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Abstract

This paper builds upon the results in the article “G-matricesrthogonal matrices, and their sign
patterns”, Czechoslovak Math. J. 66 (2016), 653670, by Hall and Rozloznik. A number of further
general results on the sign patterns of fherthogonal matrices are proved. Properties of block diagonal
matrices and their sign patterns are examined. It is shown thdtallt full sign patterns allow/-
orthogonality. Important tools in this analysis are Theorem 2.2 on the exchange operator and Theorem
3.2 on the characterization gforthogonal matrices in the papef-brthogonal matrices: properties and
generation”, SIAM Review 45 (3) (2003), 504-519, by Higham. As a result, it follows that for4 all
n x n full sign patterns allow a/-orthogonal matrix as well as a G-matrix. In addition, the 3 sign
patterns of the/-orthogonal matrices which have zero entries are characterized.

AMS Subj. Class.15A80; 15A15; 15A23
Keywords:G-matrix; J-orthogonal matrix; Sign pattern matrix; Sign patterns that allearthogonality.

1 Introduction

Following [6], we say that a real matrid is a G-matrixif A is nonsingular and there exist nonsingular
diagonal matrice®); and D5 such that
AT = D1 ADo, (1)

whereA~T denotes the transpose of the inversedofDenote by.J a diagonal (signature) matrix, each of
whose diagonal entries #s1 or —1. As in [10], a nonsingular real matrig is called.J-orthogonalif

QMIQ =, 2)

or equivalently, if

QT=JqQJ. (3)

*This research is supported by the Czech Science Foundation under the project GA17-12925S.




Of course, every orthogonal matr@@ is a J-orthogonal matrix, wherd is the identity matrix. And
clearly, from (3), every/-orthogonal matrix is a G-matrix. On the other hand, as shown in [9], a G-matrix
can always be transformed to/aorthogonal matrix.

Definition 1.1. We say that two real matrice$ and B arepositive-diagonally equivalerit there are diag-
onal matriced); and D, with all diagonal entries positive such thdt= Dy AD-.

Theorem 1.2.[9, Theorem 2.6] A matrip4 is a G-matrix if and only ifA is positive-diagonally equivalent
to a column permutation of d-orthogonal matrix.

Some easily proved properties Hforthogonal matrices are as follows.

Theorem 1.3. (i) For a fixed signature matrix/, the set of all/-orthogonal matrices is a multiplicative
group, which is also closed under the operations of transposition, negation, and multiplication on either
side by any signature matrix of the same order.

(il) The direct sum of square diagonal blocKs;, ..., Ax; is a J-orthogonal matrix if and only if each
diagonal blockA4;; is a J;-orthogonal matrix, wherd; is the corresponding diagonal block &f

(iii) The Kronecker product of/;-orthogonal matrices is &-orthogonal matrix with/ equal to the Kro-
necker product of thd;’s.

(iv) If Q is J-orthogonal andP is a permutation of the same order, théd QP is .J;-orthogonal with
J1=PTJP.

In qualitative and combinatorial matrix theory, we study properties of a matrix based on combinatorial
information, such as the sign of entries in the matrix. #inx n matrix whose entries are from the set
{+, —, 0} is called asign pattern matriXor asign patternor apatterr). A sign pattern is said to Hell if it
does not have any 0 entry. For a real mafsixsgnB) is the sign pattern matrix obtained by replacing each
positive (respectively, negative, zero) entryidby + (respectively—, 0). For a sign pattern matrig, the
sign pattern class ofA is defined by

Q(A) = {B: sgi(B) = A},

A sign pattern matrixP is called apermutation sign patteriigeneralized permutation sign patt¢rn
if exactly one entry in each row and column is equahtq+ or —) and all the other entries are 0. A
permutation similarityof then x n sign patternd has the formP” AP, whereP is ann x n permutation
matrix. A signhature patterns a diagonal sign pattern matrix each of whose diagonal entriesois—. A
sign patternB is signature equivalento the sign patterm provided B = S; ASs2, whereS; and S, are
signature patterns. gignature similarityof then x n sign pattermrd has the forr6 AS, whereS'is ann xn
signature pattern.

SupposeP is a property referring to a real matrix. A sign pattetns said torequire P if every matrix
in Q(A) has propertyP; A is said toallow P if some real matrix inQ(A) has propertyP.

A square sign patterd is sign singularif every matrix B € Q(A) is singular. It is well-known that
ann x n sign pattern matrix4 is sign singular if and only ifA has no “composite cycle” of length. The
reader is referred to [3] or [8] for more information on sign pattern matrices.

Of course, when/ = I,,, a J-orthogonal matrix is an orthogonal matrix. LB0,, denote the set of
n X n sign patterns that allow an orthogonal matrix. A more general question than charact@izjnig
the following: what are the sign patterns which allow-arthogonal matrix? Specifically, it is of interest
to find sign patterns which allow.&orthogonal matrix, but do not allow an orthogonal matrix. We shall let
J» denote the set of all sign patterns of thex n J-orthogonal matrices (for various possiblg that is,
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the class of x n sign patterns that allow &-orthogonal matrix. Clearly, ifi € 7, thenA cannot be sign
singular. As in [6], we let7,, denote the class of all x n sign pattern matriced that allow a G-matrix.

As already mentioned in [9], from Theorem 1.2 we immediately have the following connection with
G-matrices.

Theorem 1.4.[9, Theorem 4.3] The sign patterns &), are exactly the column permutations of the sign
patterns in7,.

In particular, if the sign patterd allows aJ-orthogonal matrix, thed allows a G-matrix.
Now, the all+ (also, all-) n x n sign pattern is the sign pattern of a nonsingular Cauchy matrix, which
is a G-matrix, see [5]. Thus:

Theorem 1.5.[9, Theorem 4.4] The ali+ (also, all —) n x n sign pattern allows a/-orthogonal matrix
(but of course not an orthogonal matrix, unless- 1).

The following straightforward result was also mentioned in [9].

Lemma 1.6. [9, Lemma 6.3] The sef, is closed under the following operations:
i) negation;

ii) transposition;

i) permutation similarity;

iv) signature equivalence.

The use of these operations yields “equivalent” sign patterns, and this will be used subsequently.
Theorem 1.4 may be paraphrased as follos= 7, P,, whereP,, is the set of all x n permutation
sign patterns. Observe th@f = G,,, 7! = J,,, andP! = P,. By taking the transpose of each element in

the sets in the equatiay), = J7,,P,, we getG,, = P, J», Which is the content of the next theorem.

Theorem 1.7. The set of alln x n sign patterns that allow a G-matrix is the same as the set of all row
permutations of the x n sign patterns allowing J-orthogonality.

In fact, we can generalize this result as follows:

Theorem 1.8.The set of alh xn sign patterns that allow a G-matrix is the same as the set of all permutation
equivalences of the x n sign patterns allowing J-orthogonality.

Proof. From Theorem 1.4, we havgé, = J,P,. Thus to complete the proof, it suffices to show that
TInPn = PnJnPr. Since the identity permutation sign pattern iy, obviously 7, P, C PpJnPn. TO
show the reverse inclusion, 1&4,Q1 P € P,J,Pn, whereP;, P, are permutation sign patterns afd
allows J-orthogonality. Then?, @, P{ allows J-orthogonality and henc®, Q1 P, = (P1Q1 Pl (P P,) €
TInPn. O

Let A be ann x n sign pattern matrix. From [9], the very important fundameisigh potentially
J-orthogonal(SPJO) conditions are that there exis{sta—) signature patterd such that

ATJA <S5 g (4)

and
AJAT <5 (5)



where— denotes (generalized) sign pattern compatibility.

These are necessary conditionsfoe 7,,. If these conditions do not hold, theh¢ 7,,. WhenJ = I,
we get the normal SPO conditions for orthogonal matrices, see for example [4]. The SPJO conditions are
not sufficient for am x n sign pattern matrix to allow-orthogonality, as illustrated in [9].

Observe thatl” JA andAJ AT are symmetric generalized sign pattern matrices. So, to verify the SPJO
conditions we need only to find.Awhich fulfills the upper-triangular part of the compatible conditions. Let
J = diag(ws, . . .,wy,). Note that (4) and (5) may be restated as

n

Zwkakiakj <L> 5Z-jwj for all i,j (6)
k=1
and
n
Zwkaikajk PN djjw; foralli, j. @)
k=1

(With ann x n (+, —) sign patternA, for i = j, (6) and (7) automatically hold for any.)
In [9], the following important result was proved.

Theorem 1.9.[9, Theorem 6.11] For alh > 1, eachn x n full sign patternA satisfies the SPJO conditions.

If we allow zero entries, then Theorem 1.9 may fail. For examplep ann sign patternA with a
zero column does not satis§” JA —— J and ann x n sign patternd with a zero row does not satisfy
AJAT << J, for any signature patters.

A number of other general results on the sign patterns are also proved in Section 2 and used in subsequent
sections. Thed x 3 sign patterns of theg’-orthogonal matrices which have zero entries are characterized
in Section 3. In Section 4 it is shown that dllx 4 full sign patterns allow/-orthogonality; important
tools in this analysis are Theorem 2.2 on the exchange operator and Theorem 3.2 on the characterization of
J-orthogonal matrices in the paper [10] by Nick Higham. As a result, it then follows that fod all n x n
full sign patterns allow &-orthogonal matrix as well as a G-matrix. It is also shown that if.ax n full
sign pattern4 allows a.J-orthogonal matrix, theml allows a rational/-orthogonal matrix with the same
sighature matrix.

2 Block diagonal matrices and their sign patterns

The following structural result of G-matrices was established in [9]. For the notion of fully indecomposable
matrices, we refer the reader to [2].

Theorem 2.1.[9, Theorem 2.1] LetA be a nonsingular real matrix in block upper triangular form

A11 N Alm
0 Amm
where all the diagonal blocks are square. Théns a G-matrix if and only if eactd;; (i = 1,...,m) is

a G-matrix and all the strictly upper triangular blocks;; are equal to 0. Furthermore, ifl is a G-matrix
that has a row (or a column) with no 0 entry, thdris fully indecomposable.



Example 2.2. Let

A=

o+ + o
+ + + +
+ + + +
o+ 4+ ©

Notice thatA is permutationally equivalent to the sign pattern

+ 4+ + +
+ 4+ + +
00 + + |’
0 0 + +

which by Theorem 2.1 does not allow a G-matrix. Hendedoes not allow a/-orthogonal matrix. The
same holds for the similar x n sign pattern.

More generally, by Theorem 2.1 and Theorem 1.8, we have the following.

Theorem 2.3. Let A be ann x n sign pattern matrix, and® and@ be permutation patterns such th&tAQ)
has the block upper triangular form

All c. Alm
PAQ = : )
0 Amm
where all the diagonal blocks are square.Afe 7, thenPAQ € G,, eachA;; (i = 1,...,m) allows a

G-matrix, and all the strictly upper triangular block4;; are equal to 0. IfPAQ ¢ G,,, thenA ¢ 7,.

We note that when the sign pattemin Theorem 2.3 is not sign singular, suchPad@Q block upper
triangular form where specifically the square diagonal blocks are fully indecomposable, is always possible
[2, Theorem 4.2.6].

Of specific interest is the following.

Theorem 2.4.If Ais ann x n sign pattern matrix with exacthy + 1 nonzero entries, theA ¢ 7,,.

Proof. If A has no composite cycle of length then of courseA ¢ J7,. If A has a composite cycle
of lengthn, then for some permutation sign patteéf AP has no zero diagonal entries and exactly one
nonzero off-diagonal entry. By Theorem 24P ¢ G,,. Hence, by Theorem 2.3{ ¢ 7,. O

We can also apply Theorem 1.3 to sign patterns.

Theorem 2.5. Let then x n sign pattern matrix4A be the direct sum
A11 0

A: 9
0 Amm

where all the diagonal blocks are square. Thémallows a.J-orthogonal matrix if and only if eachi;;
(¢=1,...,m) allows a.J-orthogonal matrix.



Remark 2.6. The Kronecker product of sign patterns which allow/arthogonal matrix also allows a
J-orthogonal matrix. For a fixed signature matrix a product ofJ-orthogonal matrices can produce a
different sign pattern allowing d-orthogonal matrix for the sameé

Observe that any generalized permutation pattern allvesthogonality withJ = I, since if B is a
generalized permutation matrix, th&d 7B = B” B = I. Hence, we have another result to be subsequently
used in this paper.

Theorem 2.7.If Ais ann x n generalized permutation sign pattern, thére 7,,.
The following can be of general use.

Theorem 2.8. Suppose thaB is ann x n real nonsingular matrix and3 is both J;-orthogonal and/s-
orthogonal, where/; = diag(1,,, —1I;,), J2 = diag(I,,, —1,), andJ; # J,. Then we have that

Bi1 0 Bis
B=| 0 Bn 0 |,
B3y 0 Bs3

where the partitioning o3 results from the partitioning of the matrik.J; .

Proof. Since the matrix3 is J;-orthogonal, fromB”.J; B = .J; we have that/; B = B~ J;. Similarly,
from BT J,B = J, we haveB~".J, = J,B. The previous two identities gie/2J1)B = B(J2J1), where
JoJ1 = diag(Liin(py,ps)s —Imax(pr,ps)—min(p1,ps)» Imin(g1,¢2))- BY partitioning B in the same way as,Ji,
we have

Bi1 B2 Bis
B = | B2o1 B Bog
B31 B3y Bas3
Thus, it follows from(Jgjl)B = B(JQJ]_) that B1o = By = Bog = By = 0. L]

Remark 2.9. Itis clear that there exists a permutation maffiguch that/ = P(JyJ;) PT = diag(I,, —1I,),
wherep = min(p1, p2) + min(q1, ¢2) andg = max(p1, p2) — min(p1, p2). Using this permutation matrix
P the matrixB can be transformed by permutation similarity into the block diagonal matrix

3 Bu Biz 0
B=| B3y Bsz 0
0 0 By

that isJ-orthogonal satisfyind3” JB = J.

Corollary 2.10. If Ais ann x n full sign pattern matrix, then there does not exiise QQ(A) such that is
both J;-orthogonal andJ,-orthogonal, where/; # +.Js.

If Aissay am x n signature pattern, then clearlyis a sign pattern irf7,, which allows all the2" sig-
nature matriceg. A given full sign pattern matrixd also may allow./-orthogonal matrices corresponding
to more than one distinct (none are negatives of another) signature matrices



Example 2.11. Given the sign pattern

there are two possible choices fdrthat satisfy the SPJO conditions, namély = diag(1,1,—1) and
Jo = diag(1, -1, —1).
Ford > -, the real matrix

1 -1 —1
2_
d 5 -2 €Q4)
d L1 _2d+1
2d 2d

is J1-orthogonal. For example, if = 1, then

1 -1 -1
B=|1 1/2 -1/2 | €Q(A)
1 —1/2 —3/2

satisfiesBT.J, B = J.
On the other hand, fgi > % the real matrix

22+1 2521 1

27 27
LL e
J -7 1

is Jo-orthogonal. For example, jf= 1, then

3/2 —1/2 -1
B=|1/2 1/2 -1 |e€QA)
1 -1 -1

satisfiesBT J, B = J,.
Notice that in the above example the signature matrices are equivalent (although not all the resulting

J-orthogonal matrices are equivalent). In the following we exhibit non-equivalent signature matrices.

Example 2.12. Consider thet x 4 all + sign pattern. This pattern ig-orthogonal with the two non-
equivalent/ matrices/; = diag(1,1,1,—1) andJ; = diag(1,1 — 1, —1).

4 1 1 3
1 1 41 3 .
A = 3114 3 is Ji-orthogonal,
33 36
4 1 2 2
111 4 2 2 .
Ay = 3l 22 41 is Jo-orthogonal.
2 2 1 4



An interesting question is the following: Is it true that whenever a square full sign pattemd a
signature patterd satisfy the SPJO conditions, thénallows J-orthogonality (for this particulay)? That
the answer is no is seen in [4, Example 3.8] wheretthe6 pattern is SPO but is not iROg. However,
specifying thex entries ast, this pattern is in7s, as shown as follows.

Example 2.13. Let

+ + + + + +
+ o+ + + + -
A+ -+
+ o+ + + - -
+ + - - + +
+ -+ - 4+ +

and letJ = diag(1,—1,—-1,—1,—1,—1). Then we produced the following decimal approximation of a
matrix B € Q(A) such thatB”.J B = J to within four decimal places:

1.8457 0.1748  1.2301  0.5382  0.0023  0.7572
0.4467 0.4877  0.5807  0.5934  0.3467 —0.3900
1.2188 0.1332  0.7813  0.7961 —0.0450 1.1053
0.1207 0.4068  0.1700  0.0456 —0.8983 —0.1055
0.0121 0.7684 —0.0923 —-0.4680 0.2659  0.3339
0.8408 —0.1379 1.2361 —0.2876 0.0113  0.2776

3 Characterization of sign patterns in 73 with O entries

We want to identify all thos8 x 3 sign patterns with O entries which allayvorthogonality. (The x 2 case
should be clear.) To organize our argument, we consider sign patterns with varying numbers of zero entries.

Note that all3 x 3 full sign patterns allow/-orthogonality [9].

Sign patterns with 9, 8, or 7 zero entries.Any 3 x 3 sign pattern with only 2, 1 or O nonzero entries
cannot contain a composite cycle of length 3; thus any such pattern is sign singular and hence cannot allow
J-orthogonality, since iB is J-orthogonal, therB is nonsingular.

Sign patterns with 6 zero entries.Note that a3 x 3 sign pattern with exactly 3 nonzero entries must
not be sign singular in order to alloworthogonality, so we only consider such sign patterns which have
a composite cycle of length 3, namely, thex 3 generalized permutation patterns. By Theorem 2.7, these
patterns allow/-orthogonality. Thus, the sign patternsjfi with exactly 6 zero entries are precisely the
3 x 3 generalized permutation patterns.

Sign patterns with 5 zero entries. That no3 x 3 sign pattern with exactly five zero entries allows a
J-orthogonal matrix simply follows from Theorem 2.4.

Sign patterns with four zero entries. In order to determine the sign patterns with four zero entries
that allow.J-orthogonality, we can systematically consider the number of zero entries on the main diagonal.



Let x denote at+ or — entry. Note that if we require all nonzero entries on the main diagonal, then up to
equivalence, there are three patterns to consider. Two of these patterns

* K x * % 0
0 x 0],]0 % «
0 0 x 0 0 %

do not satisfy the SPJO conditions for ahywhile it can be seen that

(ol
(ol
> O O

does allow.J-orthogonality.

Now suppose there is one zero entry on the main diagonal. Then we may permute {titd jrposition.
By systematic inspection it can be seen that no pattern of this form allesvthogonality.

Now if there are two zero entries on the main diagonal, then up to equivalence, there is one pattern of
this form that allows/-orthogonality:

S X
x O O
S *

Finally, with three zero entries on the main diagonal, there is no pattern that allontiogonality.

Sign patterns with three or two zero entries. We can conduct a similar investigation of the sign
patterns by systematically inspecting the possibilities. Once again the SPJO conditions come into play.
In this way, we find that there is n® x 3 sign pattern with exactly three or two zero entries that allows
J-orthogonality.

Sign patterns with one zero entry. In this case, we first eliminate from consideration all those sign
patterns which are sign potentially orthogonal, sinceifer 3, every SPO pattern allows orthogonality [1].

So supposél is a3 x 3 non-SPO pattern with exactly one zero entry. If the zero is on the main diagonal,
we permute it to thé3, 3) position. Suppose first that the inner product of the first two columns i8 oot
#. Since they are nonzero, these columns are either the same or negative of each other. So we can multiply
on the left and right by suitable signature patterns so that all the entries in the first two columns\Viee
can also multiply the third column by if necessary to obtain the form

+ o+ o+
A= + + * |,
+ 4+ 0

leaving two possible patterns up to equivalence. Note that# —, then A does not satisfy the SPJO
conditions for anyJ. On the other hand, # = +, then we can obtain d&-orthogonal matrix of this form;
for example

2 1 V2
2 2
o Y



allows J-orthogonality withJ = diag(1, —1, —1).
Similarly, if the first and third columns are not SPO, then by signature equivalence we can obtain the
form
+ + +
+ *x + |,
+ % 0

while if the second and third columns are not SPO, we obtain

+ + +
* + +
* + 0

Upon inspection we find that no matrix of the above forms (except for alkthgual to+, as described
above) allows/-orthogonality.

Now suppose that the zero entry is off the main diagonal, and without loss of generality, permute the
zero to the(2, 3) position. Then similar to the above discussion, we obtain three possible forms:

+ + + + + + + + +
+ + 0|, + O |,  + O
+ + % + * + * + +

Of these possible patterns, four allowvorthogonality. They are listed below along with examples of
J-orthogonal matrices with those sign patterns:

+ + +
A= |+ + 0 |;
+ + +
4 2
oY . o
B=|5 & 0 € Q(A)is J-orthogonalwithy = | 0 —1 0
2 1 2 0o 0 -1
+ + +
A=+ + 0 |;
+ + -
} % % 1 0 O
B=|»xB 0 € Q(A) is J-orthogonal with/ = | 0 —1 0
11 V3 0 0 1
V3 23 2

b
[
++ +

+ 0+
+ o+

10



1 2 2 1 0 0
B— % —% 0 | € Q(A)is J-orthogonalwithy = | 0 1 0
SR
z £ V5 00 -1
+ + +
A: - + O I
+ + +
1 1 1 1 0 O
B— _% % 0 | €Q(A)is J-orthogonalwithy = | 0 1 0
1 1
RN VG 00 —1

These are all of the non-SPx 3 sign patterns, up to equivalence, with exactly one zero entry which
allow J-orthogonality.
We have thus proved the following result.

Theorem 3.1. Up to equivalence, the sign patternsjg with at least one zero entry are

+ 4+ 0 + 0 + + 4+ + + + +
+ x 0|, |+ 0 x|, |+ 4+ +|,|+ + 0],
0 0 + 0 + 0 + + 0 + + +
+ + + + + + + + +
+ 4+ 0|, + - 0|, — + 0|,
+ + + + + + + +
as well as thed x 3 generalized permutation sign patterns and ghe 3 SPO sign patterns with one zero

entry, wherex denotes ar or — entry.

4 The4 x 4 full sign pattern case

An initial investigation of the question of whether the full x n sign patterns always allow.&orthogonal
matrix was begun in [9], and for < 3 it was shown to be true.

Remark 4.1. It was observed in [4] that for < 4, the SPO patterns are the same as the sign patterns in
PO, and that this is also the case for full sign patterns of ogdeee [1] and [13]. So, regarding the above
guestion withn. < 5, we need only to consider non-SPO patterns.

We establish that every x 4 full sign pattern matrix allows/-orthogonality. As observed above, for
n < 4, the SPO patterns are the same as the patterB&in Therefore, since every orthogonal matrix is
alsoJ-orthogonal, we need only consider those patterns which are not sign potentially orthogonal. Without
loss of generality, we can suppose each pattern is not sign potentially column orthogonafsscesed
under transposition.

11



Note that a given full sign pattern can be multiplied on the left and right by signature patterns so that it

has the form
+ 4+ + +

+
+
+

Moreover, since we are considering sign patterns which are not sign potentially column orthogonal and
which have no zero entries, this means that two columns must be the same. Thus we can use permutation
similarity and signature equivalence to reduce to the case

+ + +
+
+ )
+

(8)

+ 4+t

which leaves 64 possible sign patterns.
We can reduce the number of cases by noting that the cases

+ + + + + + + +
o+t =gl T Tt
+ + + +
+ o+ + +

are equivalent, since we can switch the third and fourth columns, and simultaneously switching the third and
fourth rows.

Using (8) as our template, there are now three possibilities to conSiésiirst consider the case that
the (2,3) and (2,4) entries are both 4+, for which there are 16 subcasesFour of these are symmetric
staircase patterns and thereforejin [9, Theorem 6.2]. A further 2 patterns are permutationally similar to
symmetric staircase patterns, so these too arg in

Now consider the non-symmetric staircase pattern

+ + + +
A_ | Tt +
+ + + +
+ + - -

If we construct/; and.J, as in [9, Remark 5.7] we see th& = P.J; PT whereP = [e1, es, e4, e3]; and
now similar to [9, Example 5.9]A4P = A. This leads us to conclude thdtc 7,. The transpose ofl is
also in.7;. Additionally,

+ 4+ + +
B_| Tt +
+ + - -
+ o+ + +

is permutationally similar tol, so B, BT € J,.

12



Now let

+ + + +
g |t t + -
+ + + -
+ + + -
which isin 7y as in [9, Example 5.9]. Le¥ = diag(+, +,+, —) andP = [es, e2, 1, e4]. Then
+ + + 4+
+ + 4+ + T
C=P'BSP = ; C :
L o4 o4 € Ju; € Ja
+ + 4+ +

This leaves 3 patterns up to equivalence which we still must show &fg in

+ + + + + + + + + + + o+
+ + + + + + + + + + + +
+ + + -+ + -+ ++ -+
+ + - + + + + - + + - -

(The only other case not mentioned is the transpose of the third pattern above.)
Next, we again use (8) as our template and now consider the case that tf 3) and (3, 4) entries
are both —. In this case, there is one staircase pattern

+ + + +
+ + - -
+ + - -
+ + - -

A=

for which, following the example in [9, Remark 5.7], we see tHdt = A. S0 A € J;. Note fromA we
can also multiply the third and fourth columns byand permute the first and second lines to obtain

+ + + +
+ + - -
+ + + +
+ + + +

I~ j4. (9)

Two more matrices in this case can be obtained as follows:
We begin with the staircase pattern

+

A=

+ 4+

+ o+
+

If we computeP as in [9, Remark 5.7], then we find thai® # A. But in fact,

+ +
- +
- +

AP =

+ o+
+ 4+
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So this pattern is i7y. Now we can obtain the pattern

+ + + +
B_ |t - -
+ + + -
+ + + -

from AP by permutation similarity, s& € J;. If P = [e1, e, e4, €3], thenPT BP is another—, — pattern
in Jy.

+
Similarly, if we begin with the staircase pattefn= [i T
H-

I+

} , we find that

+ +
- 4

AP = € Jy (10)

+ o+t
+ o+ + o+

4+
and by permutation similarity3 = Lti__l € Ju. If P = [e1, e, 4, €3], thenPT BP is another—, —
F4+ -

pattern in7;.

We can obtain another pattern by lettiAde the pattern in equation (10), and lettisig- diag(+, —, —, +)
+ 4+ +

andP = [eg, e4,€3,¢1]. ThenB = PTASP = [i T +] € Ju, and permuting the third and fourth lines
+4+ -+

of B yields another-, — pattern in7y.
There are 5 more-, — patterns up to equivalence still to be determined. They are, for our reference

+ + + + + + + 4+ + + + +
+ + - - + + - - + + - -
+ + + 4+ |7+ + -+ - =
+ + + + + + + + + + + +
+ + + + + + + +
+ + - - + + - -
+ + - + [+ + + -
+ + + - + + - 4+
The final case to consider is that in our template (8), thé€2, 3) entry is + and the (2, 4) entry is —.
+ 4+ +
The staircase patterh = [j; T ] is contained in [9, Example 5.9]. If we talée= diag(+, +, +, —)
A
andP = [62,61,63,64],thenPTASP: iii; € Js.

+ 4+ + +
We can obtain two more patterns from (9) above by taking the transpose and performing permutation
similarity to obtain the patterns

+

++ + +
++ + +
++ + +
|
++ + +
++ + +
++ + +
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The other patterns in this case are equivalent either to previous unresolved patterns or one of the 5
unresolved patterns below:

+ 4+ + +7[+ + + +][+ + + +
+ + + ||+ ++ -]+ + + -
+ o+ -+ ||+ ++ -+ + - -
+ + + + [+ + - -]+ + - -

+ + + + [+ + + +

+ + + ||+ + + -

+ + + - ||+ + -+

+ + -+ [+ + - -

In summary, to this point, there remdid unresolved patterns, up to equivalence

+ + + + + + + + + + + + + + +
P e U & e /PR b S PR e e
+ + - + + + - + + + + + + + - +
|+ 4+ 4] |+ + 4 + = ] |+ + + -]
[+ + + +] [+ + + +] [+ + + +] [+ + + +]
VR o S VR o S IO o e PO o S
+ + + - + + - + + + - - + + - +
+ + - 4] + + - -] -+ + A+ + + + -]
+ + + + + + + + + + + +
+ + + - + + + - + + + -
Ag = ;Ao = yAn =
+ + - + + + + + + - +
+ + - - + + - - + + - -

To settle most of these remaining sign patterns, we use the following result contained in [10]. As stated
in [10], this decomposition was first derived in [7]; it is also mentioned in [10] that in a preliminary version
of [12] (which was published later) the authors treat this decomposition in more depth.

Theorem 4.2.[10, Theorem 3.2] We define
_ Ip 0 —
J_[O _Iq}’ pra=m

Assume also that < ¢. Let

Bi1 Bio
B—
[ By Bao ]

be J-orthogonal withBy; € RPP, By, € RPY, By € R?P and By € R?4. Then there are orthogonal
matricesU1, V1 € RPP andU,, V5 € R%4 such that

Ul 0 1[Bu Bul[Wi 07
[O U2TH321 mllo w|=|—5 ¢ ol (11)
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whereC = diag(c;), S = diag(s;) andC? — S? = I, (¢; > s; > 0). Any matrixB satisfying (11) is
J-orthogonal.

Remark 4.3. In the casern = 4 andJ = diag(1,1, —1, —1), every.J-orthogonal matrix3 has a factoriza-
tion of the form
p_ | Bu B Uy 0 c -S1[wv o
N 0 U, -S C 0 VI

Bs1 B
B U, 0 c S |2
- [0 S e ]
ForJ = diag(1,1,—1, —1), with suitable choices df x 2 orthogonal matrice&/;, U, andV;, V5, we

can generaté x 4 J-orthogonal matrices with some prescribed sign patterns. Note that some sign patterns
are quite difficult to achieve by a product of t&c 2 orthogonal matrices and a diagonal matrix. For a fixed
pair V1, V» the two block rows of the matri® can be interpreted as two orthogonal transformations of four
vectors in the plane. The sign pattern will allow/aorthogonal matrix only if there exists an orthogonal

transformation mapping the four vectors with the sign pattern of the first block row to the four vectors with
the sign pattern of the second block row. This is clearly not always possible.

Remark 4.4. In the case: = 4 andJ = diag(1, —1,—1,—1), everyJ-orthogonal matrixB has a factor-
ization of the form

c1uU1v —s1uq (Vaep)T
B— Bll BIZ _ L 1611(5 1) (12)
Bs1 Bas —s1v1Uszeq Uz[ 0 I ]VQT ’
2

whereuy,v; € R, Us, Vo € R33 are orthogonal and; = [1 0 0]7 € R3.
It was noted that a giverd x 4 full sign pattern can be multiplied on the left and right by signature
patterns so that it has the form
+ + + +
+
_|_
+

ForJ = diag(1, —1, —1, —1) this sign pattern essentially leads to the conditipm;, = 1 due toc; > 1.
Takingu; = —1 andv; = —1 we get to the conditions that botfke; andVse; should have the sign pattern
equalto(+ + +)7T. So, given the orthogonal matric&s, V> € R3? such thatgn(Usze;) = sgn(Vae1) =
(+ + +)7, then there exists d-orthogonal matrix of the form (12) with the sign pattern (13). The sign
pattern of the lower right diagonal block is given by the sign pattern of the matrix

(13)

C1 0

Us [ 0 I } Vo = UsVy + (e1 — 1)Uzerel Vi

Note that the sign pattern (vfgelelTVZT is the3 x 3 matrix of all+. In addition, for sufficiently smalt; — 1,
C1 0
0 I
Us VL. This is the way we can generate< 3 .J-orthogonal matrices with some prescribed sign patterns of

the form (13).

the sign pattern ot/, [ } V4l becomes equal to the sign pattern of the: 3 orthogonal matrix
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We can handlels by the approach mentioned in Remark 4.4. Let us take the orthogonalmatrices
Us andV; as

1 2 1 =2 1 6 -3 2
2 -2 1 2 6 3

Then the matrix/> V! has exactly the same sign pattern as the lower right block of the patteamd it
can be also verified that the first column of the matrixhas all positive entries. Then, as can be checked,

the matrix . ; )
21 147 147 147
is J-orthogonal with respect td = diag(1, —1, —1, —1). Eight other patterns from the list of unresolved

patterns can also be handled by this approach. The key is that the lower right block alev@soathogonall
matrix.

A7 is equivalent to the sign pattern

-+ - 4+
+ + + +
+ + + +
+ - + -

This latter sign pattern can be handled by the approach mentioned in Remark 4.3. We choose

— 1
UIZ[O 1}7—U2=[10}aV1T:—V2T:[1 1]7

1 0 0 1 V21l -1
[3 0 [2v2 0
Cl—_o 2],51—[ 0 \/§]
Then, as can be checked, the matrix

3 3

G n
3 3

| B T V2 V2

is J-orthogonal with respect td = diag(1,1, —1,—1).

Thus Ay is the only remaining unresolveldx 4 full sign pattern.

In order to state another very elegant and useful structural characterizatieortsfogonal matrices, we
need the notion of the exchange operator. p.ahdn be positive integers with < n. Let B be ann x n
Bi1 Bi2
By1 Bao
applied toB with respect to the above partition yields

matrix partitioned a3 = { } such thatBy; is p x p and is nonsingular. The exchange operator

B! -B'B
exdB) = |, L_ 11712 :
oAB) [3213111 Baa — Bo1 B! Bia

17



The following theorem found in [11, Theorem 2.1] and [10, Theorem 2.2] characterizes the close con-
nections between orthogonal matrices a@ndrthogonal matrices.

Theorem 4.5. Letp andn be positive integers with < n. Let B be ann x n real matrix partitioned as
B11 B
B=
[321 Bao
p % p principal submatrix ofB is nonsingular and eX@) is orthogonal. Conversely, i is orthogonal and
By, is nonsingular, then ex@®) is J-orthogonal.

] such thatBy; isp x p. LetJ = diag({,, —I,,—p). If B is J-orthogonal, then the leading

Therefore, every/-orthogonal matrix can be constructed from a suitable orthogonal matrix using the
exchange operator and permutation similarity. This approach can be used to show that a given full sign
pattern allows/-orthogonality for a particulay. This process can be done for hundreds of thousands of
“random” rational orthogonal matrices using MATLAB.

It turns out for everyt x 4 full sign patternA that satisfies the SPJO conditions for a specific signature
pattern.J, we can generate &-orthogonal matrix inQ(A). In particular, note thatly satisfies the SPJO
conditions with the signature patteth = diag(+, —, +, —). With the help of MATLAB running the
preceding procedure, fof = diag(1, 1, —1, —1), we obtain the following/-orthogonal matrix

8§ 18 12 10
126 -9 18 —17
T 121020 6 24 —2|°

14 —-15 6 —23

B

which satisfiesP” BP = Ag, whereP = [e1, e3, €2, e4]. It follows that A9 allows a.J;-orthogonal matrix
with J; = PTJP = diag11, 1,1, —1), and hencedy € J;.
We now reach the following conclusion.

Theorem 4.6. Every4 x 4 full sign pattern allows a/-orthogonal matrix.
Combined with known results on full sign patterns of orders at most 3, we get the following result.
Corollary 4.7. For n < 4, everyn x n full sign pattern allows a/-orthogonal matrix.
In view of Theorem 1.4, we also have
Corollary 4.8. For n < 4, everyn x n full sign pattern allows a G-matrix.
Thus, we have the following nice result.
Corollary 4.9. For everyn x n full sign patternA withn < 4, A € G, iff A € 7,.

Suppose a fulk x n sign patternA allows a.J-orthogonal matrixB € Q(A). Without loss of general-
ity, we may assume that all the positive entries/ajccur at the leading diagonal entries. By Theorem 4.5,
exd B) is an orthogonal matrix. Observe that exc(eXpEB. Write exd B) as a product of real House-
holder matrices?,,,, ..., H,, (wherek < n). Replace each; with a rational approximatiom;. Since
matrix multiplication and exchange operator are continuous, we see that when the rational approximations
o; are sufficiently close t@;, B = exq Hy, - - - H3,) is a rational.J-orthogonal matrix inQ(A). Thus we
have shown the following interesting result.

Theorem 4.10. Let A be a fulln x n sign pattern. IfA allows aJ-orthogonal matrix, them allows a
rational J-orthogonal matrix with the same signature matux In particular, if A allows orthogonality,
then A allows a rational orthogonal matrix.

As a consequence, if thex n full sign patternA does not allow a rational-orthogonal matrix for any
signature matrix/, thenA does not allow a real-orthogonal matrix.

18



5 Concluding remarks

The question of whether every x n full sign pattern allows a/-orthogonal matrix is still open. It seems
to be a complicated and impressive problem. Evemfer 5 the number of cases is daunting. Some other
techniques will need to be developed.
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