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Hierarchy of solutions

Strong solution

Strong a priori bounds also on derivatives

Weak (distributional) solutions

L™, a > 1 a priori bounds, compactness in L

Measure—valued solutions

L%, « > 1 a priori bounds

Measure—valued solutions with concentration measure

L' a priori bounds

Dissipative measure—valued (DMV) solutions

A form of energy balance, concentration defect dominated by dissipation
defect. (DMV)-strong uniqueness principle




Barotropic Euler/ Navier Stokes system

Field equations

Oro + divim =0

mg@m 0

Orm + divy < ) + V.p(o) =

div,S

2
m=opu, S=pu (qu +Viu— gdivxu]l> + ndivyul

Initial conditions, periodic boundary conditions




Dissipative (weak) solutions

Energy inequality

E(r) + /0 ’ /Q S(Vu) : Viu dx df < JE(0)

1 ¢ p(z
E= / §Q|u‘2 + P(o) dx, P(o) = g/ p(z) dz
Q 1 £




Relative energy/entropy

Lyapunov function
1 _ _ _
E= [ |3du=0F+ P - P@Ne-2) - P@)] ax
Q
Coercivity of the pressure potential
o +— p(o) non-decreasing = o +— P(p) convex

Relative energy (relative entropy Dafermos [1979] )

¢(ou]|ru)

= [ [3el=UP 4 P(o) ~ P - 1)~ ()|




Dissipative solutions

Relative energy inequality

£ (en] V)],

+/o /Q(S(qu) —§(VxU)) : (Vxu — V,U) dx dt

S/OTR(Q,U ’ r,U) dt

Test functions

r >0, r,U periodic (or other relevant b.c.)

Eduard Feireisl based on joint work with J. Bfezina (Tokio), P. G Measure-valued solutions



Remainder

/OTR(,Q,U | r,U) at

/Q(atU‘FU‘va)'(U*U) dx
Q

+/QS(VXU) 1 (ViU — Vyu) dx + /Q (p(r) — p(o)) div,U dx

+/ [(r — g)afP'(r) + VXP/(r) -(rU — gu)] dx
Q




Weak (distributional) solutions

Navier—Stokes system

e P.L.Lions [1998] - global in time existence for p ~ ag”, v > 2(N = 3)
e EF, A.Novotny, H.Petzeltov [2000] - extension to v > %

Euler system

[ ]

E.Chiodaroli, EF [2014, 2015] - global in time existence of infinitely many
weak solutions for any smooth initial data

[ ]

E.Chiodaroli, EF [2014, 2015] - global in time existence of infinitely many
dissipative weak solutions for special initial data

[ ]

E.Chiodaroli, C.De Lellis, O.Kreml [2016] - global in time existence of
admissible entropy solutions for Lipschitz initial data




What is a good weak solution?

Desired properties

e A weak solution exists globally in time for “any” choice of the initial
state

e A weak solution can be identified as a limit of suitable approximate
problems, e.g. by adding artificial viscosity

e The set of weak solutions is closed; a limit of a family of weak solutions
is another weak solution

e A weak solution can be identified as a limit of a numerical scheme

e A weak solution is the most general object that enjoys the weak—strong
uniqueness property

Weak strong uniqueness

A weak solution coincides with a strong (classical) solution as long as the
latter exists




Measure—valued solutions

Derivatives

Partial derivatives replaced by distributional derivatives

Oscillations

A parameterized measure (Young measure)

vex € P(F), t —time, x — spatial variable, F — phase space
U:Q— F, f(U)(t,x) replaced by expectations (vt x; f(U))

Concentrations

Concentration measure C € M(Q)




Measure valued solutions

Equation of continuity

T T
/ / (Vt,x; 0) Orp + (Ve ;M) - Vi dxdt = / Vi - dCq
0 TN 0 TN

for all p € C2°((0, T) x TV)

Momentum equation

.
/ /N (Vtx;m) Orp + <Vt,x; %> : Vg + (Ve x; p(0)) divep dxdt
0 T

T
= / Vxp 1 dCs
o Jrn

for all o € C°((0, T) x TV; RY)




Energy dissipation

Energy inequality

Measure-valued energy inequality

mP |
L (5 +P@) ) x+[P0)]

< Ju (35 0 P0))

Dissipation defect - compatibility

1[0, 7] % T"" n ‘CQ[O,T] x TNj < €(r)D(r), € € L0, T)




Truly measure-valued solutions

Truly measure-valued solutions for the Euler system (with
E.Chiodaroli, O.Kreml, E. Wiedemann)

There is a measure-valued solution to the compressible Euler system
(without viscosity) that is not a limit of bounded LP weak solutions to the
Euler system.




Weak (mv) - strong uniqueness

Theorem - EF, P.Gwiazda, A.Swierczewska-Gwiazda, E. Wiedemann
[2015]

A measure valued and a strong solution emanating from the same initial
data coincide as long as the latter exists




Relative energy (entropy)

Relative energy functional
& (g,m ‘r, U) ()

+mmfﬂmw—nfmo>w

+ P(Q)> dx — /Q (Vrx;m) - U dx
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Relative energy (entropy) inequality

Relative energy inequality

£ (g,m ’r, u) (r)

< [ (n Lim = o | pg) - P/ (r)e = ) - P(w)) dx

%

+/OTR(Q,ITI ’r,U) dt




Remainder

R(Q,m ‘r, U)

/ / Vex,m) - 9:U dx dt
m®m .
/ / Kut,x; . > s ViU + (ve i p(0)) dleU} dx dt
0

/ /[l/tx o)U-8:U+ (vr;m)-U-V, U] dx dt

[ Ll ) i #05.] a

+/ / 7vx \U| - (r)) dcl—/ V.U dCs
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Convergence of a numerical scheme

EF, M. Lukatovda-Medvidova [2016]
Let Q C R® be a smooth bounded domain. Let

1<y<2, At=h 0<a<2(y-1).

Suppose that the initial data are smooth and that the compressible
Navier-Stokes system admits a smooth solution in [0, T] in the class

0, Vxo, u,Viu e C([0, T] x Q)

o€ (0, T; C(Q; R*)), 0> 0, ulog =0.

Then the numerical solutions resulting from Karlsen-Karper FV-FE
scheme converge unconditionally,

on — o (strongly) in L7((0, T) x K)
up, — u (strongly) in L*((0, T) x K; R®)
for any compact K C Q.




General strategy

Basic properties of numerical scheme

Show stability, consistency, discrete energy inequality

Measure valued solutions

Show convergence of the scheme to a
dissipative measure — valued solution

Weak-strong uniqueness

Use the weak-strong uniqueness principle in the class of measure-valued
solutions. Strong and measure valued solutions emanating from the same
initial data coincide as long as the latter exists




Singular limit problem

Scaled Euler system

Oto + divim =0

mm 1
) + gvxp(g) =0

atm + diVx <

Incompressible (low Mach) limit - EF, Ch.Klingenberg,
S.Markfelder[2017]

Convergence to the limit system
divav =0, 9v +diva(v®v) + V.M =0

for well /ill prepared initial data.




Complete Euler system

Field equations

Oro + divk(ou) = 0
9e(ou) + divi(ou @ u) + V.ip(e,9) =0

1 . 1
0. oluf + oe(o.)]| + aive (| Goluf + e(e.)]u)
+divi(p(o, ¥)u) =0
Entropy inequality (admissibility)

Ot(0s(0,)) + divk(os(o,H)u) > 0

Constitutive relations

p =09, e=cd, s=log(v) — log(o)




A priori estimates

Energy bounds, total mass conservation

/ de:/ 0o dx
TN TN

1 1
/ §Q|U|2+Qe(9719) dx:/ 590|U0|2+Qoe(907190) dx
N TN

Entropy transport

s(0,9) (7, x) > inf s( 00, Do)

L' estimates

lellir, loullis, Nelul*lle, lledllis, llosliir, pllir, llesulls bounded




MYV solutions, |

Basic state variables

density o, momentum m, internal energy E = pe(p, )

vex € P([0,0) x RY x [0, 0))

Equation of continuity

-
/ / [(Vt,x; 0) Orp + (Vexim) - Vip] dxdt =0
o JTN

for any ¢ € C((0, T) x TV)
Momentum equation

;
// {(vt,x;m>~¢+<ut,x;w>:vxgo} dxdt
0 TN o

T T
—i—/ / (Ve i plo, E)) divep dxdt = / Vi 1 dC
o JTN o JTN

for any ¢ € C2°((0, T) x TV; R")




MYV solutions, 11

Entropy balance

/ / (Ve,x; 0Z (5)) Orp+ (Ve x; Z () m)-V an dxdt = / /TN @dDy

Dy >0, for any p € C((0, T) x T"), ¢ > 0, and any Z concave,
Z'>0,supZ < o0

Total energy balance

1|mf? =T
Vt,x,f— + E ) dx +D2(7') =0
Q 2 t=0

Compatibility

ICluoresary < < [ [Dr(e) + Da(o)]de
0




Relative energy

Ballistic free energy

He(Q7 19) = Qe(g7 19) - 995(97 19)7

Relative energy

Ez (g, Y,u |r,©, U)
Ho(r,®)

= 2ol UF + oelo, 9) ~ ©0Z(s(e,9) ~ 22O (o — 1) - Ho(r, ).

do




Weak strong uniqueness

Hypotheses

9Ds(0, 9) = De(o, 9) + p(o, 9)D (é)

de(o,9)

for all
90 > 0 for all o, >0

>0,

Conclusion [Bfezina, EF 2016]

Weak(MV)-strong uniqueness holds provided the initial density and
temperature are strictly positive




