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Driven Euler system

Field equations
do + divk(ou)dt =0
d(ou) + divy(ou ® u)dt + Vp(e)dt = 0G(o, ou)dW,

Stochastic forcing

0G(0, ou)dW =)~ oG (0, ou)d Wi
k=1

Iconic examples

0G(0, ou)dW = 03~ Gy (x)dWi, 0G(o, ou)dW = oud W
k=1




Data, initial and boundary conditions

(Random) initial data

2(0, ) = 2o, (0u)(0,-) = (ou)o

W = {Wi},2, mutually independent Wiener processes

Periodic boundary conditions

Q=T = ([Oa1]|{0,1})N7 N =




Concepts of solutions

Strong solution

Solutions are smooth in space, spatial derivatives exist in the
classical sense. Equations satisfied for 1td's stochastic integral

Weak (PDE) solution

Spatial derivatives understood in the sense of distributions

Weak martingale solution

Spatial derivatives understood in the sense of distributions. Data
understood in terms of stochastic distribution - law.

0o ~ 0o, Ug ~ ug, W ~ W

Dissipative martingale solution

Martingale solutions satisfying a suitable form of energy inequality




Weak (PDE) formulation

Field equations

|:/Q¢dX:|_ :/T/Qwvxqﬁdxdt,

Q t=0 0 Q

{/ QU~¢dX:| ) f/T/gu®u:VX¢+p(g)divx¢ dxdt
Q t=0 0 Q

o (s o) aw

@(x) — a smooth test function

Stochastic integral (Itd’s formulation)

/OT(/QQG~¢dX>dW_§/OT (/QQGk"ﬁdX)de




Admissibility - dissipative solutions

Energy inequality

—/OTatw</Q FQIU\2+H(9)] dX) dt

<v0) | 1O 1) ax

=g o

k>1

>0, Y(T /




Relative energy inequality

Relative energy
& (g,u r, U) = /Q [%Q|u — U2+ H(o) = H'(r)(o—r) — H(r)] dx

Relative energy inequality

—/()Tatng(g,u r,u) at

T

< YP(0)€ (g,u r, U) (0) + /OdeMRE + /o YR (g,u r, U) dt

Test functions
dr = DZr dt + Dir dW, dU = DZU dt + DU dW




Remainder

Remainder term

R (g,u‘r,U) = /QQ(DgU tu- VXU)(U —u) dx
+ [ (= D+ TH U )
—/QdivXU(P(Q) —p(r)) dx

5L LR el o

k>1

to 3 [ o O x5 3 [P OB ax

k>1 k=1




Existence theory

Local existence of strong solutions [Kim [2011]], [Breit, EF,
Hofmanova [2017]]

If the initial data are smooth, then the problem admits local-in-time
smooth solutions. Solutions exist up to a (maximal) positive
stopping time. The life-span is a random variable.

Weak—strong uniqueness [Breit, EF, Hofmanova [2016]]

Pathwise uniqueness.

A weak and strong solutions defined on the same probability space
and emanating from the same initial data coincide as long as the
latter exists

Uniqueness in law.

If a weak and strong solution are defined on a different probability
space, then their /aws are the same provided the laws of the initial
data are the same




Weak (PDE) solutions

Infinitely many weak (PDE) solutions, Breit, EF, Hofmanova
[2017]

Let T > 0 and the initial data

00 € C3(Q), 00 >0, up € C3(Q)

be given.
There exists a sequence of strictly positive stopping times

™ >0, T — 00 a.s.

such that the initial-value problem for the compressible Euler system
possesses infinitely many weak (PDE) solutions defined in

(0, T ATm). Solutions are adapted to the filtration associated to the
Wiener process W'.




Semi-deterministic approach - additive noise

“Additive noise” problem

Oro + divy(ou) =0

De(ou) + divi(ou ® u) + Vip(0) = 0> Grd Wi
k=1

QZ G dW = oGdW
k=1




Additive noise, Step |

Step |

O(ou—0GW)+divy(ou®@u)+Vip(0) = —0:0GW = div,(ou)GW

Transformed system |

w = ou — oGW

0o+ divye(w + oGW) =0
(w+ oGW) ® (w + oGW)
4
= dive(w + oGW)GW

8tW + diVX (

) + V.p(0)




Additive noise, Step Il

Step Il

w=v+V+V,0, divxv:O,/vdx:O, V =V(t)
Q

Transformed system Il

w = ou — oGW

9r0 + divy(Ve® + oGW) = 0
v+ V4V, 04+ oGW)® (v+V + V0 + oGW)
; )
+Vip(0) + Vx0:® = divy(V,® + oGW)GW — 9,V

at\/ + diVX ((




Additive noise, Step IlI

Step 11
Fix ®, o, V so that

1
00.) = 20, V(0) = / uo dx, V,®(0, ) = H*[u]
Q
Ot + divy(Vi® + oGW) =0

oV = |—§12|divx(vx¢ + oGW)GW

div, <VXM + VMt — /%ldiva)

= divy(V,® + oGW)GW — 5,V




Additive noise, Step IV

Step IV
Fix h, H so that

0,sym

2
h=V+V,®+oGW, H=V,M+VIM — L divaMI € RNXN

Tranformed system |1l

(v+h)® (v+h)
4

3tv + diVX (

—H+ p(o)I + 8t¢]l) =0
div,v =0

1
v(0,-) = vo = Hlug] — @/Quo dx




Additive noise, Step V

Prescribing the kinetic energy

1|v+h[? N
2|Q|:e:/\—2(P(Q)+3t¢)7 A= N(t)

Abstract Euler system
(v+h)®(v+h) 1|v+h|2HH> 0
0 N o
1|v+h[?
— = e
2 0
v(0,) =vp

ﬁtv + diVX <

divev =0,

Random parameters

The functions v, h and H are random variables, the energy e can
be taken deterministic.




Subsolutions

Field equations, differential constraints
Oiv + div F =0, divev =0
v(0,-) =vg, v(T,:)=vr

Non-linear constraint

ve C([0, T] x RV, Fe C([o, T] x Q; RMNXNY,

sym,0

(v+h)®(v+h)
0

—F+M| <e

>y /\max
2




Subsolution relaxation

Algebraic inequality

2
1|v+h| <N
2 0

(v+h)®(v+h)
0

— 2 AI‘I‘laX

Solutions

1|v+h[?
z —e
2 0

=

(v+h)®(v+h)_l|v+h|2ﬂ

F:
0 N

+M

—F+M| <e



Augmenting oscillations

Oscillatory lemma

If
o,e,h € C(Q;RV),0,e >0, He C(Q;RNXN)

sym,0
N
— Amax [h®h —]HI] <ein Q,
2 0

then there exist

w, € C°(Q;RV), G, e C(Q;RN*NY, n=0,1,...

sym,0

dw), + divyG, = 0, divow, =0in R x RV,

ﬂ)\ [(h+w,,)®(h+wn) B
2 max Q

(H+Gn):| <e

n—oo

n2 1 h2
w, =0, Iiminf/ [whl dxdtz/\(maxe)/ <e||
Q © @ 7Jo 20

2
> dxdt




Basic ideas of proof [DeLellis and Székelyhidi]

Basic result

Unit cube and constant coefficients g, e, h, H

Scaling

Localizing the basic result to “small” cubes by means of scaling

arguments

Approximation

Replacing all continuous functions by their means on any of the
“small” cubes




Difficulties in the stochastic world

Adaptiveness

All quantities must be adapted to the filtration associated to the
Wiener process W

Geometric setting

Continuous functions approximated in a similar way as in the

definition of It6's integral
Admissible directions for oscillations selected by the Kuratowski,
Ryll-Nardzewski theorem

Space—time localization

Stopping the Wiener process by its Holder norm




Stochastic version of the oscillatory lemma

Fixing parameters

Problem restricted to intervals small cubes [tx, tx+1] X Bi(x). All
random parameters replaced by their values at tj

Constructing oscillations
Adapting the procedure by De Lellis and Székelyhidi using

Ryll-Nardzewski theorem on measurable selection

Cutting off oscillatory increments

The difference W(tx) — W(t) must remain small on [tk, txt1] -
requires knowledge of the Holder constant of W on [tk, tkt1] at tx -
in general not predictable unless W is replaced by uniformly Holder
function - the necessity of stopping times 7.




