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Abstract

The main difficulty in contact analysis is non-srttutess of contacting surfaces. A remedy to
this geometric discontinuity may be provided by ig@geometric formulation. In this approach,
the physical domain is accurately described byNba-Uniform Rational B-splines (NURBS)
basis functions, which serve at the same time e®ldment basis functions. The isogeometric
NURBS based variant of our symmetry preserving ieitdinite element (FE) contact-impact
algorithm, is proposed. The algorithm is studied rbgans of a numerical example, which
involves 2D frictionless dynamic Hertz contact desb of two equally shaped cylinders. The
attention is paid to the influence of different lpimg techniques on the oscillations of contact
force and pressure.

1. Introduction

The main difficulty in contact analysis is non-srtio@ss. It arises from inequality constraints
as well as geometric discontinuities inducted bg #patial discretization. Contact analysis
based on traditional finite elements utilizes elatniacets to describe contact surfaces. The
facets are & continuous so that the surface normals can exmEigump across facet
boundaries leading to artificial oscillations imtact force and pressure. There were attempts to
treat these geometric discontinuities by smoothihg contact surfaces using splines
interpolation. These remedies, however, introduceadditional geometry on the top of the
existing finite element mesh. This adds an addiidayer of data management and increasing
computational overhead. Details and further refegsrcan be found in [1].

Another remedy to the geometric discontinuity pd@a isogeometric analysis (IGA). The

fundamental idea is to accurately describe a physiomain by proper representation (e.g.
NURBS) and then to utilize the same basis for aiglyThis is in contrast with the classical

finite element method where the basis is givendwaace by the element type. Consequently
the physical domain could be approximated inacelyatMore detailed description can be

found in [2]. Isogeometric NURBS-based contact gsial has some additional advantages:
preserving geometric continuity, facilitating patefse contact search, supporting a
variationally consistent formulation, and havingrdaform data structure for the contact surface
and the underlying volumes.

Geometric basis and formulation for frictionlessgeometric contact were given in [3]. Sharp
corners or € edges that can exist on the interface of patchesept a challenge to contact
detection. A strategy to seamlessly deal with sltammers was proposed in this reference. The
contact constraints were regularized by the pemakyhod and the contact virtual work was
discretized by the finite strain surface-to-surfaoatact element. Both one-pass and two-pass
algorithms were tested.
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In reference [4], the finite deformation frictioske quasi-static thermomechanical contact
problem was considered. Two penalty-based contgotithms were studied. The former was

called knot-to-surface (KTS) algorithm. It is theasghtforward extension of the classical node-
to-surface (NTS) algorithm. It was shown that thpgroach is over-constrained and therefore
not acceptable if a robust formulation with accarxictions is desired. The latter was called
mortar-KTS algorithm. In this algorithm a mortaojaction to control pressures was employed
to obtain the correct number of constraints.

The penalty-based mortar-KTS algorithm was extertdeithe frictional contact in [5, 7]. The
mortar-KTS algorithm was also studied in conjugatiaith the augmented Lagrangian method
in [8]. Isogeometric frictionless contact analyssing the non-conforming mortar method in the
two-dimensional linear elasticity regime was présenn [6].

In this paper, we present a frictionless isogeoimetntact algorithm. After brief overview of
B-splines and NURBS representation in Sectionh2. contact algorithm is presented in Section
3. The algorithm is studied by means of dynamictHproblem in Section 4.

2. B-splinesand NURBS

This section gives an overview of the B-spline aN#URBS representations. For a
comprehensive description as well as efficient allgmization see, e.g. [9]. Throughout this
paper we usp to indicate the polynomial degreaeto indicate the number of basis functiods,
to indicate the number of parametric dimensiong] dnto indicate the number of spatial
dimensions.

Let &, i=1, ...,d, be the open non-uniform knot vector associatech it parametric
dimension of a patch
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The knot vector is a non-decreasing sequence ahpetric coordinates. The knot vector is said
to be non-uniform if the knots are unequally spaicethe parametric space. If the first and the
last knot values appepr+ 1 times, the knot vector is called open. The Baspoasis functions,
N(é), are defined by Cox-de Boor recursion formula: e 0 it is defined as
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B-splines as the polynomial functions are knowrbéounable to describe conic sections. The
NURBS (Non-Uniform Rational B-Splines) was develdpe extend interpolatory capability of
the B-splines. A" degree NURBS basis function is defined by
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wherew; is referred to as th& weight.
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Multivariate NURBS objects can be constructed sinipf tensor product of univariate NURBS
basis functions (4). Fat, = 2 it yields
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and similarly for the higher parametric dimensi@fith NURBS basis functions at hand we can
finally introduce the surface parametrization as
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wherePj,;, 0 0% is the control net, i.e., the array of coordinaiesontrol points. Adopting the
isogeometric concept, an analogous interpretasomsed for the unknown displacement field
and its variation.

3. Explicit dynamic contact algorithm

In this section an isogeometric treatment of thietibmless contact between two elastic
deformable bodies is presented. An algorithm, oélly proposed in [10], has been adapted to
the isogeometric analysis and expanded to exmligiamics. The main idea is as follow. The
contact boundary value problem is formulated inwleak sense

(u,8u)+dM _(u,du) =0
gu(u) =20
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whereu anddu are the displacement field and its variation resipely, ol ex denotes the
virtual work due to internal, external and inerfiatces,dI1. is the contact virtual work angj,
is the gap function. In reference [18]]. was proposed in the form

oM (u,éu) = —J'rﬂsNgNéudr—J‘rnggNéSudr (8)

where &, is the penalty parameter. Note that the contattiali work is integrated over both
contact boundarieB.; andl ., so that the algorithm preserves symmetry. Consstyeafter
FE discretization the action-reaction principlena explicitly fulfilled. However, it should be
shown that the equilibrium is recovered duringriesh refinement.



Applying the standard finite element procedures] tblthe weak form (7)-(8), the resulting
system of ordinary differential equations (ODEdkgained as

MU +FU)=R+R4(U)+R_,(U) 9)

whereM is the mass matrix) is the displacement vectdt,is the vector of internal forceR, is

the vector of external forces aml.,, R are vectors of contact forces. Two superimposed
dotes denote time derivates. The system of ODkgdgrated by the central difference method
(CDM) [11] which yields

MU,., = A2[R+R,(U,) +R 4, (U,) -F(U,)]+M@U, -U, ) 1)

The stability of the integration process requiiegetstep At, to be smaller or equal towf.y
where wnax IS the maximal angular frequency of the FE medie §lobal mass matrixy,
arises from its element counterpavt, by the standard FE assembly procedure. The etemen
mass matrix rising from the variational formulatioas the form

M, = erpHTH dQ (10)

wherep is the density anHl is the matrix of shape functions (5). This massrimés called
consistent. The efficient solution of the lineasteyn (11) requires diagonalizationMf The
common techniques are the row sum method and HREaug12].

3. Dynamic Hertz problem

In this section, an example is presented to ilustthe performance of the classic FEA and
IGA contact-impact algorithm described in the poer section. The example deals with Hertz
dynamic problem, a classical benchmark for whichanalytical solution is available [13]. In
the example, the effect of mass lumping is inveséid. The analysis is limited to the second
order elements. In particular, quadratic serengigight-node finite elements are used in case
of FEA, and second order basis function in cad&af
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Fig. 1. Dynamic Hertz problem.

The presented numerical example deals with fribtiesm impact of the cylinders of radius
R=4m, see Fig. 1. The material of each of théndgrs is linearly elastic with Young's
modulusE = 1000 MPa, Poisson’s ratio= 0.2, and density = 1 kg - n?. The initial velocity

of the cylinders is 2 m 5 In the initial configuration the cylinders justiches each other in a



point. Due to symmetry, only the half of each cgléin is considered. The penalty parameter is
en=1x10N - m? The explicit time integration by CDM is performéat 0.9 s with the time
step 5x10°s.
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Fig. 2. Comparison of classic FEA and IGA solutadrtontact forces (left) and contact
pressures (right) for HRZ mass lumping method.
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Fig. 3. Influence of mass lumping techniques ortacirforces (left) and contact pressures
(right) for IGA.

Fig. 2 shows the contact force and the maximalaminpressure obtained for both FEA and
IGA with HRZ mass lumping technique. The HRZ metheas chosen because in the case of
second order Lagrange elements the row sum me#zais$ to negative mass on diagonal, which
is not admissible. The results show a good agreemith the analytical solution. One can
notice that the FEA solution in comparison with 1GAlution exhibits lower oscillations. In
order to evaluate the effect of mass lumping teqies on the oscillations of the contact forces
and contact pressure distribution in IGA, furthealgses are performed using consistent mass
matrix and mass matrix lumped by the row sum mettad. 3 shows that consistent mass
matrix delivers a more accurate contact pressustilalition than row sum and HRZ mass
lumping techniques.



3. Conclusions

This paper addressed the utilization of the NURBSe isogeometric analysis in an explicit
contact-impact algorithm. Two main conclusions rbaydrawn:

e For second order elements and mass matrix lumpedhbyHRZ method, IGA in
comparison with classic FEA leads to a more ogoiljacontact force and consequently
also contact pressure.

» The oscillations of the contact forces in IGA ar@imal for consistent mass matrix.
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