\,(w) : w' = 2, p is a match on {1,..., |w|} for w}}.

Note that since F' and o are finitely generated we may indeed use the
minimum in the formula above. .

It follows from the definition that A is a norm. Indeed, clearly it
is symmetric, since o0 was symmetric, and it vanishes only at 1 since
the minimum is used in the definition. Take now some z,y € F. Let
w, be a word satisfying w!, = x and p, a match for w, such that
A, (W) = M(z). We also take p, and w, with analogous properties for
y. Then we get that

Az - y) < Appup, (Wowy) = A, (we) + Ay, (wy).

We now show that for each (i,7) € I and ¢ € {1,—1} and any
y € F'we have (x5, -y 7, 5) < Ti;(Ay)). Let w, be a word satisfying
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w, =y and p, a match for w, such that \, (w,) = A(y). Suppose that
|wy,| = [ and let p be a match on {1,...,l{+2}, defined by p(1) = [ +2,
p(l+2)=1and forany 1 <i <1+ 2, p(i) = p,(i — 1), for the word
x5 jwyx; - Then

i.j
S\(xfj e x;;) < )\p(xijwyx;;) = F”(S\(y))

Moreover, we claim that ) still extends A; on F; for each i < n. This is
done completely analogously as we did it for o. That is, for any 1 < n
and x € F}, if \(z) < \i(z), then there would be a word w, over W
and a match p for w, such that w! = z and \,(w,) < \i(x). Replace
in w, each letter from W\{z%; : j < n;,e € {1,—1}} by 1 and denote
the obtained word v,. Since x € F; we still have that v/, = = and it
follows directly from definition that \;(z) < A (vy) < A, (wy).

Step 3. Now, for every (i,j) € I, let r;; be (the minimal number)
such that I'; j(r; ;) = 2X\i(xi;) + 75;. Set r' = max( jjerri; and r =
max(; jjer I's,;(r’). Since, as it it straightforwards to check, \ is still
proper, the set Y = {y € F': A(y) < r} is finite.

Finally, we define a finitely generated norm A\ with the desired prop-
erties. We let A be generated by values of A on B = B' UY, i.e. for
any x € F' we set

AMx) = minfA(@1) + ...+ AN@m) 121, T € B2 =Ty ... Ty}

Clearly, A\ extends \; on F; since \; was generated by B;, B; € B’ <
B and ) extends )\;. Also, A coincides with A on Y.

And moreover, for any (i,j) € I and € € {1,—1} and any y € F' we
have

Mg,y z5) < Tij(My)).

Indeed, take any (i,7) € I, e € {1,—1} and y € F. If AN(y) > /' then
I (A (y)) = 2X(x; ;) + A(y). However, /\(xfyj y:c;f) < 2XM(i ) + A(y).
Thus suppose that A(y) < . Then y € Y and A(y) = A(y). We
have that S\(xf’j Y ws) < To;(My)) < Ti (") < r. It follows that
x5y x5 €Y and thus M(z5; -y 2;7) = S\(xf] yews) < Tij(A(y)-
That finishes the proof. U

Remark 3.8. Matches were originally used by Ding and Gao in [4] for
a convenient computation of the Graev bi-invariant metric. The same
authors then used matches for constructing also continuous norms, or
continuous left-invariant metrics in [5], which is close to the approach
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we used in the previous proposition. The reader is invited to compare
the construction in Step 2 in Proposition 3.6 with the construction
in Definition 3.3 in [5]. The same constructions were later used by
Ding in [6] to construct surjectively universal Polish groups. A reader
familiar with these results will recognize that our construction is, in a
sense, a generalization of those in [5].

The next proposition is a, sort of, metric residual finiteness of
normed free groups. It shows that normed free groups may be ap-
proximated by finite normed groups. That will be used in producing
the desired sequence of finite normed groups from Theorems 3.2 and
0.2.

Proposition 3.9. Let F' be a finitely generated free group with a norm
A. Then for any finite subset A < F containing the generators there
exists a finite group H with a norm o and a partial monomorphism
¢: AC F — H which is also an isometry with respect to A and o.

Moreover, if X is proper and for any free generator x of F some
MOC T, of x in F is given, such that it is eventually greater than
2\(z) +id, then, provided A is large enough, I', remains a MOC for
() in H.

Proof. Let M = max{\(z) : x € A}, let m = min{\(z) : z € A\{1}}
and let K = max{|z|:z € A}. Let B={z e F: |z| < K -[4]}. Note
that A € B. Since F is residually finite there exists a finite group H
together with a partial monomorphism ¢ : B € F — H. Moreover,
we may assume that ¢|B]| generates H. Note that then in fact ¢[A]
generates H as A contains the (free) generators of F.

To simplify the notation, for every x € B denote by 2’ the element
¢(r) € H. For every = € A set o'(2') = A(z). Let ¢ be a norm on
H generated by o’. It suffices to prove that for every x € A we have
o(z') = o'() (= Az)).

Note that although ¢’ is a partial norm on ¢[A], it does not follow
automatically that o extends ¢’ as H is not free, it is a finite group.

Suppose that for some z € A we have o(2’) < ¢’(2z’). Then there
exist x1,...,2, € A such that 2’ =} -...- 2] and

o(2') = o' (@) < A(x).

=1
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We claim that n < 2. Indeed, We have o'(2') < M and for every
i<n,o(x}) =m. Thusifn > Y then Y o'(z}) >m- -2 > M, a
contradiction.

Moreover, for each i < n we have |z;| < K. Thus |z;-.. .-z, < K-

Consequently, x;1 -...x, is in B, so in the domain of ¢. However, then
it follows that = x1 - ... 2, as ¢ is a partial monomorphism. But
we have

M) K Mz) + .o+ MNwy) =0'(@) + ... + o' (2) = o(2),
a contradiction.

It remains to prove the ‘moreover’ part from the statement of the
proposition. Suppose that (F,\) is such that \ is proper, e.g. A is
finitely generated. Take some generator z € F' and let I', be a MOC
for x in F' such that there is some ' such that I',(r") = 2A(z) + r” for
" = 1r'. Set r = T',(r"). Then the set B = {y € F': A(y) < r} is finite.
Suppose now that (H, o) is a finite normed group and ¢ : A< F - H
a partial monomorphism on some finite set A containing B which is
isometric. Then we claim that I', is a MOC for ¢(x) in H. Indeed,
take some y € H. If o(y) > 1’ then T'.(o(y)) = 20(¢(2)) + o(y) =
o(p(z) -y - o(x)). If 0( ) r’ then y = ¢(y') for some ¢y’ € B and
AMy') = o(y). Since A\(z 7'y -z) < T, (\¥')) < rwehavexr'-y/-x € B,
thus o(¢(x) " -y - ¢(2)) = Az~ -y 2) STL(A(Y)) =Tu(o(y). O

Construction 3.10. Let {(£),,,) : n € N} be an enumeration of all
finitely generated free groups with rational finitely generated norms,
i.e. norms taking values in the rationals. We shall denote the gen-
erators of F; by x;1,...,%;,,, for each ¢. For each n € N we use
Proposition 3.6 to define a norm A\, on G,, = F} = ... * F,, which ex-
tends v; for ¢ < n, and moreover, for each ¢+ < n, j < n; we have
that 2IY is a modulus of continuity of z;; in G, (where IV was the
minimal MOC for 2 in F;). Suppose that A, is generated by some
A defined on a finite set A, < G,. Set k, = maxuea, |r| and let
B, = {x € G, : |z| < k,}. We use Proposition 3.9 to get a finite
group H, with a norm p,, such that there is a partial monomorphism
¢n : Bn — H, which is isometric with respect to A, and p,, and
moreover, for every generator x;;, i <n, j < n;, I;; = 2I' is a MOC
for ¢n(x; ;) in H,.
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Finally, consider any non-principal ultrafilter on N and set G to be
the corresponding metric ultraproduct of the sequence (H,, pp)n.

Theorem 3.11. G contains isometrically every separable normed topo-
logical group.

Remark 3.12. Theorem 3.11 covers Theorem 0.2 from the introduction.
Theorem 0.1, resp. 3.2 will follow by a rather standard argument
which we shall provide after the proof of Theorem 3.11.

Proof. Let (E,p) be an arbitrary separable normed group. Let (e,),
be an infinite set of generators such that the Raikov metric completion
of the subgroup generated by (e,), contains E. By Observation 1.7,
we may suppose that the subgroup generated by (e,), is free if we
view p as a seminorm. For any x € E by I', we shall denote I'Z | i.e.
the minimal modulus of continuity for = in F.

For any n, let E, be the free group freely generated by ey, ..., e,.
Let C,, be the set {z € E, : |x| < n}.

We define a rational partial norm (note that p in contrast may be
just a seminorm) o/, on C,. We take as o/, any rational partial norm
o' on E, with the property that for every w € C,, we have

(3.1) o'(w) = p(w),

o(w) — p(ws) <1/m,
where m = |C,,|.
Claim 3.13. Such a rational partial norm o exists.

To show it enumerate C,, as ¢y, ..., ¢y, in such a way that p(c;) =
ple2) = ... = plem). Let Crin = min{l/m, min{|p(¢;) — p(c;)| : 4,7 <
m, p(c;) # p(c;)}}. Let (6;)7"" be an increasing sequence of positive
real numbers such that for each ¢ < 2m + 1

° 51 < Cmm,
o if for some i # j, p(c;) = p(c;), then 6; = ¢;,
L p(Cl) + (SZ S Q

Then for ¢; # 1 we set o’(¢;) = p(c;) + 0;, and o'(1) = 0. Clearly,
it is rational, and it is symmetric since if ¢; = cj’1 then 9, = J;, thus
o'(c;) = p(ci) +6; = plcj) +6; = 0'(cj). Let ¢; = ¢y - ...~ ¢;,. If for
any | < j we have i; = i, i.e. p(¢;) < p(c;,), then we have

)
o'(ci) = plei) + 0i < plci) + (plei) — plei)) <
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J
,O(Cil) + 61'1 = UI(CiZ) < ZU,(Cil)'
1=1
If for every | < j we have p(¢;) > p(c;,), then for every [ < j we have
0; < 0;, and thus

o'(c;) = plei) + 6 < Y plei) + 0, = ) 0'(ci).

=1 =1

This proves the claim.

We set 0, to be the (rational finitely generated) norm on FE, gen-
erated by o,.

For each n, there is i(n) such that (E,, 0,,) is equal to (Fyq, Vi) It
follows that we can find a strictly increasing sequence of natural num-
bers iy < 15 < ... such that for each k € N and every i < [ < g1,
Gy contains Fjy = Ej, as a subgroup. Thus for every n, m > n and
im < 1 < iy fix some isometric monomorphism ¢ : (E,,, 0,,) — Gy
and denote by el the element ¢(e,) € G;. For | < i,, set e}, = 1. So
we have defined elements e! for all n,[ € N.

Now notice that by (3.1), for any w € E we have
(3.2) p(w) = limo,(w).

For any n < m e N, let I'’ be the minimal MOC for e, in (E,,,0y,)
and I'., the minimal MOC for e, in (E, p). It follows from (3.1) and
(3.2) that

(3.3) T, =lmI7",

i.e. for any r, I'c, (r) = lim,, ['7" (r). By Proposition 3.6, we have

(3.4) TG < 2T VR Vm = n Vi <1 <imi

Thus, if we denote by f7* the element ¢,,(e") in H,,, for all n,m € N,
we still have that F?,;" < 2I'7 (by Proposition 3.9). Recall that ¢, is
the partial isometric monomorphism from Construction 3.10 (where
it was obtained using Proposition 3.9).
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For each n consider the sequence (f"),,. By (3.3) and (3.4), the
elements (f;"),, are bounded by a common MOC, thus (f}),, is con-
tinuous in the ultraproduct and belongs to G. We shall denote the
corresponding element there by g,.

We now claim that (g, : n € N) < G is isometrically isomorphic to
(e, :m € N) < E. For each n € N and w € FE,, denote by wg the
corresponding element in (g, : n € N), i.e. an element obtained by
a canonical evaluation where e, is evaluated as g,. Similarly, for all
m = i, denote by w,, the evaluation of w in {f/" : i < n) < H,,. Then
for any n and w € F,, we have

Muwg) = lizgn Am(wp,) = Trlll—rflw Am (W) = p(w).

Since G is Raikov metrically complete, it contains isometrically E.
O

Proof of Theorem 3.2. We claim that the sequence (H,, p,,), from Con-
struction 3.10 is as desired. Fix some normed topological group (G, \),
some finite subset F' € H and some £ > 0. We may without loss of
generality suppose that G is separable; otherwise we could replace G
by some separable subgroup of G' containing F'. Suppose, to reach a
contradiction, that there is an infinite subset A € N such that for all
1 € A there is no e-homomorphism from F' into G;. Let U be an arbi-
trary non-principal ultrafilter on N such that A € «4. By Theorem 3.11,
the metric ultraproduct of the sequence (G,,),, using U contains G iso-
metrically. Moreover, it follows from the proof of Theorem 3.11 that
if we choose some generating sequence (e,,), of G so that it contains
the elements of F', then we obtain an isometric embedding ¢ : G — G,
where G is the ultraproduct, such that for every f € F,

Ty < 2%
As usual, we shall suppose that for each g € G, 1(g) is a sequence from
[ 1,, Gn rather than some equivalence class, and for each i € N, by ¢(g);
we denote the corresponding projection on the i-th coordinate.

Then by a standard ultraproduct argument (essentially by the clas-
sical Lo$ theorem) there exists a set B € U such that for all i € B the
map ¢; : F — G; defined by f — ¥(f); is an e-homomorphism such
that moreover Fg;( n s QF? + eid. Taking any i € A n B leads to a
contradiction. O

Let us conclude with few problems. First, we want to ask whether
the analogous result holds in the category of groups with bi-invariant
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metric. Thus we want to ask whether not only every discrete group is
weakly sofic, which is the problem of Glebsky and Rivera, but whether
actually every group with bi-invariant metric is weakly sofic.

Question 3.14. Does every group with bi-invariant metric isometri-
cally embed into a metric ultraproduct of finite groups with bi-invariant
metric?

Let us offer also a weakening of the previous question. As weakly
sofic groups generalize sofic groups, one can generalize the notion of hy-
perlinear groups by defining weakly hyperlinear groups as those groups
that can be approximated by compact groups with bi-invariant metric,
or equivalently, as those groups that embed as subgroups into metric
ultraproducts of compact groups with bi-invariant metric. This notion
was introduced by Jakub Gismatulin. Clearly, the notion of weakly
hyperlinear groups makes again sense also for metric groups with bi-
invariant metric.

Question 3.15. Is every group with bi-invariant metric weakly hyper-
linear?

Remark 3.16. During the review process of the paper, Question 3.14
was answered negatively. Nikolov, Schneider and Thom in [13] prove
that no compact connected non-abelian Lie group with a compatible
bi-invariant metric embeds into a metric ultraproduct of finite groups
with bi-invariant metric.
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