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Abstract

We prove that ifu is a weak solution to the Navier—Stokes system with the Navier-type boundary
conditions inQ x (0,7T), satisfying the strong energy inequality éhx (0,7) and Serrin’s integrability
conditions inQ)’ x (t1,t2) (whereQ)' is a sub-domain of! and0 < ¢; < ty < T) thenp andd,u have
spatial derivatives of all orders essentially bounde€@ihx (¢, + €,t2 — €) for any bounded sub-domain
Q" c Q" c @ ande > 0 so small that; + ¢ < t, — e. (See Theorem 1.) We show an application of
Theorem 1 to the procedure of localization.

AMS 2010 Subject Classificatiof5B65, 35Q30, 76D03, 76D05.
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1 Introduction

1.1. Notation. We assume tha® is a bounded domain iR? with the boundary of the clags?* (") for some
h > 0. We denote vector functions and spaces of vector functions by boldface letters. Furthermore,

o the scalar product i (92) is denoted by ., . ), and the induced norm is denoted jy/|>.
o cIis ageneric constant, i.e. a constant whose value may vary from line to line.

o L7, () (wherel < s < oo) is the closure ofCG7,(€2) (the linear space of infinitely differentiable
divergence—free vector functions §i, with a compact support i) in L*(2). L7 ,(£2) can be charac-
terized as a space of functions frabi((2) that are divergence—free in the sense of distributions (which is
the sense of the subscrip) and their normal component aif? is equal to zero in the sense of traces,
see e.g. [8] for the detailed explanation. (l.e. the functions are tangéit,tavhich is the meaning of the
subscriptr.)

o W12(Q) :== WH(Q) n L2 ,(Q); the dual space t&V 2 (Q2) is denoted byW ;*(2) and the duality
between elements &, *(2) andW 2(() is denoted by ., . ),.

o n denotes the outer normal vector field @0.

o W12(Q) := {v € WH(Q); v-n = 00n0Q}; the dual space t81?(Q) is denoted byWw ~1?(Q2) and
the duality between elements W ~12(Q) andW 12(Q) is denoted by ., . ).

1.2. The initial-boundary value problem, a weak solution. Let 7" > 0. We consider the Navier—Stokes
initial-boundary value problem

ou+u-Vu+Vp = vAu inQ x (0,7), (1.2)
divu = 0 inQ x (0,7), (1.2)
u-n =0 onoQ x (0,7), (1.3)



curlu xn = 0 onoQ x (0,7), (1.4)
u(.,0) = wup inQ x 0, (1.5)

whereu = (u1, ug, u3) is the velocity,p is the pressure andis the kinematic coefficient of viscosity. (It is a
positive constant.) Boundary conditions (1.3), (1.4) are often calleN#véer—type boundary conditionéSee
e.g. [3] for a more detailed explanation.)

Denote by, the linear operator fror 12 (Q2) to W (), defined by the equation

(Hyv,P)y = (curlv,curl @)s forallv, ¢ € Wig(Q)

Similarly, denote by%, the quadratic operator froV :2(Q2) x W12(Q2) to W, *(12), defined by the
equation

(B, $)s = (v-Vv,¢) forallv, € WEi(Q).

(As the right hand side can be considered to be a duality betwe&w ¢ W_-12(Q) and¢ € WL2(Q), we
observe that4,v = P, (v - Vv).) By definition, functionu € L2(0,T; W12(Q)) N C, ([0, T); L2 () is
said to be aveak solutiorof the problem (1.1)—(1.5) i’ (the distributional derivative with respecttof u as
a function from(0, T') to W 12(Q)) is in L' (0, T; W »*(2)) andu satisfies the equation

u +vd,u+ Bou = 0 (1.6)

a.e. in(0,7") and it also satisfies the initial condition (1.5).

It is not clear at the first sight whether and how this definition involves the boundary condition (1.4). How-
ever, assuming that is a “smooth” weak solution, one can reconstruct (1.4) from equation (1.6), just writing
it in the form

(. 8)a 4 vy @)y + (Bou, B)r = 0

(a.e.in(0,T), for all ¢ € W12(12)), or equivalently in the form

/T/[—ﬁl(t)u-¢+m9(t) curlu - curl¢ + 0(t)u- Vu - ¢| dedt = /9(0)u0-¢dm 1.7)
0 Jo Q

(for all test functions) € C*°([0,T) such that)(T) = 0 and¢ € Wif,(Q)), and applying appropriately the
integration by parts.

If ug € Lig(Q) then, due to [23, Theorem 6.3], the problem (1.1)—(1.5) has at least one weak solution, that
satisfies the inequality

— —||u(. ,t)H% +v chrlu||% <0 (1.8)

in the sense of distributions i, 7°).

1.3. Previous results on the interior regularity of velocity and pressure and aims of this paper. The

next lemma recalls the well known Serrin’s result on the interior regularity of weak solutions to the system
(1.1), (1.2). (See e.g. [16] or [9].) It concerns weak solutionQ'irx (¢1,t2), whereQ' is a sub-domain of,
independently of boundary conditions satisfied$hx (0,7).

Lemma 1. Let() be asub-domain &, 0 < ¢; < t, < T and letu be a weak solution to the system (1.1), (1.2)
in Q' x (t1,t2). (Itmeans that satisfies (1.7) for all test functionse C*°(t1, t2), such thatupp ¢ C (t1, t2),
and¢ ¢ C7,(Q2), with the support inf?'.) Letu € L"(t1,t2; L°(Q')), wherer € [2,00), s € (3, 00] and
2/r +3/s = 1. Then, ifQ" is a sub-domain ofY’ such that)” c Q” C Q' and0 < 2¢ < t5 — t1, solutionu
has all spatial derivatives (of all orders) bounded® x (¢ + €,t2 — €).



Note that it is not important whethér and()’ are bounded or unbounded in the lemma, but it is important
thatQ?” is bounded. Also note that the same statement on the associated pge@Reeasubsection 1.6) or the
time derivatived,u is not known to hold. Ifu satisfies the no—slip boundary conditian= 0 on 92 x (0,7")
thenp is only known to have any spatial derivativelfi(t; + €, ta — ¢; L>°(Q2”)) for anyq € (1, 2), see [13],
[15] or [18]. The analogous statement also holdsopn, becauséVp and d,u are interconnected through
the Navier—Stokes equation (1.1). (ff = R? then the statement on the regularityzotan be improved so
that p has all spatial derivatives i (t; + ¢,t2 — ¢; L>°(Q")), see [18]. These results confirm the well
known fact thap is a global quantity, and its behavior in a sub-donfafhof 2 is influenced by the boundary
conditions, satisfied by on 912, independently of the distance betweet andd2. The aim of this paper
is to show that ifu satisfies the Navier—type boundary conditions (1.3), (1.4) then we can derive the same
estimates of spatial derivatives pfandd,u in Q” x (t; + €,ta — ¢€) as in the cas€@ = R3. Our main result
is formulated in Theorem 1 in Section 2. We need a series of auxiliary results (on the uniqueness of weak
solutions, strong energy inequality, existence of an associated pressure, etc.), which are well known for weak
solutions with the no-slip boundary condition. We recall or reprove these results for weak solutions with the
boundary conditions (1.3), (1.4) in the next subsections. To illustrate an application of Theorem 1, we explain
the procedure of localization in Section 3 and show how Theorem 1 improves the regularity of the right hand
side of the localized Navier—Stokes equation.

1.4. Uniqueness of weak solutions.By analogy with [9, Theorem 4.2] or [20, Theorem V.1.5.1] (on the
unigueness of weak solutions), which concern the Navier—Stokes problem with the no—slip boundary condition
u = 00nodf x (0,7), one can also prove the same result for weak solutions to the problem with the Navier—
type boundary conditions (1.3), (1.4). We state this result without proof because the proof would be more or
less a straightforward copy of the procedures from [9] or [20]:

Lemma 2. Letug € LE,U(Q). Letu! andu? be two weak solutions to the problem (1.1)—(1.5). Suppose that
u! satisfies the energy inequality

1 t 1
2||u1(t)||§+v/0 lcurlu'(s)[|3 ds < §Huoll% (1.9)

(forall t € (0,7)) andu? € L"(0,T; L*(52)) for somer, s € R such thats > 3 and2/r + 3/s = 1. Then

ul = U2.

1.5. The strong energy inequality. Let x be an infinitely differentiable function oft-oc, co) such thaty = 0
on (—oo, 0], x is nondecreasing oft), 1) andy = 1 on[1, ). Let0 < t; < t3 < T'andm, n € N be so large
thatt; + 1/n < to,to +1/m < T. Then

fort < tq,
forty <t <t;+1/m, ,

0
X1m(t) = x(m(t —t1)) 0
1 fort; +1/m <'t.
1
0

m
—
\;—‘
~—

for ¢ < o9,
1) forta <t <ta+1/n,
0 forte +1/n <t.

X2 (t) = x(n(tz —t) +1)

mo

Observe tha/, ,,(t) = mx/(m(t — t1)) > 0 andxj,(t) = —nx'(n(t2 — t) + 1) < 0. Testing inequality
(1.8) by the producj(lm( ) X2,n(t), we obtain

1 t2+1/n , 5 t2+l/n 5
5 [ O By [T 0 (o feurt . ]

2 1

1 t1+1/m , 5
<5 MmOl
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Considering the limit inferior fon — oo and using the weak continuity af from (0, 7) to L?(Q) and the
classical property of weak limits, we obtain

1

1 9 t2 ) t1+1/m . )
5 lus(e2) 3 + v / Xim() [enrlu(t)| dt < 2 / Vim® a2 de. (1.10)
t1 t1

One can deduce from inequality (1.8) that the ndjmag . , ¢)||2 is a.e. in(0,T") a non-increasing function af
Hence% |lu(t1)||3 is greater than or equal to the limit superior of the right hand side of (1.10)fes oo at
a.a. pointg; in [0,t2). Consequentlyy satisfies

1 t2 1
§Ilu(t2)\|§+v/ [curlu(t)(j3 dt < §Hu(t1)H§dt (1.11)
t1

fora.a.t;y € [0,7) and allty € (t1,7T). Inequality (1.11) is called thstrong energy inequalityn contrast to
the energy inequality (1.9). Note that (1.11) is a direct consequence of (1.8). It is generally not known if every
weak solution of (1.1)—(1.5) satisfies (1.9) or (1.11).

1.6. An associated pressure. Let u be a weak solution to the problem (1.1)—(1.5). We say thit an
associated pressuii¢ u andp satisfy equation (1.1) in the sense of distributiong)in. The purpose of this
subsection is to show that an associated pressure exists.

Let P, be a linear mapping o %(Q) to W *(12), defined by the equation

(Pof.®)o == (f.¢) forallgp e Wti(Q).

By analogy with [17, Lemma 4], one can prove that mappigis continuous, its range is the whole space
Wif,(Q) and it is not one—to—one. Moreover,fifc L?(Q) thenP, coincides with the Helmholtz projection
in L?(2). ConsequentlyP, f = f for f € L2 ().

Let the operator7 from WL2(Q) to W-12(Q) be defined by the equation

(v, ¢) = (curlv,curl¢)s + (divw, div @),
forallv, ¢ € W12(Q). Then, obviouslye,v = P,.«/v. Thus, equation (1.6) can also be written in the form
u +vPydu+ Py(u-Vu) = 0.

Integrating this equation with respect to time frémo ¢ and using the identities(.,t) = P,u(.,t) and
ug = P,ug, We obtain

¢
Pgu(.,t)—Pguo+/ PolvAu+u-Vul(.,s)ds = 0.
0

Hence the linear functiona (u) on W 12(Q), defined by the equation

(Flw.¢) = |

Q

t
[u(.,t) —uo] -¢dx+// [Vdu%—u‘Vu](.,s) ds - ¢ dx
QJo
vanishes on the subspalz@lﬁ(ﬂ) of WL2(Q). FunctionalF(u) can also be considered to be a distribution

in ©, that vanishes o’'g", (2). By [22, Proposition I.1.1] (which originally comes from G. De Rham), there
exists a distributiorP(¢) in Q such that

u(.,t)—ug+/()t[uﬂu+u~Vu](.,s) ds = —VP(t), (1.12)

which is now the equation in the space of distribution&irObserve that if is considered to be a distribution
in Q then it coincides with—A, whereA is the distributional Laplace operator. Each term in equation (1.12)

4



can also be considered to be a distributiop := Q x (0,7, i.e. a distribution acting on functions from
C5°(Qr). Differentiating equation (1.12) in the sense of distributions with respettdenotingp := 0,P,
and using the identitd = —A, we obtain the Navier—Stokes equation (1.1), which is now satisfied d&yd
p in the sense of distributions i@. Thus,p is a pressure associated with the weak solution

Note that we have not used any assumptions on dofaainthis subsection. It means that the associated
pressure exists (as a distribution) to a weak solution to (1.1)—(1.5) in any déimdm the other hand,
is @ smooth bounded domain R?, uy is in the domain of a certain fractional power of the Stokes operator
andw is a weak solution to the Navier—Stokes system (1.1), (1.2) with the initial condition (1.5) and with the
boundary conditiors = 0 on 99 x (0,7) then the associated pressure is known to be a function e.g. from
L5/3(QT), see [19]. (Similar conclusions can also be found in paper [21].) To our knowledge, the same results
are not known for weak solutions with the boundary conditions (1.3), (1.4), and it is not our aim to prove them
in this paper. Here, we shall use another kind of “local” regularity,afbtained in subsections 1.7 and 1.8.

1.7. The local in time existence of a strong solution. By analogy with the case of the no-slip boundary
conditionu = 0 on 012, the local in time existence of a strong solution to the Navier—Stokes system (1.1),
(1.2) has also been proven in the case of the Navier—type boundary conditions (1.3), (1.4). We can cite e.g. the
works [1], [23], [6] and [3]. The least assumptions on the initial velocityare imposed in paper [1], where

u is supposed to be iLd ,(©2) for someq > 3 and the solution is obtained i6°([0, 7%]; L ,(2)) N

L"(0,Ty; L3 ,(2)) forr > ¢, s > ¢, 2/r + 3/s = 3/q and someT, > 0. In [23], the initial velocityuy is
assumed to be if > () and the solution is iL?(0, T.; W*?(Q)) N C°([0, T.]; WL2(1)), with the time
derivative inL%(0,7; L2 ,(R2)). The authors of [6] assume thag € W12 (Q2) N W22(12)) and the solution

is shown to be irC" ([0, 7%.); L2 ,(€2)) NC°([0, T%); W*2(R2))). The pressure satisfies the Neumann problem

Ap = —(Vu): (Vu)T inQ, g—z =u-Vu-n onoid. (1.13)
In [3], the authors constructia-continuous family of strong solutions of the Euler or Navier—Stokes equations
on the time interva{0, 7,), provided that the initial velocity is if 2 (Q2) N W*2(Q).

The boundanpf? is assumed to be of the clagg"! in [3]. Although the authors of [6] and [23] only
assume that the boundary ©fis “smooth”, a closer study of the proofs shows that the aforementioned results
from [6] and [23] are applicable to our case (i.e. a bounded dofaith the boundary of classt(") for
someh > 0). Paper [23] also brings theorems that provide (locally in time) strong solutions with higher
regularity. Concretely, ifxg € W12(Q2) N W22(Q) thenu € L*(0,T; W*(Q)) N C°([0, T.]; WLa(Q) N
W?2(Q)) and the time derivative is ii?(0, 7,; W12 (). If, moreoveruy € W12 (Q2) N W*3(Q) then
u € L*(0,T; WH2(Q))nC([0, T.]; WE2(Q)nW*2(Q)) and the time derivative is ih?(0, T,; W12 ()N
W22(Q)). However, these results require a higher smoothne8§.dhan we assume in this paper.

1.8. The structure of the weak solutionu. Let us denote by, the set of time instantg € (0,7") such that
u(.,t1) € Wif,(Q)) and the strong energy inequality (1.11) holds fotak (¢1,7"). Since the weak solution
wis in L%(0, T; Wif,(ﬂ)) for a.a.t; € (0,7") and inequality (1.11) holds for a.&. € (0,7), the Lebesgue
measure of0,7") \ 7o = 0. Consideringu( .,t;) (for t; € 7p) to be an initial value for a new solution, we
obtain from [23] that there existg¢;) > 0 such that; + §(¢1) < T and the Navier—Stokes system (1.1), (1.2)
with the boundary conditions (1.3), (1.4) has a strong solulian L?(t1,t1 + 6(t1); W**(Q)) N C([t1, t1 +
5(t)]; Wif,(Q)). Due to the regularity oti and the energy inequality (1.11) satisfied dythe solutionu
can be identified with: on the time intervalt,,t1 + d(¢1)). (See Lemma 2.) P& := Uy, e (81,61 + 0(t1)).
Then7; has the forn7; = U, cr(a,, b, ), where sef” is at most countable. It follows from [23] that solutien
is smooth on each of the intervals, , b, ) in the sense that € L%(t1,to; W>?(Q)) N CO([t1, t2]; WE2(2))
and the time derivative is i (¢, to; L%U(Q)) forall a, <t < ta < b,. Applying [6], one can even state
thatu € C1 ([t1, t2]; L2 ,(2))NCO([t1, t2]; W2(Q)). Consequentlyyp € CO(t1, t5; L*(£2)) andp satisfies
(1.13) for eacht € [t1, ta].



2 Estimates of the pressure

2.1. Assumptions on solutioru, our aims and technical preliminaries. We suppose that is a weak solution
to the problem (1.1)—(1.5), that satisfies Serrin’s conditioa L"(¢1,t2; L*(€')), whereQ' is a sub-domain
if Q0<t; <ty <T,re2,00),s€(3,00]and2/r+3/s=1.

LetQ” c Q7 c €. Lete > 0 be so small that; + ¢ < t, — €. Our first aim is to show that all spatial
derivatives ofVp are inL>°(Q" x (t1 + €,t2 — ¢€)).

Let . be a sub-domain d?’ such that)” c 7 c Q. c Q. c . Letn be an infinitely—differentiable
cut—off function inR?3 such thad <7 < 1inR3, 7 =0inR3~\ Q., n = 1in Q” anddist(suppVn; 9Q") > 0.

Letx € Q" andt € (t1 +¢,t2 —€) N (a, by) for somey € I'. Sincet is fixed in the next considerations, we
write only p(x) instead ofp(x, t) andu(x) instead ofu(x, t) in the rest of this section. Although functigris
defined only in2, we may naturally consider the produgi to be a function irR3, equal to zero ilR? . (2.,.
Let e be a unit vector iR3. Thene - Vxp(x) satisfies the automatic formula

e Vapl@) = n(e) (e Vo) =~ [ 2 Ay[alw) (e~ Vy(w)] dy
1

= = [p(l)(w) + 2P () + P(?’)(w)],

where 1
Ph@) = /Qm Ayn(y) (e- Vyp(y)) dy,

PO (z) = /Q ﬁ Vyn(y) - ¥y (e Vyp(y))] dy,

PO (@) = /Q mim n(y) Ay (e - Typ(y)) dy.

Note that ag satisfies (1.13) and the right hand side of the first equation in (1.13) is of the@fass
(due to Lemma 1), it follows from results on the interior regularity of solutions of elliptic equations (see e.qg. [7,
paragraph 11.3]) thap is of the clasg™ in ., where the integrands iR(!), P(2) and P(®) are supported.
We denote byD® the spatial derivative of orden|, wherea = (a1, az, as) is a multi-index anda| =
a1 +as+a3=0,1,2,3,....If we want to specify whether the differentiation is considered with respect to
or y, we use the notatioy or Df;.

2.2. Estimates ofD*P®), The termDP®) satisfies

PP = |05 [ L) (e Ty Ayw) dy\
= /Q kc%y Dy {n(y)e- Yy [Wuly) : (Wu(y)']} dy‘
dy
< C/Q; H <c (2.1)

due to Lemma 1. Constantbn the right hand side of (2.1) is independenepf andt.
2.3. Estimates ofD*P(2). In order to estimaté P, we at first apply the integration by parts

Vyn(y)
|z — yl

DEP@) = ~Dg | divy (24 (e Wyalw) dy

. (Wn(y)
= — [ D¢d Y WA d
/Q x 1Vy<|m_y,)e yp(y) dy



and then use the Helmholtz decomposition

Vyn(y)
|z — yl

Dy divy () e = Wyei(y) +wi (), (2.2)

where

, o i (Vyn(y) - 90T o 1o (Wi(Y)
Ayt = divy [DX ley<|£/_ y\> e} inQ, 8—711 = Dg ley<|a:/_y’) e-n=0 ondQ.
Note thatDg divy (Vyn(y)/|x — y|) e is, in dependence o, an infinitely differentiable function with a
compact support if2, whose all derivatives are bounded(inindependently ot andxz € Q”. Since domain
Q is bounded and the bounda?2 is of the clasg>2+ ("), functiony satisfies the estimate

IV X (W)lorny < C‘di"y {ngi"y<|v;i(ﬁ)8”0+(h) < (2.3)

where| . [o4 (5 is the norm in tolder’s spaces?*t (") (Q)), see [12]. The last constantn the right hand side
is independent oé and ofx for z € Q”. Functionw¥ is divergence—free andy - n = 0 on 9. The term
P®)(x) now satisfies

DQP(Q)(QU) = /Q[VySO)l( —I—wﬂ 'Vyp dy = /va<ﬁ)1( : Vyp dy
= / Vyer - [—Gtu —u-Vyu+ Ayu] dy = —/ Vet - [u - VWu| dy
Q Q

= —/ (et - u) (u-n) dy +/ Vigo’f(y) :u®wu] dy. (2.4)
o9 Q

We have used the boundary conditions (1.3), (1.4), which guaranteAthat = 0 on 9f2. (This property of

the Laplace operator, applied to functions that satisfy (1.2)—(1.4), is well known, see e.g. [2] or [6]. The reason
is simple: the boundary condition (1.4) implies teatrl « is normal tod). Hencecurl®u = —Aw is tangent

to 912, which means thaf\u - n = 0 on 9§2.) The first integral on the right hand side of (2.4) equals zero
becausa: - n = 0 on0€2. The second integral satisfies

[ St woww | < o [ juwl ay <
Hence we have
D PP(x)] < e, (2.5)
wherec is independent o, ¢t andz.

2.4. Estimates ofD*P(). It remains to estimat®% P(1). We use the Helmholtz decomposition

D5 () Avilw)e = yeSw) + wiw),

where
. a 1 . OpX N 1
Aypy = divy Dx(ﬂ) Ayn(y)e inQ, % = DX(’:’3 —~ y|) Ayn(y)e-n=0 ondQ.
By analogy with (2.3), functiop} satisfies the inequalities
2 X < Da - A < 2.6
Vi@l < o D(g =) Aynwe| < e (2.6)



where the last constantis independent o andx for = € Q”. Then

DePW (x) = /Q[Vy<p§( +wy] - Vypdy = /vag - Vyp dy.
The last integral can be estimated in the same way as (2.4). Hence we obtain
1D PW(z)] < c 2.7)

wherec is independent of andt.
2.5. A consequence of (2.1), (2.5), (2.7Yhe inequalities (2.1), (2.5) and (2.7) yield the estimate

D3 (e Vp())| < e, (2.8)
wherec is independent oé, x andt for x € Q" andt € (t; +¢€,t2 —€) N [U7€F<a77 b,)]. We have proven the
theorem:

Theorem 1. Letu be a weak solution to the problem (1.1)—(1.5%irk (0, T") that satisfies the strong energy
inequality (1.11), and leb be an associated pressure. leK t; < to < T, Q' be a sub-domain d? and let

u satisfy Serrin’s integrability condition i’ x (¢1,t2), which means thate € L' (¢1,t9; L*(Y')) for some

r € [2,00) and s € (3,00], such that2/r + 3/s = 1. Let0 < 2 < ty — t; andQ” be a sub-domain
of O such that)?” c Q” c €. ThenVp has all spatial derivatives (of all orders) essentially bounded in
Q" x (ta — €, t1 + €). Consequently),u has all spatial derivatives essentially bounded¥hx (o — e, t1 +¢€),
too.

Remark 2.1. According to Theorem 3.1 in [12], one can replavégo’ﬂoﬂh) by the Hlder norm|¢7 |o (1)

on the left hand side of (2.3), provided thaf is chosen so thaf, ©1(y) dy = 0. The same can also be said
on functiony? in inequality (2.6). Theorem 3.1 in [12] requirEsto be a bounded domain with the boundary
of the classC’?+("), This is the main reason why we impose the same condition on dofhairthis paper.
However, due to the personal communication of our colleague Dagmar Madka/same inequalities as (2.3)
and (2.6) also hold if2 is an exterior domain with the boundary of the clags (). (The proof follows from

the contents of a book, which Dagmar Med&as currently completing.) Consequently, Theorem 1 also holds
if 2 is a “smooth” exterior domain iR3. In this case, however, one must assume fais bounded.

3 Application of Theorem 1 to the procedure of localization

In this section, we describe a situation, in which the application of Theorem 1 plays an important role.

3.1. A suitable weak solution and its partial regularity. The so called suitable weak solutions are usually
considered in literature in connection with the boundary conditios 0 on 02 x (0,7'), see e.g. [5], [11]

or [10]. A weak solutionu is said to be auitable weak solutiorif there exists an associated presspre
L5/3(Q2 x (0,T)) such that the paifu, p) satisfies the localized energy inequality

T T

for every non—negative functianfrom Cg° (Q x (0, T)). This definition can also be extended to weak solutions
of the problem (1.1)—(1.5), i.e. the problem with the Navier—type boundary conditions. The localized energy
inequality enables one to prove the “local regularity criterion”, which says that if the identity

1 t0+§92
lim sup —/ / |Vu|? dedt = 0 (3.2)
p—0+ P Jig—Zp2 Jix—xo|<p



holds for somer, € Q2 andty, € (0,7) then the space—time poifiy, o) is a regular point of solution.

(See [5].) The pointxy, o) is, by definition, said to be segular pointof weak solutionu, if there exists a
neighborhood/ (xg, ty) in Q x (0,T), wherew is essentially bounded. Applying (3.2), one can deduce that
the set of hypotheticadingular pointsof solutionw (i.e. points from(2 x (0,7") that are not regular) — let us
denote this set b§ (u) — has the—dimensional Hausdorff measure equal to zero. (See [5] for the details.) This
conclusion also holds for a suitable weak solution of the problem with the Navier—type boundary conditions,
because the boundary conditions play no role in the arguments used in [5].

3.2. The procedure of localization. A suitable weak solutiom is often assumed, in addition to the properties
that directly follow from its definition, to have some additional properties (like e.g. a “better” integrability) in
a sub-domair®)’ of Q in a time interval(¢1,t2) C (0,7). In order to exploit these properties, one usually
needs to localize all the equations® x (¢1,t2) and to formulate a “new” problem, whose solution is in
the spatial variable supported only . The usual way one can do it is to assume f¥atc Q” c €’ and

to multiply solutionu by a cut—off function¢ € C*°(R3) such that) < ¢ < 1inR3, ¢ = 0in R3 \ ¢,

¢ = 1in Q" andsupp(V() is contained in a “smooth” domai® c €' ~. Q”.The boundary o> can be
split to two closed disjoint surface€’D = (9D); U (0D)2, where¢ = 0 on (9D)1, ¢ = 1 on (9D)2 and

Q" C Int (0D)s C Int (0D); C .

It is shown in [14] that since thé-dimensional Hausdorff measure of the singular&@t) is zero, and
setS(u) is closed inQ) x (0,7), domainD which containssupp ¢ can be chosen so th& N S(u) = ¢ and
solutionw is essentially bounded in some neighborhoo@®dfmes(0, 7). Consequently, applying Lemma 1,
we deduce that has all spatial derivatives (of all orders) essentially bounddd in (4,7 — ¢) for anyé > 0.

Since the productw is not divergence—free, one puts:= (u — U, where the “correctorU satisfies
divU = V( - u. This equation implies thativv = 0. The existence of an appropriate functibnfollows
e.g. from [8, Theorem 111.3.2] or [4, Theorem 2.4]). Due to these theorems, there exists a linear nt8pping
from W,™*(D) (for eachm € {0}UN) to W'*"*(D) such that for allf € W;"*(D), satisfying,, f da = 0,

1. divBf = f ae.inD,
2. V"B flla;p < ¢ [V fll2p-

Mapping®s is often called the Bogovskij operator. Now, since

/VC-udm :/ Cu-ndS—i—/ Cu~nd5—/(divudw
D (0D)1 (0D)2 D

:/ u-ndS:—/ dive dz = 0,
(8'D)2 Int (8@)2

we may pulU( ., t) := B[V¢-u(.,t)] fort € (§,T—3). SinceV¢ u(.,t) € Wy™*(D) foranym € {0}UN,
we obtainU (. ,t) € WQ”"Q(D) for anym € {0} UN. Since all spatial derivatives 67 - u are essentially
bounded ifD x (4,7 — 0), we deduce thal/ € L>(5,T — 0; Wg“Q(D)) foranym € {0} UN.

ExtendingU by zero outsideD, and extending alsQu by zero outsidd?, we observe that the function
v = (u — U is divergence—free iR? x (5,7 — 4), it coincides withu in Q" x (5, T — §), it equals zero in
(R3 < ) x (6, T — 6) and all spatial derivatives af are essentially bounded {2’ ~. Q") x (6, T — §). One
can deduce that i € L%/(0,T) then the paiw, ((p + ¥) is a suitable weak solution to the Navier-Stokes
system

ov+v-Vo+V[((p+v)] = vAv+g, (3.3)
dive = 0 (3.4)

inR3 x (6, — &), where

g=-0U-U-V(u)—(Cu)-VU +U -VU + (Cu-V{)u
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—(1-Qu-Vu—-2vV(-Vu—vulAl+vAU + (p+ 9) V(. (3.5)

Of many articles, where the procedure of localization has also been described and applied, we mention e.g. [13].

3.3. Application of Theorem 1. When studying the properties of solutiento the system (3.3), (3.4), it
is important to know as much as possible about the right handgsidesquation (3.3). It follows from the
definition of the cut—off functiorg and the properties of functidii thatsuppg C D x (5, T — 4).

SinceU = B[V - u], the time derivative),U equalsB[V( - dyu] in D x (§,T — 0). Moreover, as all
spatial derivatives ofs are inL>(D x (4,7 — §)), and due to Theorem 1 all spatial derivativegk are in
L*>(D x (6,T — 9)) as well, we observe that all terms on the right hand side of (3.5), except for the last term
(p + ) V¢, have all spatial derivatives ib™ (R? x (5, T — 6)) (supported irD x [0, T).

Sincep € L%3(Q x (0,7)) and Vp has all spatial derivatives ili>*(D x (5,7 — §)) due to Theorem
1, there exists) € L%3(0,T) such thatp + ¢ € L>(D x (6,T — §)), too. Then all spatial derivatives of
(p+9) V¢ areinL>®(R3 x (§,T — §)) (supported irD x [0,7]) and the same statement now holds on the
whole functiong.

Theorem 2. Let u, p be a suitable weak solution to the problem (1.1)—(1.5Qix (0,7"). LetQ’ be a sub-
domain ofQ2 and 2" be a sub-domain d®’ such that?” c Q” c Q'. LetD, ¢ andU be the set, respectively
functions, described in subsection 3.2, and= (u — U. Then functiorw satisfiesv = w in Q" x (0,7
andv = 0in R? ~ . If 9 € L5/3(0,T) then the pairv, (p + 9) is a suitable weak solution to the system
(3.3), (3.4) inR3 x (0,T). Functiong on the right hand side of (3.3) is supportedZinx [0, 7] and function

¥ € L°/3(0,T) can be chosen so thgthas all spatial derivatives il (R? x (8,7 — §)) for anyd > 0.

Remark 3.1. If the considered suitable weak solutiaris supposed to satisfy Dirichlet’s boundary condition

u = 00n0N x (0,7T) instead of the Navier-type boundary conditions (1.3), (1.4), then one can only state that
function g has all spatial derivatives ih4(5, T — 6; L>(R?)) (supported irfD x [0, T)), for anyq € (1,2).

The reason is that one cannot apply Theorem 1, and instead of it, one has to rely on the results of [13], [15] or
[18], mentioned in subsection 1.3.
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