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Abstract. We study solutions tending to nonzero constants for the third order differential
equation with the damping term

(a1(t)(a2(t)x
′(t))′)′ + q(t)x′(t) + r(t)f(x(ϕ(t))) = 0

in the case when the corresponding second order differential equation is oscillatory.
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1. Introduction

The aim of this paper is to investigate the third order nonlinear damped differential

equation with deviating argument

(1.1) (a1(t)(a2(t)x
′(t))′)′ + q(t)x′(t) + r(t)f(x(ϕ(t))) = 0.

The following assumptions will be assumed:
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hp1) a1, a2, q, are continuous differentiable functions for t > 0, ai(t) > 0, i = 1, 2 and

inf
[0,∞)

q(t) = q∞ > 0;

hp2) r, ϕ are continuous functions for t > 0 such that r(t) > 0 and lim
t→∞

ϕ(t) = ∞;

hp3) f is a continuous function satisfying f(u)u > 0 for u 6= 0.

In this paper we will restrict our attention to solutions x of (1.1) which are defined

in a neighborhood of infinity and sup {|x(s)| : s > t} > 0 for any t from this neigh-

borhood. As usual, a solution of (1.1) is said to be oscillatory if it has a sequence of

zeros converging to infinity; otherwise it is said to be nonoscillatory.

When q ≡ 0, the oscillation of the two-term equation

(1.2) (a1(t)(a2(t)x
′)′)′ + r(t)f(x(ϕ(t))) = 0

has been considered in many papers, see, e.g., [2], [12], [13], [14] and references

therein. Here oscillation means that any solution x of (1.2) is oscillatory or satisfies

lim
t→∞

x(t) = 0.

When q is not identically zero, the special case

(1.3) x′′′ + q(t)x′(t) + r(t)f(x(ϕ(t))) = 0

has been recently investigated, especially as regards the possible types of nonoscil-

latory solutions, see, e.g., [3], [6], [9]. In these papers the study is accomplished by

assuming that the corresponding second order linear equation

(1.4) y′′ + q(t)y = 0

is nonoscillatory. This assumption plays a crucial role, because it is known that, in

this case, (1.3) can be written in the disconjugate form, i.e. as a two-term equation,

see [6].

For the more general equation (1.1) the oscillation and the asymptotic behavior

of nonoscillatory solutions is examined in [1], [15], [16] by assuming that the second

order equation

(1.5) (a1(t)y
′)′ +

q(t)

a2(t)
y = 0

is nonoscillatory. This equation plays an analogous role to that (1.4) plays for (1.3),

as the following lemma shows.
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Lemma 1.1. Assume (1.5) is nonoscillatory and let h be its solution, h(t) > 0

for t > t0. Then we have for t > t0

(a1(t)(a2(t)x
′)′)′ + q(t)x′ =

1

h(t)

(

a1(t)h
2(t)

(a2(t)

h(t)
x′

)

′
)

′

.

P r o o f. For the sake of simplicity we omit the independent variable t. Denote

by L the operator

Ly ≡ (a1y
′)′ +

q

a2
y.

Then

hL(hu) = h(a1h
′u + a1hu′)′ +

q

a2
h2u = (a1h

′)′hu + a1hh′u′ + h(a1hu′)′ +
q

a2
h2u.

Since h is a solution of (1.5) and (a1h
2u′)′ = a1hh′u′ + (a1hu′)′h, we obtain

hL(hu) = (a1h
′)′hu + (a1h

2u′)′ +
q

a2
h2u = (a1h

2u′)′.

Setting u = a2x
′/h we get

h(a1(a2x
′)′)′ + hqx′ =

(

a1h
2
(a2

h
x′

)

′
)

′

,

which gives the assertion. �

Hence, when equation (1.5) is nonoscillatory, equation (1.1) can be also written in

the disconjugate form, i.e. without the damping term, and the existence of various

types of nonoscillatory solutions of (1.1) can be obtained from results for the equation

with the disconjugate operator, see e.g. [7], [12].

Very little is known when (1.4) or (1.5) is oscillatory. We refer only to [10] in which

necessary and sufficient conditions for the oscillation of (1.3) are given, and to [4],

[5] in which the asymptotic behavior of nonoscillatory solutions of (1.3) is examined.

Our aim here is to give a sufficient condition for the existence of solutions of (1.1)

which tend to a nonzero constant, in the case when the corresponding second order

differential equation (1.5) is oscillatory. This result extends to (1.1) a previous one

given in [4].

2. Preliminaries

Let x be a solution of (1.1) and let us denote its quasiderivatives

x[1](t) = a2(t)x
′(t), x[2](t) = a1(t)(x

[1](t))′.

The following lemmas will be useful.
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Lemma 2.1. Let x be a solution (for large t) of the integral equation

(2.1) x(t) = c −

∫

∞

t

1

a2(τ)

∫

∞

τ

r(s)f(x(ϕ(s)))(u(s)v(τ) − u(τ)v(s)) ds dτ

where c ∈ R and u,v are linearly independent solutions of (1.5) with the Wronskian

W = a1(t)(u(t)v′(t) − u′(t)v(t)) ≡ 1.

Then x is a solution of (1.1) satisfying

(2.2) lim
t→∞

x(t) = c, lim
t→∞

x[i](t) = 0, i = 1, 2.

P r o o f. Let x be a solution of equation (2.1). By a standard calculation we

obtain

x[1](t) = a2(t)x
′(t) =

∫

∞

t

r(s)f(x(ϕ(s)))(u(s)v(t) − u(t)v(s)) ds.

Thus, differentiating and using the fact that u, v satisfy (1.5) with WronskianW ≡ 1,

we get

(a2(t)x
′(t))′ =

∫

∞

t

r(s)f(x(ϕ(s)))(u(s)v′(t) − u′(t)v(s)) ds,

and

(2.3) x[2](t) =

∫

∞

t

r(s)f(x(ϕ(s)))a1(t)(u(s)v′(t) − u′(t)v(s)) ds.

Thus

(a1(t)(a2(t)x
′(t))′)′ = −r(t)f(x(ϕ(t))) − q(t)x′(t),

i.e., we have the required assertion. �

Lemma 2.2. Assume that all solutions y of (1.5) and their quasiderivatives de-

fined as y[1](t) = a1(t)y
′(t) are bounded for t > 0. Fix T > t0 > 0, let ϕ̄ be a

continuous function such that ϕ̄(t) > t0 for t > t0. Let u, v be two linearly indepen-

dent solutions of equation (1.5) with the Wronskian W ≡ 1. Denote

(2.4) h(s, t) = u(s)v′(t) − u′(t)v(s)

and

(2.5) Gx(t) = −

∫ T

t

1

a2(τ)

∫

∞

τ

r(s)f(x(ϕ̄(s)))(u(s)v(τ) − u(τ)v(s)) ds dτ,
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where x is a continuous function on [t0,∞) such that r(·)f(x(ϕ̄(·))) ∈ L1[t0,∞).

Then for t ∈ I = [t0, T ] we have

q(t)

(

Gx(t) +

∫ T

t

q′(s)Gx(s) ds

)

=

∫ T

t

r(s)f(x(ϕ̄(s))(1 − a1(t)h(s, t)) ds

+

∫

∞

T

r(s)f(x(ϕ̄(s)) (a1(T )h(s, T )− a1(t)h(s, t)) ds.

3. Main theorem

Our main result is the following.

Theorem 3.1. Assume that all solutions y of (1.5) and their quasiderivatives

defined as y[1](t) = a1(t)y
′(t) are bounded for t > 0. If

(3.1)

∫

∞

0

r(t) dt < ∞,

∫

∞

0

|q′(t)| dt < ∞,

then for any c ∈ R \ {0} there exists a solution x of (1.1) satisfying

(3.2) lim
t→∞

x(t) = c, lim
t→∞

x[i](t) = 0, i = 1, 2.

P r o o f. We prove the existence of solutions of (1.1) satisfying (3.2) for c = 1.

Let u and v be two linearly independent solutions of (1.5) with the Wronskian

W ≡ 1 and consider the function h given by (2.4). Since all solutions of (1.5) and

their quasiderivatives are bounded, there exists M > 0 such that for any (s, t) ∈

[0,∞) × [0,∞)

a1(t)|h(s, t)| 6 M.

Put

(3.3) β = max
1/26u63/2

f(u)

and let k1 be such that 1 + 2M < k1/β. Hence

(3.4) 2M 6 k1/β, 1 + M 6 k1/β.

Let t0 be so large that

(3.5)
2k1

q∞

∫

∞

t0

r(t) dt 6
1

2
,

∫

∞

t0

|q′(s)| ds <
1

2
q∞,
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and choose t̄ > t0 such that ϕ(t) > t0 for t > t̄. Define

ϕ̄(t) =

{

ϕ(t) if t > t̄,

ϕ(t̄) if t0 6 t 6 t̄.

In the Fréchet space C[t0,∞) of all continuous functions on [t0,∞), endowed with

the topology of uniform convergence on compact subintervals of [t0,∞), consider the

set Ω ⊂ C[t0,∞) given by

Ω =
{

x ∈ C[t0,∞) :
1

2
6 x(t) 6

3

2

}

.

Fix T ∈ [t0,∞) and let I = [t0, T ]. For any x ∈ Ω, consider the “cut” function given

by (2.5). Applying Lemma 2.2, in view of (3.4) and (3.5) we obtain for t ∈ I

|Gx(t)| 6
1

q∞

(

k1

∫

∞

t

r(s) ds +
1

2
q∞ max

t6s6T
|Gx(s)|

)

,

or

(3.6) |Gx(t)| =

∣

∣

∣

∣

∫ T

t

1

a2(τ)

∫

∞

τ

r(s)f(x(ϕ̄(s)))(u(s)v(τ) − u(τ)v(s)) ds dτ

∣

∣

∣

∣

6 max
t6σ6T

|Gx(σ)| 6
2k1

q∞

∫

∞

t

r(s) ds.

Hence, using the Cauchy criterion, the limit

lim
T→∞

∫ T

t

1

a2(τ)

∫

∞

τ

r(s)f(x(ϕ̄(s)))(u(s)v(τ) − u(τ)v(s)) ds dτ

exists and it is finite for any fixed t and

(3.7)

∣

∣

∣

∣

∫

∞

t

1

a2(τ)

∫

∞

τ

r(s)f(x(ϕ̄(s)))(u(s)v(τ) − u(τ)v(s)) ds dτ

∣

∣

∣

∣

6
2k1

q∞

∫

∞

t

r(s) ds.

This fact means that the operator

T (x)(t) = 1 −

∫

∞

t

1

a2(τ)

∫

∞

τ

r(s)f(x(ϕ̄(s)))(u(s)v(τ) − u(τ)v(s)) ds dτ

is well defined for any x ∈ Ω. Clearly

T ′(x)(t) =
1

a2(t)

∫

∞

t

r(s)f(x(ϕ̄(s))(u(s)v(t) − u(t)v(s)) ds.
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Hence, this together (3.7) yields

(3.8) |T (x)(t) − 1| =

∣

∣

∣

∣

∫

∞

t

T ′(x)(τ) dτ

∣

∣

∣

∣

6
2k1

q∞

∫

∞

t

r(τ) dτ.

So, in view of (3.5), T maps Ω into itself. Moreover, for any x ∈ Ω we have

(3.9) |T ′(x)(t)| 6
2m2β

a2(t)

∫

∞

t

r(s) ds,

wherem = sup
t>t0

{|u(t)|, |v(t)|}, and so T (Ω) is relatively compact, i.e. T (Ω) consists of

functions which are equibounded and equicontinuous on every compact subinterval

of [t0,∞).

Now we prove the continuity of T on Ω. Let {xn}, n ∈ N, be a sequence in Ω which

uniformly converges on every compact subinterval of [t0,∞) to x ∈ Ω. Because T (Ω)

is relatively compact, the sequence {T (xn)} admits a subsequence, denoted again by

{T (xn)} for the sake of simplicity, which is convergent to x ∈ Ω. In virtue of (3.9),

by the Lebesgue dominated convergence theorem, the sequence {Gxn
(t)} pointwise

converges to Gx(t) on I = [t0, T ], i.e.

(3.10) lim
n→∞

Gxn
(t) = Gx(t).

Choosing a sufficiently large T, in view of (3.8) we obtain

|T (xn)(t) − T (x)(t)| =

∣

∣

∣

∣

∫

∞

t

T ′(xn)(τ) dτ −

∫

∞

t

T ′(x)(τ) dτ

∣

∣

∣

∣

6

∣

∣

∣

∣

∫

∞

T

T ′(xn)(τ) dτ

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

∞

T

T ′(x)(τ) dτ

∣

∣

∣

∣

+ |Gxn
(t) − Gx(t)|

6
4k1

q∞

∫

∞

T

r(τ) dτ + |Gxn
(t) − Gx(t)|.

Hence the sequence {T (xn)} pointwise converges to T (x). In view of the uniqueness

of the limit, T (x) = x is the only cluster point of the compact sequence {T (xn)},

which means the continuity of T in Ω. Applying the Tychonov fixed point theorem,

there exists a solution x of the integral equation

x(t) = T (x)(t)

which, in view of Lemma 2.1, is a solution of (1.1) with the required properties.

From (3.8) we get that lim
t→∞

x(t) = 0. Moreover, from (3.9) we have limx[1](t) = 0

and in a similar way from (2.3) the conclusion for limx[2](t) = 0 follows. �

The following result gives sufficient conditions for the boundedness of each solution

of (1.5) together with its quasiderivative.
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Lemma 3.1. If

(3.11) log q(t)
a1(t)

a2(t)
is of bounded variation on [0,∞),

then for each solution y of (1.5), y and y[1] are bounded.

P r o o f. Consider equation (1.5) in the form

y′′ +
a′

1(t)

a1(t)
y′ +

q(t)

a1(t)a2(t)
y = 0.

Then for each solution y of (1.5) the function

E(t) =
q(t)

a1(t)a2(t)
y2 + y′2

satisfies

E′(t) 6
p′(t)

p(t)
E(t), p(t) =

q(t)

a1(t)a2(t)
,

see [11, Theorem 3] and its proof. Hence we obtain

q(t)

a1(t)a2(t)
y2(t) + y′2(t) 6 k

q(t)

a1(t)a2(t)
,

where k is a positive constant. Thus y is bounded and

(y[1](t))2 6 kq(t)
a1(t)

a2(t)
.

In virtue of (3.11), the function qa1/a2 is bounded and the assertion follows. �

R em a r k. Lemma 3.1 follows also from [8, Theorem 4] with minor changes.

From Theorem 3.1 and Lemma 3.1 we obtain the following.

Theorem 3.2. If (3.1) holds and

log
a1(t)

a2(t)
is of bounded variation on [0,∞),

then for any c ∈ R \ {0} there exists a solution x of (1.1) satisfying (3.2).

P r o o f. In virtue of (3.1), we have
∫

∞

0

|q′(t)|

q(t)
dt 6

1

q∞

∫

∞

0

|q′(t)| dt

and so log q(t) is of bounded variation on [0,∞). Since

log q(t)
a1(t)

a2(t)
= log q(t) + log

a1(t)

a2(t)
,

applying Lemma 3.1 and Theorem 3.1 we get the assertion. �
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E x am p l e. Consider the equation

(a(t)(a(t)x′(t))′)′ + x′(t) + r(t)f(x(ϕ(t))) = 0,

where
∫

∞

0 r(s) ds < ∞. By Theorem 3.2 this equation has solutions satisfying (3.2)

for any c 6= 0. If a(t) ≡ 1, we get the result from [10].
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