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Abstract. This communication gives some extensions of the original Bühlmann model.
The paper is devoted to semi-linear credibility, where one examines functions of the random
variables representing claim amounts, rather than the claim amounts themselves. The
main purpose of semi-linear credibility theory is the estimation of µ0(θ) = E[f0(Xt+1)|θ]
(the net premium for a contract with risk parameter θ) by a linear combination of given
functions of the observable variables: X ′ = (X1, X2, . . . , Xt). So the estimators mainly
considered here are linear combinations of several functions f1, f2, . . . , fn of the observable
random variables. The approximation to µ0(θ) based on prescribed approximating functions
f1, f2, . . . , fn leads to the optimal non-homogeneous linearized estimator for the semi-linear
credibility model. Also we discuss the case when taking fp = f for all p to find the optimal
function f . It should be noted that the approximation to µ0(θ) based on a unique optimal
approximating function f is always better than the one in the semi-linear credibility model
based on prescribed approximating functions: f1, f2, . . . , fn. The usefulness of the latter
approximation is that it is easy to apply, since it is sufficient to know estimates for the
structure parameters appearing in the credibility factors. Therefore we give some unbiased
estimators for the structure parameters. For this purpose we embed the contract in a
collective of contracts, all providing independent information on the structure distribution.
We close this paper by giving the semi-linear hierarchical model used in the applications
chapter.

Keywords : contracts, unbiased estimators, structure parameters, approximating func-
tions, semi-linear credibility theory, unique optimal function, parameter estimation, hierar-
chical semi-linear credibility theory
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Introduction

In this paper we first give the semi-linear credibility model (see Section 1), which

involves only one isolated contract. Our problem (from Section 1) is the estimation

of µ0(θ) = E[f0(Xt+1)|θ] (the net premium for a contract with risk parameter θ)

by a linear combination of given functions f1, f2, . . . , fn of the observable variables
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X ′ = (X1,X2, . . . , Xt). So our problem (from Section 1) is the determination of the

linear combination of 1 and the random variables fp(Xr), p = 1, n, r = 1, t closest to

µ0(θ) = E[f0(Xt+1)|θ] in the MSE sense, where θ is the risk parameter. The solution

of this problemE{[

µ0(θ) − α0 −

n
∑

p=1

t
∑

r=1

αprfp(Xr)

]2}

, where: α = (αpr)p,r,

is the optimal non-homogeneous linearized estimator (i.e. the semi-linear credibility

result). In Section 2 we discuss the case when taking fp = f for all p we are to

find the unique optimal function f . It should be noted that the approximation of

µ0(θ) based on a unique optimal approximating function f is always better than the

one in the semi-linear credibility model based on prescribed approximating functions

f1, f2, . . . , fn. The usefulness of the latter approximation is that it is easy to apply,

since it is sufficient to know estimates for the structure parameters apq, bpq (with

p, q = 0, n) appearing in the credibility factors zp (where p = 1, n). To obtain

estimates for these structure parameters from the semi-linear credibility model, in

Section 3 we embed the contract in a collective of contracts, all providing independent

information on the structure distribution. We close this paper by giving the semi-

linear hierarchical model used in the applications chapter (see Section 4).

1. The approximation to µ0(θ) based on prescribed

approximating functions f1, f2, . . . , fn

In this section we consider one contract with an unknown and fixed risk parameter

θ during a period of t years. The yearly claim amounts are denoted by X1, . . . , Xt.

The risk parameter θ is supposed to be drawn from some structure distribution func-

tion U(·). It is assumed that for a given θ, the claims are conditionally independent

and identically distributed (conditionally i.i.d.) with a known common distribution

function FX|θ(x, θ). The random variables X1, . . . , Xt are observable, and the ran-

dom variable Xt+1 is considered as not (yet) observable. We assume that fp(Xr),

p = 0, n, r = 1, t + 1 have finite variance. For f0, we take the function of Xt+1 we

want to forecast.

We use the notation

(1.1) µp(θ) = E[fp(Xr)|θ], (p = 0, n; r = 1, t + 1).

This expression does not depend on r.
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We define the following structure parameters:

mp = E[µp(θ)] = E{E[fp(Xr)|θ]} = E[fp(Xr)],(1.2)

apq = E{Cov[fp(Xr), fq(Xr)|θ]},(1.3)

bpq = Cov[µp(θ), µq(θ)],(1.4)

cpq = Cov[fp(Xr), fq(Xr)],(1.5)

dpq = Cov[fp(Xr), µq(θ)](1.6)

for p, q = 0, n ∧ r = 1, t + 1. These expressions do not depend on r = 1, t + 1. The

structure parameters are connected by the relations

cpq = apq + bpq,(1.7)

dpq = bpq(1.8)

for p, q = 0, n. This follows from the covariance relations obtained in the probability

theory where they are very well-known. Just as in the case of linear combinations of

the observable variables themselves, we can also obtain non-homogeneous credibility

estimates, taking as estimators the class of linear combinations of given functions of

the observable variables, as shown in the following theorem.

Theorem 1.1 (Optimal non-homogeneous linearized estimators). The linear

combination of 1 and the random variables fp(Xr), p = 1, n; r = 1, t closest to

µ0(θ) = E[f0(Xt+1)|θ] and to f0(Xt+1) in the least squares sense equals

(1.9) M =

n
∑

p=1

zp

t
∑

r=1

1

t
fp(Xr) + m0 −

n
∑

p=1

zpmp,

where the credibility factors z1, z2, . . . , zn are a solution to the linear system of equa-

tions

(1.10)

n
∑

p=1

[cpq + (t − 1)dpq]zp = td0q (q = 1, n),

or to the equivalent linear system of equations

(1.11)

n
∑

p=1

(apq + tbpq)zp = tb0q (q = 1, n).

P r o o f . We have to examine the solution of the problem

(1.12) E{[

µ0(θ) − α0 −

n
∑

p=1

t
∑

r=1

αprfp(Xr)

]2}

.
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Taking the derivative with respect to α0 gives

E[µ0(θ)] −

n
∑

p=1

t
∑

r=1

αprE[fp(Xr)] = α0, or α0 = m0 −

n
∑

p=1

t
∑

r=1

αprmp.

Inserting this expression for α0 into (1.12) leads to the problem

(1.13) Min
α

E

{[

µ0(θ) − m0 −

n
∑

p=1

t
∑

r=1

αpr(fp(Xr) − mp)

]2}

.

If we put the derivatives with respect to αqr′ equal to zero, we get the following

system of equations (q = 1, n; r′ = 1, t):

(1.14) Cov[µ0(θ), fq(Xr′)] =

n
∑

p=1

t
∑

r=1

αpr Cov[fp(Xr), fq(Xr′)].

Because of the identical distribution in time αp1 = αp2 = . . . = αpt = αp, so using

the covariance results for q = 1, n this system of equations can be written as

(1.15) b0q =

n
∑

p=1

αp[cpq + (t − 1)dpq].

Now (1.15) and (1.13) lead to (1.9) with αp = zp/t, p = 1, n.

2. The approximation of µ0(θ) based on a unique optimal

approximating function f

The estimator M for µ0(θ) of Theorem 1.1 can be represented as

(2.1) M = f(X1) + . . . + f(Xt),

where

f(x) =
1

t

n
∑

p=1

zpfp(x) +
1

t
m0 −

1

t

n
∑

p=1

zpmp.

Let us forget now this structure of f and look for any function f such that (2.1)

is closest to µ0(θ). If only functions f such that f(X1) has finite variance are

considered, then the optimal approximating function f results from the following

theorem.
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Theorem 2.1 (Optimal approximating function). f(X1) + . . . + f(Xt) is closest

to µ0(θ) and to f0(Xt+1) in the least squares sense, if and only if f is a solution of

the equation

(2.2) f(X1) + (t − 1)E[f(X2)|X1] − E[f0(X2)|X1] = 0

P r o o f . We have to solve the minimization problem

(2.3) Min
g

E
{

[f0(Xt+1) − g(X1) − . . . − g(Xt)]
2
}

.

Supposing that f denotes the solution to this problem, we consider g(X) = f(X)+

αh(X), with h(·) arbitrary, like in variational calculus. Let

(2.4) ϕ(α) = E{[f0(Xt+1) − f(X1) − . . . − f(Xt) − αh(X1) − . . . − αh(Xt)]
2}.

Clearly, for f to be optimal we have ϕ′(0) = 0, so for every choice of h the identity

(2.5) E{[f0(Xt+1) − f(X1) − . . . − f(Xt)][h(X1) + . . . + h(Xt)]} = 0

must hold. This can be rewritten as

(2.6) E[tf0(X2)h(X1) − tf(X1)h(X1) − t(t − 1)f(X2)h(X1)] = 0,

or

(2.7) E[h(X1){−f(X1) − (t − 1)E[f(X2)|X1] + E[f0(X2)|X1]}] = 0.

Because this equation has to be satisfied for every choice of the function h the

expression in brackets in (2.7) must be identically equal to zero, which proves (2.2).

An application of Theorem 2.1. If X1, . . . , Xt+1 can only take the values

0, 1, . . . , n and pqr = P [X1 = q, X2 = r] for q, r = 0, n, then f(X1) + . . . + f(Xt) is

closest to µ0(θ) and to f0(Xt+1) in the least squares sense, if and only if for q = 0, n,

f(q) is a solution of the linear system

(2.8) f(q)

n
∑

r=0

pqr + (t − 1)

n
∑

r=0

f(r)pqr =

n
∑

r=0

f0(r)pqr.

43



Indeed,

f(X1) :

(

f(q)

P (X1 = q)

)

=

( f(q)
n
∑

r=0

pqr

)

, q = 0, n;

E[f(X2)|X1] =

n
∑

r=0

f(r)P (X2 = r|X1 = q) =

n
∑

r=0

f(r)
pqr

n
∑

r=0

pqr

;

E[f0(X2)|X1] =

n
∑

r=0

f0(r)P (X2 = r|X1 = q) =

n
∑

r=0

f0(r)
pqr

n
∑

r=0

pqr

.

Inserting these expressions for f(X1), E[f(X2)|X1] and E[f0(X2)|X1] into (2.2) leads

to (2.8).

3. Parameter estimation

It should be noted that the approximation of µ0(θ) based on a unique optimal

approximating function f is always better than the one obtained in Section 1 based

on prescribed approximating functions f1, f2, . . . , fn. The usefulness of the latter

approximation is that it is easy to apply, since it is sufficient to know estimates

for the structure parameters apq, bpq (with p, q = 0, n) appearing in the credibility

factors zp (where p = 1, n). For this reason we give some unbiased estimators for

the structure parameters. For this purpose we consider k contracts, j = 1, k, and k

(> 2) independent and identically distributed vectors (θj , X
′
j) = (θj , Xj1, . . . , Xjt),

j = 1, k. The contract indexed j is a random vector consisting of a random structure

parameter θj and observations Xj1, . . . , Xjt, where j = 1, k. For every contract

j = 1, k and for θj fixed, the variables Xj1, . . . , Xjt are conditionally independent

and identically distributed.

Theorem 3.1 (Unbiased estimators for the structure parameters). Let

m̂p =
1

kt
Xp

.. =
1

kt

k
∑

j=1

t
∑

r=1

fp(Xjr),(3.1)

âpq =
1

k(t − 1)

k
∑

j=1

t
∑

r=1

(

Xp
jr −

1

t
Xp

j.

)(

Xq
jr −

1

t
Xq

j.

)

,(3.2)

b̂pq =
1

k − 1

k
∑

j=1

(1

t
Xp

j. −
1

kt
Xp

..

)(1

t
Xq

j. −
1

kt
Xq

..

)

−
âpq

t
,(3.3)
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then E(m̂p) = mp, E(âpq) = apq, E(b̂pq) = bpq, where Xp
j. =

t
∑

r=1

Xp
jr, X

q
j. =

t
∑

r=1

Xq
jr,

Xp
.. =

k
∑

j=1

t
∑

r=1

Xp
jr, Xq

.. =
k
∑

j=1

t
∑

r=1

Xq
jr with Xp

jr = fp(Xjr) (j = 1, k and r = 1, t),

Xq
jr = fq(Xjr) (j = 1, k and r = 1, t) for p, q = 0, n such that p < q.

P r o o f . Note that the usual definitions of the structure parameters apply, with

θj replacing θ and Xjr replacing Xr as follows:

E(m̂p) =
1

kt

∑

j,r

E[fp(Xjr)] =
1

kt

∑

j,r

mp =
kt

kt
mp = mp;

E(âpq) =
1

k(t − 1)

∑

j,r

[

Cov(Xp
jr, X

q
jr) + E(Xp

jr)E(Xq
jr) − Cov

(

Xp
jr,

1

t
Xq

j.

)

− E(Xp
jr)E

(1

t
Xq

j.

)

− Cov
(1

t
Xp

j., X
q
jr

)

− E
(1

t
Xp

j.

)

E(Xq
jr) + Cov

(1

t
Xp

j.,
1

t
Xq

j.

)

+ E
(1

t
Xp

j.

)

E
(1

t
Xq

j.

)]

=
1

k(t − 1)
·
∑

j,r

[

(apq + bpq) + mpmq −
(1

t
apq + bpq

)

− mpmq −
(1

t
apq + bpq

)

− mpmq +
(1

t
apq + bpq

)

+ mpmq

]

=
1

k(t − 1)

∑

j,r

(apq + bpq −
1

t
apq − bpq) =

1

k(t − 1)
kt

(t − 1)

t
apq = apq;

E(b̂pq) =
1

k − 1

∑

j

[

Cov(
1

t
Xp

j.,
1

t
Xq

j.) + E(
1

t
Xp

j.)E(
1

t
Xq

j.) − Cov
(1

t
Xp

j.,
1

kt
Xq

..

)

− E(
1

t
Xp

j.)E
( 1

kt
Xq

..

)

− Cov
( 1

kt
Xp

..,
1

t
Xq

j.

)

− E
( 1

kt
Xp

..

)

E
(1

t
Xq

j.

)

+ Cov
( 1

kt
Xp

..,
1

kt
Xq

..

)

+ E
( 1

kt
Xp

..

)

E
( 1

kt
Xq

..

)]

−
apq

t

=
1

k − 1
·
∑

j

[(1

t
apq + bpq

)

+ mpmq −
( 1

kt
apq +

1

k
bpq

)

− mpmq −
( 1

kt
apq +

1

k
bpq

)

− mpmq +
( 1

kt
apq +

1

k
bpq

)

+ mpmq

]

−
apq

t

=
1

k − 1

∑

j

(1

t
apq + bpq −

1

kt
apq −

1

k
bpq

)

−
apq

t

=
1

k − 1
k

k − 1

k
bpq +

1

k − 1
k

k − 1

kt
apq −

apq

t
= bpq +

apq

t
−

apq

t
= bpq.
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4. Applications of semi-linear credibility theory

We close this paper by giving the semi-linear hierarchical model used in the ap-

plications chapter. Similarly to Jewell’s hierarchical model we consider a portfolio

of contracts which can be broken up into P sectors, each sector p consisting of kp

groups of contracts. Instead of estimating Xp,j,t+1, µ(θp, θpj
) = E[Xp,j,t+1|θp, θpj

]

(the pure net risk premium of the contract (p, j)), ν(θp) = E[Xp,j,t+1|θp] (the

pure net risk premium of the sector p), we now estimate f0(Xp,j,t+1), µ0(θp, θpj
) =

E[f0(Xp,j,t+1)|θp, θpj
] (the pure net risk premium of the contract (p, j)), ν0(θp) =

E[f0(Xp,j,t+1)|θp] (the pure net risk premium of the sector p), where p = 1, P and

j = 1, kp. In the semi-linear credibility theory the following class of estimators is con-

sidered: α0 +
n
∑

p=1

P
∑

q=1

kq
∑

i=1

t
∑

r=1

αpqirfp(Xqir), where f1(·), . . . , fn(·) are functions given

in advance. Let us consider the case of one given function f1 in order to approximate

f0(Xp,j,t+1) or ν0(θp) and µ0(θp, θpj
). We formulate the following theorem:

Theorem 4.1 (Hierarchical semi-linear credibility). Using the same notation as

introduced for the hierarchical model of Jewell and denoting X0
pjs = f0(Xpjs) and

X1
pjs = f1(Xpjs) one obtains the following least squares estimates for the pure net

risk premiums:

(3.1) ν̂0(θp) = (m0 − zpm1) + zpX
1
pzw, µ̂0(θp, θpj) = (m0 − zpjm1) + zpjX

1
pjw

where

X1
pjw =

t
∑

r=1

wpjr

wpj.

X1
pjr, X1

pzw =

kp
∑

j=1

zpj

zp.

X1
pjw,

zpj =
wpj.d01

c11 + (wpj. − 1)d11

(the credibility factor on contract level) with d01 = Cov(X0
pjr,X

1
pjr′), d11 =

Cov(X1
pjr, X

1
pjr′), r 6= r′, c11 = Cov(X1

pjr, X
1
pjr) = Var(X1

pjr) and

zp =
zp.D01

C11 + (zp. − 1)D11

(the credibility factor at sector level) with D01 = Cov(X0
pjw, X1

pj′w), D11 =

Cov(X1
pjw, X1

pj′w), j 6= j′, C11 = Cov(X1
pjw, X1

pjw) = Var(X1
pjw).

R em a r k 4.1. The linear combination of 1 and the random variables X1
pjr (p =

1, P , j = 1, kp, r = 1, t) closest to f0(Xp,j,t+1) and to ν0(θp) in the least squares

sense equals ν̂0(θp), and the linear combination of 1 and the random variables X1
pjr

(p = 1, P , j = 1, kp, r = 1, t) closest to µ0(θp, θpj
) in the least squares sense equals

µ̂0(θp, θpj).
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