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Abstract 
 
The main difficulty in contact analysis is non-smoothness of contacting surfaces. A remedy to 
this geometric discontinuity may be provided by the isogeometric formulation. In this approach, 
the physical domain is accurately described by the Non-Uniform Rational B-splines (NURBS) 
basis functions, which serve at the same time as the element basis functions. The isogeometric 
NURBS based variant of our symmetry preserving explicit finite element (FE) contact-impact 
algorithm, is proposed. The algorithm is studied by means of a numerical example, which 
involves 2D frictionless dynamic Hertz contact problem of two equally shaped cylinders. The 
attention is paid to the influence of different lumping techniques on the oscillations of contact 
force and pressure. 
 
1. Introduction 
 
The main difficulty in contact analysis is non-smoothness. It arises from inequality constraints 
as well as geometric discontinuities inducted by the spatial discretization. Contact analysis 
based on traditional finite elements utilizes element facets to describe contact surfaces. The 
facets are C0 continuous so that the surface normals can experience jump across facet 
boundaries leading to artificial oscillations in contact force and pressure. There were attempts to 
treat these geometric discontinuities by smoothing the contact surfaces using splines 
interpolation. These remedies, however, introduce an additional geometry on the top of the 
existing finite element mesh. This adds an additional layer of data management and increasing 
computational overhead. Details and further references can be found in [1]. 
 
Another remedy to the geometric discontinuity provides isogeometric analysis (IGA). The 
fundamental idea is to accurately describe a physical domain by proper representation (e.g. 
NURBS) and then to utilize the same basis for analysis. This is in contrast with the classical 
finite element method where the basis is given in advance by the element type.  Consequently 
the physical domain could be approximated inaccurately. More detailed description can be 
found in [2]. Isogeometric NURBS-based contact analysis has some additional advantages: 
preserving geometric continuity, facilitating patch-wise contact search, supporting a 
variationally consistent formulation, and having a uniform data structure for the contact surface 
and the underlying volumes. 
 
Geometric basis and formulation for frictionless isogeometric contact were given in [3]. Sharp 
corners or C0 edges that can exist on the interface of patches present a challenge to contact 
detection. A strategy to seamlessly deal with sharp corners was proposed in this reference. The 
contact constraints were regularized by the penalty method and the contact virtual work was 
discretized by the finite strain surface-to-surface contact element. Both one-pass and two-pass 
algorithms were tested. 
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In reference [4], the finite deformation frictionless quasi-static thermomechanical contact 
problem was considered. Two penalty-based contact algorithms were studied. The former was 
called knot-to-surface (KTS) algorithm. It is the straightforward extension of the classical node-
to-surface (NTS) algorithm. It was shown that this approach is over-constrained and therefore 
not acceptable if a robust formulation with accurate tractions is desired. The latter was called 
mortar-KTS algorithm. In this algorithm a mortar projection to control pressures was employed 
to obtain the correct number of constraints. 
 
The penalty-based mortar-KTS algorithm was extended to the frictional contact in [5, 7]. The 
mortar-KTS algorithm was also studied in conjugation with the augmented Lagrangian method 
in [8]. Isogeometric frictionless contact analysis using the non-conforming mortar method in the  
two-dimensional linear elasticity regime was presented in [6]. 
 
In this paper, we present a frictionless isogeometric contact algorithm. After brief overview of 
B-splines and NURBS representation in Section 2., the contact algorithm is presented in Section 
3. The algorithm is studied by means of dynamic Hertz problem in Section 4. 
 
2. B-splines and NURBS 
 
This section gives an overview of the B-spline and NURBS representations. For a 
comprehensive description as well as efficient algorithmization see, e.g. [9]. Throughout this 
paper we use p to indicate the polynomial degree, n to indicate the number of basis functions, dp 
to indicate the number of parametric dimensions, and ds to indicate the number of spatial 
dimensions. 
 
Let Ξi, i = 1, …, dp be the open non-uniform knot vector associated with i th parametric 
dimension of a patch 
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The knot vector is a non-decreasing sequence of parametric coordinates. The knot vector is said 
to be non-uniform if the knots are unequally spaced in the parametric space. If the first and the 
last knot values appear pi + 1 times, the knot vector is called open. The B-spline basis functions, 
N(ξ), are defined by Cox-de Boor recursion formula. For p = 0 it is defined as 
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and for p > 0 
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B-splines as the polynomial functions are known to be unable to describe conic sections. The 
NURBS (Non-Uniform Rational B-Splines) was developed to extend interpolatory capability of 
the B-splines. A pth degree NURBS basis function is defined by 
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where wj is referred to as the j th weight. 
 
Multivariate NURBS objects can be constructed simply by tensor product of univariate NURBS 
basis functions (4). For dp = 2 it yields 
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and similarly for the higher parametric dimension. With NURBS basis functions at hand we can 
finally introduce the surface parametrization as 
 

∑ ∑= =
1

1

2

2 21

21

211 1 ,
21,

,
21 ),(),(

n

j

n

j jj
pp
jjR= Px ξξξξ     (6) 

 
where Pj1,j2 ∈ ℜds is the control net, i.e., the array of coordinates of control points. Adopting the 
isogeometric concept, an analogous interpretation is used for the unknown displacement field 
and its variation. 
 
3. Explicit dynamic contact algorithm 
 
In this section an isogeometric treatment of the frictionless contact between two elastic 
deformable bodies is presented. An algorithm, originally proposed in [10], has been adapted to 
the isogeometric analysis and expanded to explicit dynamics. The main idea is as follow. The 
contact boundary value problem is formulated in the weak sense 
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where u and δu are the displacement field and its variation respectively, δΠint,ext denotes the 
virtual work due to internal, external and inertial forces, δΠc is the contact virtual work and gN 
is the gap function. In reference [10], δΠc was proposed in the form  
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where εN is the penalty parameter. Note that the contact virtual work is integrated over both 
contact boundaries Γc1 and Γc2 so that the algorithm preserves symmetry. Consequently, after 
FE discretization the action-reaction principle is not explicitly fulfilled. However, it should be 
shown that the equilibrium is recovered during the mesh refinement. 



 
Applying the standard finite element procedures [11] to the weak form (7)-(8), the resulting 
system of ordinary differential equations (ODE) is obtained as 
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where M is the mass matrix, U is the displacement vector, F is the vector of internal forces, R is 
the vector of external forces and Rc12, Rc21 are vectors of contact forces. Two superimposed 
dotes denote time derivates. The system of ODEs is integrated by the central difference method 
(CDM) [11] which yields 
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The stability of the integration process requires time step, ∆t, to be smaller or equal to 2/ωmax, 
where ωmax is the maximal angular frequency of the FE mesh. The global mass matrix, M, 
arises from its element counterpart, Me, by the standard FE assembly procedure. The element 
mass matrix rising from the variational formulation has the form 
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where ρ is the density and H is the matrix of shape functions (5). This mass matrix is called 
consistent. The efficient solution of the linear system (11) requires diagonalization of M. The 
common techniques are the row sum method and HRZ method [12]. 
 
3. Dynamic Hertz problem 
 
In this section, an example is presented to illustrate the performance of the classic FEA and 
IGA contact-impact algorithm described in the previous section. The example deals with Hertz 
dynamic problem, a classical benchmark for which an analytical solution is available [13]. In 
the example, the effect of mass lumping is investigated. The analysis is limited to the second 
order elements. In particular, quadratic serendipity eight-node finite elements are used in case 
of FEA, and second order basis function in case of IGA. 
 

 
Fig. 1. Dynamic Hertz problem. 

 
The presented numerical example deals with frictionless impact of the cylinders of radius 
R = 4 m, see Fig. 1. The material of each of the cylinders is linearly elastic with Young’s 
modulus E = 1000 MPa, Poisson’s ratio ν = 0.2, and density ρ = 1 kg · m-3. The initial velocity 
of the cylinders is 2 m · s−1. In the initial configuration the cylinders just touches each other in a 



point. Due to symmetry, only the half of each cylinder is considered. The penalty parameter is 
εN = 1×105 N · m−2. The explicit time integration by CDM is performed for 0.9 s with the time 
step 5×10−4 s. 

 
Fig. 2. Comparison of classic FEA and IGA solution of contact forces (left) and contact 

pressures (right) for HRZ mass lumping method. 

 
Fig. 3. Influence of mass lumping techniques on contact forces (left) and contact pressures 

(right) for IGA. 
 
Fig. 2 shows the contact force and the maximal contact pressure obtained for both FEA and 
IGA with HRZ mass lumping technique. The HRZ method was chosen because in the case of  
second order Lagrange elements the row sum method leads to negative mass on diagonal, which 
is not admissible. The results show a good agreement with the analytical solution. One can 
notice that the FEA solution in comparison with IGA solution exhibits lower oscillations. In 
order to evaluate the effect of mass lumping techniques on the oscillations of the contact forces 
and contact pressure distribution in IGA, further analyses are performed using consistent mass 
matrix and mass matrix lumped by the row sum method. Fig. 3 shows that consistent mass 
matrix delivers a more accurate contact pressure distribution than row sum and HRZ mass 
lumping techniques. 
 
 



3. Conclusions 
 
This paper addressed the utilization of the NURBS based isogeometric analysis in an explicit 
contact-impact algorithm. Two main conclusions may be drawn: 
 

• For second order elements and mass matrix lumped by the HRZ method, IGA in 
comparison with classic FEA leads to a more oscillatory contact force and consequently 
also contact pressure. 

• The oscillations of the contact forces in IGA are minimal for consistent mass matrix. 
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