On a certain generalization of first-countable spaces

Martin Doležal (joint work with Warren B. Moors)

Institute of Mathematics of the Czech Academy of Sciences

dolezal@math.cas.cz

19 June 2017

Motivation - products of Baire spaces

Definition

A topological space X is a *Baire space* if every intersection of countably many dense open sets is dense.

Motivation - products of Baire spaces

Definition

A topological space X is a *Baire space* if every intersection of countably many dense open sets is dense.

Question

 $X, Y \text{ Baire spaces} \Rightarrow X \times Y \text{ Baire ???}$

Motivation - products of Baire spaces

Definition

A topological space X is a *Baire space* if every intersection of countably many dense open sets is dense.

Question

X, Y Baire spaces \Rightarrow X × Y Baire ???

No.

• J. C. Oxtoby (1961) [CH]: A Tychonoff Baire space X such that X² is not Baire.

- J. C. Oxtoby (1961) [CH]: A Tychonoff Baire space X such that X² is not Baire.
- M. R. Krom (1974): To each topological space X we can assign a metric space Kr(X) such that X × Y is Baire iff Kr(X) × Y is Baire.

- J. C. Oxtoby (1961) [CH]: A Tychonoff Baire space X such that X² is not Baire.
- M. R. Krom (1974): To each topological space X we can assign a metric space Kr(X) such that X × Y is Baire iff Kr(X) × Y is Baire. So, if X is a Baire space with X² not Baire, then the same is true for the metric space Kr(X).

- J. C. Oxtoby (1961) [CH]: A Tychonoff Baire space X such that X² is not Baire.
- M. R. Krom (1974): To each topological space X we can assign a metric space Kr(X) such that X × Y is Baire iff Kr(X) × Y is Baire. So, if X is a Baire space with X² not Baire, then the same is true for the metric space Kr(X).
- W. E. White Jr. (1975) [CH]: A Tychonoff hereditarily Baire space X such that X² is not Baire.

- J. C. Oxtoby (1961) [CH]: A Tychonoff Baire space X such that X² is not Baire.
- M. R. Krom (1974): To each topological space X we can assign a metric space Kr(X) such that X × Y is Baire iff Kr(X) × Y is Baire. So, if X is a Baire space with X² not Baire, then the same is true for the metric space Kr(X).
- W. E. White Jr. (1975) [CH]: A Tychonoff hereditarily Baire space X such that X² is not Baire.
 (hereditarily Baire ≡ each closed subspace is Baire)

- J. C. Oxtoby (1961) [CH]: A Tychonoff Baire space X such that X² is not Baire.
- M. R. Krom (1974): To each topological space X we can assign a metric space Kr(X) such that X × Y is Baire iff Kr(X) × Y is Baire. So, if X is a Baire space with X² not Baire, then the same is true for the metric space Kr(X).
- W. E. White Jr. (1975) [CH]: A Tychonoff hereditarily Baire space X such that X² is not Baire.
 (hereditarily Baire ≡ each closed subspace is Baire)
- P. E. Cohen (1976); W. G. Fleissner, K. Kunen (1978); J. van Mill, R. Pol (1986) [ZFC]: A Baire space X such that X² is not Baire.

- 4 同 6 4 日 6 4 日 6

J. C. Oxtoby (1961): X_α, α ∈ A, Baire spaces with countable π-base
 ⇒ Π_{α∈A} X_α is Baire.

► < ∃ ►</p>

- J. C. Oxtoby (1961): X_{α} , $\alpha \in A$, Baire spaces with countable π -base $\Rightarrow \prod_{\alpha \in A} X_{\alpha}$ is Baire.
- L. Zsilinszky (2004): X_{α} , $\alpha \in A$, Baire spaces with countable-in-itself π -base $\Rightarrow \prod_{\alpha \in A} X_{\alpha}$ is Baire.

- J. C. Oxtoby (1961): X_{α} , $\alpha \in A$, Baire spaces with countable π -base $\Rightarrow \prod_{\alpha \in A} X_{\alpha}$ is Baire.
- L. Zsilinszky (2004): X_{α} , $\alpha \in A$, Baire spaces with countable-in-itself π -base $\Rightarrow \prod_{\alpha \in A} X_{\alpha}$ is Baire.
- W. B. Moors (2006): X Baire, Y metrizable hereditarily Baire \Rightarrow X \times Y is Baire.

- J. C. Oxtoby (1961): X_α, α ∈ A, Baire spaces with countable π-base
 ⇒ Π_{α∈A} X_α is Baire.
- L. Zsilinszky (2004): X_{α} , $\alpha \in A$, Baire spaces with countable-in-itself π -base $\Rightarrow \prod_{\alpha \in A} X_{\alpha}$ is Baire.
- W. B. Moors (2006): X Baire, Y metrizable hereditarily Baire \Rightarrow X × Y is Baire.
- P. Lin, W. B. Moors (2008): X Baire, Y a W-space with a rich family of Baire spaces ⇒ X × Y is Baire.

- J. C. Oxtoby (1961): X_α, α ∈ A, Baire spaces with countable π-base
 ⇒ Π_{α∈A} X_α is Baire.
- L. Zsilinszky (2004): X_{α} , $\alpha \in A$, Baire spaces with countable-in-itself π -base $\Rightarrow \prod_{\alpha \in A} X_{\alpha}$ is Baire.
- W. B. Moors (2006): X Baire, Y metrizable hereditarily Baire \Rightarrow X × Y is Baire.
- P. Lin, W. B. Moors (2008): X Baire, Y a W-space with a rich family of Baire spaces ⇒ X × Y is Baire.

Definition

Let X be a topological space, and let \mathcal{F} be a family of closed separable subspaces of X. Then \mathcal{F} is *rich* if

Definition

Let X be a topological space, and let \mathcal{F} be a family of closed separable subspaces of X. Then \mathcal{F} is *rich* if

• $Y \subseteq X$ is separable $\Rightarrow \exists F \in \mathcal{F}$ such that $Y \subseteq F$,

Definition

Let X be a topological space, and let \mathcal{F} be a family of closed separable subspaces of X. Then \mathcal{F} is *rich* if

- $Y \subseteq X$ is separable $\Rightarrow \exists F \in \mathcal{F}$ such that $Y \subseteq F$,
- $(F_n)_{n=1}^{\infty}$ is an increasing sequence in $\mathcal{F} \Rightarrow \overline{\bigcup_{n=1}^{\infty} F_n} \in \mathcal{F}$.

Definition

Let X be a topological space, and let \mathcal{F} be a family of closed separable subspaces of X. Then \mathcal{F} is *rich* if

- $Y \subseteq X$ is separable $\Rightarrow \exists F \in \mathcal{F}$ such that $Y \subseteq F$,
- $(F_n)_{n=1}^{\infty}$ is an increasing sequence in $\mathcal{F} \Rightarrow \overline{\bigcup_{n=1}^{\infty} F_n} \in \mathcal{F}$.

If X is separable then $\{X\}$ is a rich family in X \bigcirc

Let X be a topological space, and let $x \in X$ be fixed. Consider the following game G(x):

Player I

Player II

► < ∃ ►</p>

Let X be a topological space, and let $x \in X$ be fixed. Consider the following game G(x):

Player I U_1

Player II

• U_n are open sets containing x

Let X be a topological space, and let $x \in X$ be fixed. Consider the following game G(x):

Player I U_1 Player II x_1

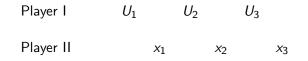
• U_n are open sets containing x

• $x_n \in U_n$

Let X be a topological space, and let $x \in X$ be fixed. Consider the following game G(x):

- Player I U_1 U_2 Player II x_1
- U_n are open sets containing x
- $x_n \in U_n$

Let X be a topological space, and let $x \in X$ be fixed. Consider the following game G(x):


Player I U_1 U_2 Player II x_1 x_2

- U_n are open sets containing x
- $x_n \in U_n$

Let X be a topological space, and let $x \in X$ be fixed. Consider the following game G(x):

- Player I U_1 U_2 U_3 Player II x_1 x_2
- U_n are open sets containing x
- $x_n \in U_n$

Let X be a topological space, and let $x \in X$ be fixed. Consider the following game G(x):

- U_n are open sets containing x
- $x_n \in U_n$

Let X be a topological space, and let $x \in X$ be fixed. Consider the following game G(x):

- Player I U_1 U_2 U_3 Player II x_1 x_2 x_3
- U_n are open sets containing x
- $x_n \in U_n$

. . .

► < ∃ ►</p>

Let X be a topological space, and let $x \in X$ be fixed. Consider the following game G(x):

Player I	U_1	U_2	U ₃
Player II	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3

- U_n are open sets containing x
- $x_n \in U_n$

Player I wins if x is an accumulation point of the sequence $(x_n)_{n=1}^{\infty}$.

. . .

Let X be a topological space, and let $x \in X$ be fixed. Consider the following game G(x):

Player I	U_1	U_2	U ₃
Player II	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3

- U_n are open sets containing x
- $x_n \in U_n$

Player I wins if x is an accumulation point of the sequence $(x_n)_{n=1}^{\infty}$. Otherwise, Player II wins.

. . .

Let X be a topological space, and let $x \in X$ be fixed. Consider the following game G(x):

Player I	U_1	U_2	U ₃
Player II	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3

- U_n are open sets containing x
- $x_n \in U_n$

Player I wins if x is an accumulation point of the sequence $(x_n)_{n=1}^{\infty}$. Otherwise, Player II wins.

Definition (G. Gruenhage, 1976)

We say that $x \in X$ is a *W*-point in X if I has a winning strategy in G(x).

. . .

Let X be a topological space, and let $x \in X$ be fixed. Consider the following game G(x):

Player I	U_1		U_2		U ₃		
Player II		x_1		<i>x</i> 2		<i>x</i> 3	••

- U_n are open sets containing x
- $x_n \in U_n$

Player I wins if x is an accumulation point of the sequence $(x_n)_{n=1}^{\infty}$. Otherwise, Player II wins.

Definition (G. Gruenhage, 1976)

We say that $x \in X$ is a *W*-point in *X* if I has a winning strategy in G(x). We say that *X* is a *W*-space if each $x \in X$ is a *W*-point in *X*.

< ロ > < 同 > < 三 > < 三

.

$\,$ First-countable $\,\Rightarrow\,$ W-space $\,\Rightarrow\,$ Fréchet space $\,$ $\,$ $\,$ $\,$ $\,$ $\,$

イロト イヨト イヨト

$$\bigcirc \quad \text{First-countable} \Rightarrow W\text{-space} \Rightarrow \text{Fréchet space} \quad \bigcirc$$

(Fréchet space \equiv if $x \in \overline{A}$ then there is a sequence (x_n) in A s.t. $x_n \to x$)

・ロト ・四ト ・ヨト ・ヨト

$$\bigcirc$$
 First-countable \Rightarrow W-space \Rightarrow Fréchet space \bigcirc

(Fréchet space \equiv if $x \in \overline{A}$ then there is a sequence (x_n) in A s.t. $x_n \to x$)

Example (G. Gruenhage, 1976)

• A *W*-space which is not first-countable: $\Sigma_{\alpha \in A} \{0, 1\} = \{(x_{\alpha})_{\alpha \in A} : x_{\alpha} \neq 0 \text{ for at most countably many } \alpha\},$ where *A* is uncountable

$$\bigcirc$$
 First-countable \Rightarrow W-space \Rightarrow Fréchet space \bigcirc

(Fréchet space \equiv if $x \in \overline{A}$ then there is a sequence (x_n) in A s.t. $x_n \to x$)

Example (G. Gruenhage, 1976)

- A *W*-space which is not first-countable: $\Sigma_{\alpha \in A} \{0, 1\} = \{(x_{\alpha})_{\alpha \in A} : x_{\alpha} \neq 0 \text{ for at most countably many } \alpha\},$ where *A* is uncountable
- A Fréchet space which is not a W-space

Theorem (P. Lin, W. B. Moors, 2008)

X Baire, Y a W-space with a rich family of Baire spaces \Rightarrow X × Y is Baire.

• • = • •

Theorem (P. Lin, W. B. Moors, 2008)

X Baire, Y a W-space with a rich family of Baire spaces \Rightarrow X × Y is Baire.

The proof does not use the fact that Player I chooses open sets containing x in the game G(x) \bigcirc

W-spaces

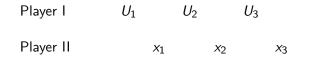
Let X be a topological space, and let $x \in X$ be fixed. Consider the following game G(x):

Player I	U_1		U_2		U ₃		
Player II		x_1		<i>x</i> 2		<i>x</i> 3	••

- U_n are open sets containing x
- $x_n \in U_n$

Player I wins if x is an accumulation point of the sequence $(x_n)_{n=1}^{\infty}$. Otherwise, Player II wins.

Definition (G. Gruenhage, 1976)


We say that $x \in X$ is a *W*-point in *X* if I has a winning strategy in G(x). We say that *X* is a *W*-space if each $x \in X$ is a *W*-point in *X*.

< ロ > < 同 > < 三 > < 三

.

W-spaces \widetilde{W} -spaces

Let X be a topological space, and let $x \in X$ be fixed. Consider the following game $G(x) \ \widetilde{G}(x)$:

- U_n are open sets containing x which are nonempty
- $x_n \in U_n$

Player I wins if x is an accumulation point of the sequence $(x_n)_{n=1}^{\infty}$. Otherwise, Player II wins.

Definition

We say that $x \in X$ is a W-point \widetilde{W} -point in X if I has a winning strategy in G(x) $\widetilde{G}(x)$. We say that X is a W-space \widetilde{W} -space if each $x \in X$ is a W-point \widetilde{W} -point in X.

. . .

Theorem (P. Lin, W. B. Moors, 2008)

X Baire, Y a W-space with a rich family of Baire spaces \Rightarrow X × Y is Baire.

The proof does not use the fact that Player I chooses open sets containing x in the game G(x)

Theorem (P. Lin, W. B. Moors, 2008)

X Baire, Y a W-space with a rich family of Baire spaces \Rightarrow X × Y is Baire.

The proof does not use the fact that Player I chooses open sets containing x in the game G(x)

Theorem

X Baire, Y a W-space with a rich family of Baire spaces $\Rightarrow X \times Y$ is Baire.

Fact

X Baire, Y second countable Baire \Rightarrow X \times Y is Baire.

(日) (同) (三) (三)

Fact

X Baire, Y second countable Baire \Rightarrow X \times Y is Baire.

The key step of the proof.

Suppose that $O_n \subseteq X \times Y$, $n \in \mathbb{N}$, are open dense.

• • = • •

Fact

X Baire, Y second countable Baire \Rightarrow X \times Y is Baire.

The key step of the proof.

Suppose that $O_n \subseteq X \times Y$, $n \in \mathbb{N}$, are open dense. Then the set $\{x \in X : \{y \in Y : (x, y) \in \bigcap_n O_n\}$ is dense in $Y\}$ is dense in X.

• • = • • =

Fact

X Baire, Y second countable Baire \Rightarrow X \times Y is Baire.

The key step of the proof.

Suppose that $O_n \subseteq X \times Y$, $n \in \mathbb{N}$, are open dense. Then the set $\{x \in X : \{y \in Y : (x, y) \in \bigcap_n O_n\}$ is dense in $Y\}$ is dense in X.

Theorem

X Baire, Y a \widetilde{W} -space with a rich family \mathcal{F} of Baire spaces $\Rightarrow X \times Y$ is Baire.

Fact

X Baire, Y second countable Baire \Rightarrow X \times Y is Baire.

The key step of the proof.

Suppose that $O_n \subseteq X \times Y$, $n \in \mathbb{N}$, are open dense. Then the set $\{x \in X : \{y \in Y : (x, y) \in \bigcap_n O_n\}$ is dense in $Y\}$ is dense in X.

Theorem

X Baire, Y a \widetilde{W} -space with a rich family \mathcal{F} of Baire spaces $\Rightarrow X \times Y$ is Baire.

The key step of the proof.

Suppose that $O_n \subseteq X \times Y$, $n \in \mathbb{N}$, are open dense.

Fact

X Baire, Y second countable Baire \Rightarrow X \times Y is Baire.

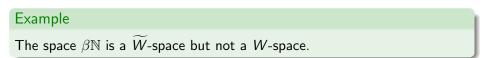
The key step of the proof.

Suppose that $O_n \subseteq X \times Y$, $n \in \mathbb{N}$, are open dense. Then the set $\{x \in X : \{y \in Y : (x, y) \in \bigcap_n O_n\}$ is dense in $Y\}$ is dense in X.

Theorem

X Baire, Y a \widetilde{W} -space with a rich family \mathcal{F} of Baire spaces $\Rightarrow X \times Y$ is Baire.

The key step of the proof.


Suppose that $O_n \subseteq X \times Y$, $n \in \mathbb{N}$, are open dense. Then the set $\{x \in X : \exists F \in \mathcal{F} \text{ such that } \{y \in F : (x, y) \in \bigcap_n O_n\} \text{ is dense in } F\}$ is dense in X.

$$\textcircled{O} \quad W\text{-space} \ \Rightarrow \ \widetilde{W}\text{-space} \ \textcircled{O}$$

→

・ロト ・日本・ ・ 日本

$$\bigcirc$$
 W-space \Rightarrow \widetilde{W} -space \bigcirc

► < Ξ:</p>

$$\bigcirc$$
 W-space \Rightarrow \widetilde{W} -space \bigcirc

Example

The space $\beta \mathbb{N}$ is a *W*-space but not a *W*-space.

Proof.

The space $\beta \mathbb{N}$ is not a Fréchet space \Rightarrow it is not a *W*-space.

イロト イポト イヨト イヨト

$$\bigcirc$$
 W-space \Rightarrow \widetilde{W} -space \bigcirc

Example

The space $\beta \mathbb{N}$ is a *W*-space but not a *W*-space.

Proof.

The space $\beta \mathbb{N}$ is not a Fréchet space \Rightarrow it is not a *W*-space.

Fix a sequence (k_n) of natural numbers where every $k \in \mathbb{N}$ occurs infinitely many times.

Image: A math a math

$$\textcircled{O} \quad W\text{-space} \ \Rightarrow \ \widetilde{W}\text{-space} \ \textcircled{O}$$

Example

The space $\beta \mathbb{N}$ is a *W*-space but not a *W*-space.

Proof.

The space $\beta \mathbb{N}$ is not a Fréchet space \Rightarrow it is not a *W*-space.

Fix a sequence (k_n) of natural numbers where every $k \in \mathbb{N}$ occurs infinitely many times.

Fix $x \in \beta \mathbb{N}$. The winning strategy for Player I in G(x):

Image: A match a ma

$$\textcircled{O} \quad W\text{-space} \ \Rightarrow \ \widetilde{W}\text{-space} \ \textcircled{O}$$

Example

The space $\beta \mathbb{N}$ is a *W*-space but not a *W*-space.

Proof.

The space $\beta \mathbb{N}$ is not a Fréchet space \Rightarrow it is not a *W*-space.

Fix a sequence (k_n) of natural numbers where every $k \in \mathbb{N}$ occurs infinitely many times.

Fix $x \in \beta \mathbb{N}$. The winning strategy for Player I in $\widetilde{G}(x)$: $U_n := \{k_n\}$.

Image: A match a ma

$$\textcircled{O} \quad W\text{-space} \ \Rightarrow \ \widetilde{W}\text{-space} \ \textcircled{O}$$

Example

The space $\beta \mathbb{N}$ is a *W*-space but not a *W*-space.

Proof.

The space $\beta \mathbb{N}$ is not a Fréchet space \Rightarrow it is not a *W*-space.

Fix a sequence (k_n) of natural numbers where every $k \in \mathbb{N}$ occurs infinitely many times.

Fix $x \in \beta \mathbb{N}$. The winning strategy for Player I in $\widetilde{G}(x)$: $U_n := \{k_n\}$. Then the sequence (x_n) constructed by Player II equals (k_n) .

• • • • • • • • • • • •

$$\textcircled{O} \quad W\text{-space} \ \Rightarrow \ \widetilde{W}\text{-space} \ \textcircled{O}$$

Example

The space $\beta \mathbb{N}$ is a *W*-space but not a *W*-space.

Proof.

The space $\beta \mathbb{N}$ is not a Fréchet space \Rightarrow it is not a *W*-space.

Fix a sequence (k_n) of natural numbers where every $k \in \mathbb{N}$ occurs infinitely many times. Fix $x \in \beta \mathbb{N}$. The winning strategy for Player I in $\widetilde{G}(x)$: $U_n := \{k_n\}$. Then the sequence (x_n) constructed by Player II equals (k_n) .

The point x is an accumulation point of this sequence.

• • • • • • • • • • • •

Example

There is a topological space X with the following properties:

► < ∃ ►</p>

Example

There is a topological space X with the following properties:

• X is a \widetilde{W} -space,

▶ ∢ Ξ

Example

There is a topological space X with the following properties:

- X is a \widetilde{W} -space,
- whenever $Z \subseteq X$ is dense then no point $x \in Z$ is a *W*-point in *Z*

Example

There is a topological space X with the following properties:

- X is a \widetilde{W} -space,
- whenever Z ⊆ X is dense then no point x ∈ Z is a W-point in Z (in particular, no point x ∈ X is a W-point in X),

Example

There is a topological space X with the following properties:

- X is a \widetilde{W} -space,
- whenever Z ⊆ X is dense then no point x ∈ Z is a W-point in Z (in particular, no point x ∈ X is a W-point in X),
- X is a Baire space which possesses a rich family of Baire spaces.

Example

There is a topological space X with the following properties:

- X is a \widetilde{W} -space,
- whenever Z ⊆ X is dense then no point x ∈ Z is a W-point in Z (in particular, no point x ∈ X is a W-point in X),
- X is a Baire space which possesses a rich family of Baire spaces.

Proof.

A certain Σ -product of uncountably many copies of the space $\beta \mathbb{N}$ works.

Theorem

Let $f : X \times Y \to Z$ be separately continuous. Suppose that X is a Baire space, Z is regular, and $y_0 \in Y$ is a \widetilde{W} -point. Then f is quasi-continuous at each point of $X \times \{y_0\}$.

Theorem

Let $f : X \times Y \to Z$ be separately continuous. Suppose that X is a Baire space, Z is regular, and $y_0 \in Y$ is a \widetilde{W} -point. Then f is quasi-continuous at each point of $X \times \{y_0\}$.

(separately continuous \equiv separately continuous in each coordinate,

f is quasi-continuous at $p \equiv$ for every open sets $U \ni p$ and $W \ni f(p)$ there is an open set $\emptyset \neq V \subseteq U$ such that $f(V) \subseteq W$

Corollary

Let G be a semitopological group. Suppose that G is a regular Baire \widetilde{W} -space and a Δ -Baire space. Then G is a topological group.

Corollary

Let G be a semitopological group. Suppose that G is a regular Baire \widetilde{W} -space and a Δ -Baire space. Then G is a topological group.

Corollary

Let $f : X \times Y \to Z$ be separately continuous. Suppose that X is a Baire space, Y is a \widetilde{W} -space which possesses a rich family of Baire spaces, and Z is a regular space that is fragmented by some metric whose topology contains the topology of Z. Then f is continuous at the points of a dense G_{δ} -subset of $X \times Y$.

(日) (周) (三) (三)

The End

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト