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1 Introduction

The paper deals with the well-posedness of the strong solution of fluid-structure interaction problem
when the mixed boundary conditions are considered.
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We shall investigate the motion of a rigid body inside of a viscous incompressible fluid. The
fluid and the body occupy a bounded domain Ω ⊂ RN (N = 2 or 3) with the boundary ∂Ω ∈ C0,1.
Let the body be an open connected set S0 ⊂ Ω at the initial time t = 0, ∂S0 ∈ C2. The fluid fills
the domain ΩF (0) = Ω\S0 at t = 0.

The Cartesian coordinates y of points of the body at t = 0 are called the Lagrangian coordinates.
The motion of any material point y = (y1, .., yN)T ∈ S0 is described by two functions

t → q(t) ∈ RN and t 7→ Q(t) ∈ SO(N) for t ∈ [0, T ],

where q = q(t) is the position of the body mass center at a time t and SO(N) is the rotation
group in RN , i.e. the Q = Q(t) is a matrix, satisfying Q(t)Q(t)T = I, Q(0) = I with I being the
identity matrix. Therefore, the trajectories of all points of the body are described by a orientation
preserving isometry

(B)(t,y) = q(t) + Q(t)(y − q(0)) for any y ∈ S0 (1.1)

and the body occupies the set

S(t) = {x ∈ RN : x = B(t,y), y ∈ S0} = B(t, S0) (1.2)

at any time t. The velocity of the body, called rigid velocity, is defined as

d

dt
X(t,y) = us = a(t) + P(t)(x− q(t)) for all x ∈ S(t), (1.3)

where a = a(t) ∈ RN is the translation velocity and P = P(t) is the angular velocity. The velocity
us has to be compatible with B in the sense

dq

dt
= a and

dQ
dt

QT = P in [0, T ]. (1.4)

The angular velocity P is a skew–symmetric matrix, i.e. there exists a vector ω = ω(t) ∈ RN , such
that

P(t)x = ω(t)× x, ∀x ∈ RN . (1.5)

We define ΩF (t) = Ω \ S(t). We consider the following problem modeling the motion of the rigid
body in viscous incompressible fluids:
Find (u, p,q, Q) such that

ρ(∂tu + (u · ∇)u) = ∇ · T(u, p), ∇ · u = 0 in ΩF (t)× (0, T ), (1.6)

u = 0 on ∂Ω, (1.7)

d2

dt2
q = −

∫
∂S(t)

T(u, p)ndO,
d
dt

(Jω) = −
∫

∂S(t)
(x− q(t))× T(u, p)ndO,

(1.8)
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(u− us) · n = 0, β(us − u) · τ = T(u, p)n · τ on ∂S(t), (1.9)

u(., 0) = u0, q(0) = q0, q′(0) = a0, ω(0) = ω0, (1.10)

where n(x) is the unit interior normal at x ∈ ∂S(t), i.e. the vector n is directed inside of S(t).

The matrix J
J =

∫
S(t)

ρs(|x− q(t)|2I− (x− q(t))⊗ (x− q(t))) dx

is the matrix of the inertia moments of the body S(t) related to its mass center, ρs is the constant
density on the body. In (1.6) u is the fluid velocity;

T = −pI + 2µ Du and Du =
1

2

(
∇u + (∇u)T

)
,

where T is the stress tensor, D is the deformation-rate tensor; ρ is the constant density of fluid, p
is the fluid pressure; µ > 0 is the constant viscosity of the fluid.

Let us mention that the problem of the motion of one or several rigid bodies in a viscous fluid
filling a bounded domain was investigated by several authors [5, 6, 7, 16]. In all mentioned articles a
non-slip boundary condition has been considered on the boundaries of the bodies and of the domain.
Hesla [14], Hillairet [15] have been shown that this condition gives a very paradoxical result of no
collisions between the bodies and the boundary of the domain.

Our article is devoted to the problem of the motion of the rigid body in the viscous fluid when
a slippage is allowed at boundaries. The slippage is prescribed by the Navier boundary condition,
having only the continuity of the velocity just in the normal component. To our knowledge the
first solvability result was done by Neustupa, Penel [24], [25], in a particular situation, where they
have considered a prescribed collision of a ball with a wall, when the slippage was allowed on both
boundaries. Their pioneer result shown that the slip boundary condition cleans the no-collision
paradox. Recently Gérard-Varet, Hillairet [12] have proved a local-in-time existence result: up to
collisions. Gérard–Varet et al. [13] have been investigated the free fall of a sphere above a wall, that
is when the boundaries are C∞-smooth, in a viscous incompressible fluid in two different situations:
Mixed case: the Navier boundary condition is prescribed on the boundary of the body and the
non-slip boundary condition - on the boundary of the domain; Slip case: the Navier boundary
conditions are prescribed on both boundaries as of the body and of the domain.

The result of them is interesting, saying that in the Mixed case the sphere never touches the
wall and in the Slip case the sphere reaches the wall during a finite time period.

Recently, the global existence result was proven in the mixed case see [4], even if the collisions
of the body with the boundary of domain occur in a finite time under a lower regularity of the
body and domain than in work of [13]. Our article deals with the strong solution of the mixed case.
The existence of strong solution was studied by Takahashi, Takahashi and Tucsnak [28, 29] in the
no-slip boundary conditions and in the slip case by Wang [31] in the 2D case.

The plan of the paper is as follows. In section 2 we define the functional framework at the
basis of our work, we recall also the main result of this work. Next in Section 3 we define the local
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change of coordinates as in Inoue and Wakimoto [17] and we prove the existence of solution to
the linearized problem. Finally in Section 4 we consider the nonlinear problem and we prove the
existence of solution using a fixed point argument.

2 Preliminaries and the main theorem

We will use the following function spaces on the moving domain:

L2(0, T ; H2(ΩF (t)), H1(0, T ; L2(ΩF (t)), (2.1)

C([0, T ]; H1(ΩF (t))), L2(0, T ; H1(ΩF (t)). (2.2)

To precisely define these functon spaces we follow approach of Takahashi [28], Wang [31] and suppose
that there exists a C∞ diffeomorphism X(t, x, y) from ΩF (0) to ΩF (t) such that

∂i+α1+α2X(t, x, y)

∂ti∂xα1∂yα2
, i ≤ 1, ∀α1, α2 ≥ 0 (2.3)

exist and are continuous.

For all function u(t, ·) : ΩF (t) → R3 we define U(t, x, y) as

U(t, x, y) ≡ u(t,X(t, x, y)).

The function spaces which have been introduced in (2.1) can be redefined in the fixed domain

L2(0, T ; H2(ΩF (t))) ≡ {u : U ∈ L2(0, T ; H2(ΩF (0)))}, (2.4)

C(0, T ; H1(ΩF (t))) ≡ {u : U ∈ C(0, T ; H1(ΩF (0)))}. (2.5)

Theorem 2.1 Suppose that

u0 ∈ H1(ΩF (0)),us,0 = a0 + ω0 × (y − q0) ∈ H1(S(0)),

they satisfy
(u0 − us,0) · n|∂S(0) = 0,

u0|∂Ω = 0,
div u0 = 0 in Ω,
dist(S0, ∂Ω) > 0.

(2.6)

Then there exists a maximal T0 > 0 such that (1.6)–(1.9) has a unique solution which satisfies for
all T < T0

u, p, a(t), ω(t) ∈ UT (ΩF (t))× L2(0, T ; H1(ΩF (t)))×H1(0, T )×H1(0, T ), (2.7)

where
UT (ΩF (t)) = L2(0, T ; H2(ΩF (t)) ∩ C(0, T ; H1(ΩF (t)) ∩H1(0, T, L2(ΩF (t))).
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3 Strong solution

3.1 Local transformation

Since the domain depends on the motion of the rigid body, we transform the problem to a fixed
domain. We define as in Takahaski [28] the local transformation introduced by Inoue and Wakimoto
[17]. Let us δ(t) = dist(S(t), ∂Ω). We fix δ0 such that δ(t) > δ0 and define the solenoidal velocity
field Λ(t, x) such that Λ = 0 in the δ0/4 neighborhood of ∂Ω, Λ = a(t) + ω(t) × (x − q(t)) in the
δ0/4 neighborhood of S(t). Then the flow X is defined

X(t) : Ω → Ω,
d
dt
X(t,y) = Λ(t,X(t,y)),X(0,y) = y ∀ y ∈ Ω. (3.1)

We denote Y the inverse of X.

Now we introduce the new unknown functions

P (t,y) = p(t,X(t,y)), (3.2)

U(t,y) = JY (t,X(t,y))u(t,X(t,y)),

Ξ(t) = Qt(t)ω(t),

ξ(t) = Qt(t)a(t),

T (U(t,y),P(t,y)) = QT (t)T(Q(t)U(t,y), P (t,y))Q(t),

for t ∈ [0, T ] and y ∈ Ω0 and

JY (t,X(t,y)) =
(∂Yi

∂xj

)
.

Before deriving the transformed equations we also introduce the metric covariant tensor

gij = Xk,iXk,j, (3.3)

the metric covariant tensor
gij = Yi,kYj,k (3.4)

and the Christoffel symbol (of the second kind)

Γk
ij =

1

2
gkl(gil,j + gjl,i − gij,l). (3.5)

It is easy to observe that in particular it holds

Γk
ij = Yk,lXl,ij. (3.6)

The transformation of the rigid body∫
∂S(t)

T(u, p)n(t)dO = Q
∫

∂S(0)

T (U, P )Ndσ,
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∫
∂S(t)

(x− q(t))× T(u, p)n(t)dO = Q
∫

∂S(0)

y × T (U, P )Ndσ.

After transformation we get the following system

Ut + (M−L)U = −N (U)− Gp, (3.7)

div U = 0, (3.8)

U(t, y) ·N = (Ξ(t)× y + ξ(t)) ·N, (3.9)

m
d

dt
ξ = −m(Ξ× ξ)−

∫
∂S(0)

T (U, P )Ndσ, (3.10)

I
d

dt
Ξ = Ξ× (IΞ)−

∫
S(0)

y × T (U, P )Ndσ, (3.11)

(U−US) ·N|∂S(0) = 0, (3.12)

β(U−US) · τ |∂S(0) = −2(D(U)N · τ |∂S(0), (3.13)

U = 0 on ∂Ω, (3.14)

ξ(0) = a(0) and Ξ(0) = ω(0), (3.15)

where I = QtJQ is the transformed inertia tensor which no longer depends on time ([21]). The
operator L is the transformed Laplace operator and it is given by

(Lu)ij =
n∑

j,k+1

∂j(g
jk∂ui) + 2

n∑
j,k,l=1

gklΓi
jk∂luj (3.16)

+
n∑

j,k,l=1

(
∂k(g

klΓi
kl) +

n∑
m=1

gklΓm
jlΓ

i
km

)
uj. (3.17)

The convection term is transformed into

(Nu)i =
n∑

j=1

uj∂jui +
n∑

j,k+1

Γi
jkujuk. (3.18)

The transformation of time derivative and gradient are given by

(Mu)i =
n∑

j=1

Ẏj∂jui +
n∑

j,k=1

(
Γi

jkẎk + (∂kYi)(∂jẊk)
)
uj. (3.19)

The gradient of pressure is transform as follows

(Gp)i =
n∑

j=1

gij∂jp. (3.20)
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3.2 Stokes problem

We will consider a linear system coupling Stokes type equations in a fixed domain to a system of
ordinary differential equations:

ρ∂tU− ν∆U +∇P = F in ΩF (0)× [0, T ],

div U = 0 in ΩF (0)× [0, T ],

U(y, t) = 0, y ∈ ∂ΩF (0), t ∈ [0, T ],

U(y, t) ·N = Us ·N on ∂S0,

(T(U, P )N) · τ = β(Us −U) · τ on ∂S0,

mχ′ = −
∫

∂S(0)
T(U, P )Ndσ + FM ,

IΩ′ = −
∫

∂S(0)
(x− q(t))× T(U, P )Ndσ + FJ .

(3.21)

Let us mention the “classical” steady Stokes equations{
−∆v +∇p = f, divv = 0 in Ω

v = v∗ on ∂Ω
(3.22)

Theorem 3.1 For any f ∈ L2(Ω), v∗ ∈ H3/2(∂Ω), Ω ⊂ C1,1,
∫

∂Ω
v∗n dΓ = 0. Then problem (3.22)

has a unique strong solution (v, p) ∈ H2(Ω)×H1(Ω) satisfying

‖v‖H2(Ω) + ‖p‖H1(Ω) ≤ C(‖f‖L2(Ω) + ‖v∗‖H3/2(Ω)).

Proof. see [11], Theorem 5.1, p. 232.

The steady Stokes equations with slip boundary boundary was investigated by B. da Veiga in
Hilbertian case [2] 

−∆v +∇p = f, divv = 0 in Ω
(v − g) · n = 0 on ∂Ω

β(v − g) · τ = −2(D(v) ·N) · τ on ∂Ω
(3.23)

Theorem 3.2 For any f ∈ L2(Ω), g ∈ H3/2(∂Ω), Ω ⊂ C1,1, the problem (3.23) has a unique strong
solution (v, p) ∈ H2(Ω)×H1(Ω) satisfying

‖v‖H2(Ω) + ‖p‖H1(Ω) ≤ C(‖f‖L2(Ω) + ‖g‖H3/2(Ω)).
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Proof. see [2, 27].

We recall a well-known result see Takahashi [28].

Proposition 3.1 Let H be a Hilbert space. Let A : D(A) → H be a self-adjoint and accretive
operator. If f ∈ L2(0, T ; H), u0 ∈ D(A1/2), the problem

u′ + Au = f, u(0) = u0

has a unique solution u ∈ L2(0, T ; D(A)) ∩ C([0, T ]; D(A1/2)) ∩H1(0, T ; H) which satisfies

‖u‖L2(0,T ;D(A)) + ‖u‖L∞(0,T ;D(A1/2)) + ‖u‖H1(0,T ;H) ≤ C(‖u0‖D(A1/2) + ‖f‖L2(0,T ;H)),

with a constant C depending on the operator A and time T . Moreover, the constant C is a nonde-
creasing function of T .

We define the functional spaces:

H ≡ {φ ∈ L2(Ω) : div φ = 0, there exists φF ∈ D′(ΩF (0)), φS ∈ R
such that φ = φF on ΩF (0), φ = φS onS(0)},

where R ≡ {φ : φ = χφ + ωφ × y, χφ ∈ R3, ωφ ∈ R}, and

V ≡ {φ ∈ H; φf ∈ H1(ΩF (0)), and satisfy φf , φS satisfy: φF |∂Ω = 0, (φF − φS)·N = 0}.

For u,v ∈ H we define the inner product by (·, ·) by

(u,v) =

∫
ΩF (0)

φFuF · vF +

∫
S(0)

ρSuSvS,

which implies that

(u,v) =

∫
ΩF (0)

ρFuF · vF + MχuS
· χvS

+ JωuS
· ωuS

.

To solve the linear equation (3.22) we introduce the following space

D(A) = {φ ∈ H; φF ∈ H2(ΩF (0)); φF , φS satisfy φF |∂Ω = 0, (φF − φS) ·N |∂S(0) = 0,

β(φT − φS) · τ |∂S(0) = −2(D(φF ) ·N) · τ |∂S(0)}.

Let us define an operator A as

Au =

{
−ν∆u in ΩF (0),
2ν
m

∫
∂S(0)

D(u)N dσ +
(

2ν
J

∫
∂S(0)

D(u)n× ydσ
)
× y, y in S(0)

(3.24)
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and
Au = PAu, (3.25)

where P is the orthogonal projector on H in L2(Ω). Define

D(A) = {φ ∈ H1
0 (Ω), φ ∈ H2(ΩF ), divφ = 0 in Ω, D(φ) = 0 in S}. (3.26)

Proposition 3.2 The operator A defined by (3.24) - (3.26) is self-adjoint and positive. Conse-
quently A is generator of contraction semigroup in H. Moreover, there exists a constant C > 0 such
that for any u ∈ D(A) we have

‖u‖H2(Ω) ≤ C‖Au‖L2(Ω). (3.27)

Proof. See [28, 31].

Proposition 3.3 Let T > 0. If U0 = (UF,0,US,0) ∈ V, F ∈ L2(0, T ; L2(Ω(0, T ))), Fj,FM ∈
L2(0, T ), then problem (3.19) has a unique solution on [0, T ]. Moreover, we have the following
estimates:

‖U‖UT (ΩF (0)) + ‖∇p‖L2(0,T ;L2(Ω)) + ‖χ‖H1(0,T ) + ‖ωS‖H1(0,T ) ≤
C(‖FM , Fy‖L2(0,T ) + ‖F‖L2(0,T ;L2(ΩF (0)) + ‖US,0‖H1(S(0)) + ‖U0‖H1(F (0))),

where C in nondecreasing function of T .

Proof. It follows after small modification from results of Takahashi and Wang, see [28, 31].

4 Nonlinear case

We know that our problem is equivalent to the following problem in the fixed domain

ρ∂tU− νLU + ρ(MU +NU) + Gp = f ,

divU = 0,

US(t, y) ·N = (Σ(t)× y + ξ(t)) ·N,

m
d

dt
ξ = −m(Σ× ξ)−

∫
∂S(0)

T (U, p)Ndσ,

I
d

dt
Σ = Σ× (IΣ)−

∫
∂S(0)

y × T (U, p)Ndσ,

with the boundary conditions

(U−US) ·N|∂S = 0,

U = 0 on ∂Ω,

β(U− US) · τ |∂S(0) = −2(D(U) ·N) · τ |∂S(0).
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Proof of Theorem 1 The proof is based on the fixed point argument. Let us define

F : (V , π, ξ,Σ) → (U, P, ξ̃, Σ̃)

which maps
UT (ΩF ) ∩ L2(0, T ; H1(ΩF )×H1(0, T )×H1(0, T )

into itself. Moreover, (U, P, ξ̃, Σ̃) satisfy

ρ∂tU− ν∆U +∇p = G,

div U = 0,

US(t, y) = (Σ̃× y + ξ̃(t)) ·N,

m
d

dt
ξ̃(t) = −

∫
∂S(0)

(2µD(U)− PI) ·Ndσ + FM ,

I
d

dt
(Σ̃(t)) = −

∫
∂S(0)

(2µD(U)− PI) ·N · τdσ + FJ ,

with the boundary condition

(U−US) ·N|∂S(0) = 0,

β(U−US) · τ |∂S(0) = −2D(U)N · τ |∂S(0),

U = 0 on ∂Ω,

where

G = µ(L −∆)V + ρMV + (∇−G)π − ρNV ,

FM = m(Σ× ξ), FJ = Σ× (IΣ).

Let T > 0.

We define

K = {(V , π, ξ, ω) ∈ UT (ΩF )× L2(0, T ; H1(ΩF )×H1(0, T )×H1(0, T ),

‖V ‖UT (ΩF ) + ‖π‖L2 + |ξ̃‖H1(0,T ) + ‖Σ̃‖H1(0,T ) ≤ R}.

As a first step we show that F(K) ⊂ K.

We denote

B0 =B0 = (ξ0, ‖uS,0‖H1(S(0)), ‖U0‖H1(ΩF (0)), T, ‖f‖L2
loc

(0,∞; L2(Ω))).

From Proposition 3.3 we get

‖U‖UT (ΩF ) + ‖P‖L2(0,T,H1(Ω(F ))) + ‖ξ̃‖H1(0,T ) + ‖Σ̃‖H1(0,T )

≤ B0(1 + ‖G‖L2(0,T,L2(ΩF ) + ‖FM , FJ‖L2(0,T ).
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From [28] we have
‖G‖L2(0,T ;L2(ΩF )) + ‖FM , FJ‖L2(0,T ) ≤ K0T + B0.

It follows that

‖U
¯
‖UT (ΩR) + ‖P‖L2(0,T,H1(ΩF )

+ ‖ξ̃‖H1(0,T ) + ‖Σ̃H1(0,T ) ≤ K0T
1/10 + B0.

Now taking B0 ≤ R/4, T ≤
(

R
2K0

)10

we get K0T
1/10 + B0 < R and F(K) ⊂ K.

Secondly, we prove that F is a contraction operator when T is small enough and R large enough.

Let F(V i
F , T i

F ξi, Σ′) = (U i
F , P i

F , ξ̃i, ω̃i) for i = 1, 2 where (V i
F , πi

F , ξi, Σi) ∈ K. We set

U = U1 −U2,

US = U1
S −U2

S,

etc. then

ρ∂tU− ν∆U +∇P = G, div U = 0 in [0, T )× ΩF ,

US(t,y) = ξ̃(t) + Σ̃(t)× y in ΩS,

m
d

dt
ξ̃ = −

∫
∂S(0)

2µ(D(U)− PI)Ndσ + FM ,

I
d

dt
(Σ̃(t)) = −

∫
∂S(0)

2µ(D(U)− PI)N× (y)dσ + FJ ,

where

G = ν[(L1 −∆)V ] + νLV 2 −M1V

−MV 2 + [(∇− G1)π + Gπ2

+N 1V 1 −N 2V 2,

FM = m(Σ1 × ξ1)−m(Σ2 × ξ2),

FJ = Σ1 × (IΣ1)−Σ2(IΣ2).

Applying [28] Corollary 6.16 we get

‖G‖L2(0,T ;L2(ΩF (0)) + ‖FM‖L2(0,T )

≤ K0T
1/10(‖V ‖UT

(ΩF (0)) + ‖π‖L2(0,T ;H1(ΩF (0)) + ‖ξ‖H1(0,T ) + |ω‖H1(0,T ).

Applying Proposition 3.3 we have

‖U‖UT (ΩF (0)) + ‖P‖L2(0,T ;H1(ΩF (0)) + ‖ξ̃‖H1(0,T ) + |Σ̃‖H1(0,T )

≤ K0T
1/10(‖V ‖UT (ΩF (0)) + ‖Π‖L2(0,T ;H1(ΩF (0)) + ‖ξ‖H1(0,T ) + ‖Σ‖H1(0,T )).
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Thus, when T is small enough, F is a contraction operator.
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