A GENERALIZED NOTION OF n-WEAK AMENABILITY

Abasalt Bodaghi, Garmsar, Behrouz Shojaee, Karaj

(Received October 6, 2012)

Abstract

In the current work, a new notion of n-weak amenability of Banach algebras using homomorphisms, namely (φ, ψ) - n-weak amenability is introduced. Among many other things, some relations between (φ, ψ)-n-weak amenability of a Banach algebra \mathcal{A} and $M_{m}(\mathcal{A})$, the Banach algebra of $m \times m$ matrices with entries from \mathcal{A}, are studied. Also, the relation of this new concept of amenability of a Banach algebra and its unitization is investigated. As an example, it is shown that the group algebra $L^{1}(G)$ is (φ, ψ)-n-weakly amenable for any bounded homomorphisms φ and ψ on $L^{1}(G)$.

Keywords: Banach algebra; continuous homomorphism; (φ, ψ)-derivation; n-weak amenability

MSC 2010: 46H25, 43A20, 22D15

1. Introduction

The notion of amenability for Banach algebras was introduced by Johnson in [7]. A Banach algebra \mathcal{A} is amenable if $H^{1}\left(\mathcal{A}, X^{*}\right)=\{0\}$ for every Banach \mathcal{A}-module X, where $H^{1}\left(\mathcal{A}, X^{*}\right)$ is the first Hochschild cohomology group of \mathcal{A} with coefficients in X^{*}. One of the fundamental results of Johnson [7] was that the group algebra $L^{1}(G)$ is an amenable Banach algebra if and only if G is an amenable locally compact group. Dales et al. introduced the notion of n-weak amenability of Banach algebras in [4]. A Banach algebra \mathcal{A} is n-weakly amenable if $H^{1}\left(\mathcal{A}, \mathcal{A}^{(n)}\right)=\{0\}$, where $\mathcal{A}^{(n)}$ is the n-th dual space of \mathcal{A} (1-weak amenability is called weak amenability). A Banach algebra is called permanently weakly amenable if it is n-weakly amenable for each positive integer n. It is well known that for any locally compact group $G, L^{1}(G)$ is permanently weakly amenable (see [3], [4] and [8]). Then n-weak amenability of some Banach algebras is investigated in [6].

In [1], Bodaghi et al. generalized the concept of weak amenability of a Banach algebra \mathcal{A} to that of (φ, ψ)-weak amenability, where φ and ψ are continuous homo-
morphisms on \mathcal{A} (the case of amenability has been earlier developed by Moslehian and Motlagh in [12]). They determined the relations between weak amenability and (φ, ψ)-weak amenability of a Banach algebra \mathcal{A}. In [5], Eshaghi and Jabbari showed that for a locally compact group $G, L^{1}(G)$ is (φ, ψ)-weakly amenable for all continuous homomorphisms φ and ψ from $L^{1}(G)$ into $L^{1}(G)$.

In this paper, we shall extend the concept of n-weak amenability to that of (φ, ψ) -n-weak amenability of Banach algebras which is somewhat different from the notion (φ) - n-weak amenability introduced in [11]. We investigate some relations between (φ, ψ)-n-weak amenability of a Banach algebra \mathcal{A} and $M_{m}(\mathcal{A})$, the Banach algebra of $m \times m$ matrices with entries from \mathcal{A}. Among other examples, we show that $L^{1}(G)$ is (φ, ψ) - n-weakly amenable for all bounded homomorphisms φ and ψ on $L^{1}(G)$.

2. (φ, ψ) - n-WEAK AMENABILITY

Let \mathcal{A} and \mathcal{B} be Banach algebras. We denote by $\operatorname{Hom}(\mathcal{A}, \mathcal{B})$ the space of all bounded homomorphisms from \mathcal{A} into \mathcal{B}, with the operator norm, and denote $\operatorname{Hom}(\mathcal{A}, \mathcal{A})$ by $\operatorname{Hom}(\mathcal{A})$. Throughout the paper, by continuity we mean that a homomorphism or derivation is continuous in norm topology.

Let \mathcal{A} be a Banach algebra and let φ and ψ be in $\operatorname{Hom}(\mathcal{A})$. We consider the following module actions on \mathcal{A} :

$$
a \cdot x=\varphi(a) \cdot x, \quad x \cdot a=x \cdot \psi(a) \quad \forall a, x \in \mathcal{A} .
$$

We denote the above \mathcal{A}-module by $\mathcal{A}_{(\varphi, \psi)}$. Let $n \in \mathbb{N}$. The natural \mathcal{A}-module actions on $\left(\mathcal{A}_{(\varphi, \psi)}\right)^{(n)}$ (the n-th dual of $\left.\mathcal{A}\right)$ are as follows:

$$
\begin{gathered}
a \cdot a^{(2 n)}=\varphi(a) \cdot a^{(2 n)}, \quad a^{(2 n)} \cdot a=a^{(2 n)} \cdot \psi(a) \quad \forall a \in \mathcal{A}, a^{(2 n)} \in\left(\mathcal{A}_{(\varphi, \psi)}\right)^{(2 n)} \\
a \cdot a^{(2 n-1)}=\psi(a) \cdot a^{(2 n-1)}, \quad a^{(2 n-1)} \cdot a=a^{(2 n-1)} \cdot \varphi(a) \\
\forall a \in \mathcal{A}, a^{(2 n-1)} \in\left(\mathcal{A}_{(\varphi, \psi)}\right)^{(2 n-1)}
\end{gathered}
$$

A bounded linear map $D: \mathcal{A} \rightarrow\left(\mathcal{A}_{(\varphi, \psi)}\right)^{(2 n)}$ is called a (φ, ψ)-derivation if $D(a b)=$ $D(a) \cdot \psi(b)+\varphi(a) \cdot D(b)$, for all $a, b \in \mathcal{A}$. For the odd case, a bounded linear map $D: \mathcal{A} \rightarrow\left(\mathcal{A}_{(\varphi, \psi)}\right)^{(2 n-1)}$ is a (φ, ψ)-derivation if $D(a b)=D(a) \cdot \varphi(b)+\psi(a) \cdot D(b)$ for all $a, b \in \mathcal{A}$. A bounded linear map $D: \mathcal{A} \rightarrow\left(\mathcal{A}_{(\varphi, \psi)}\right)^{(2 n)}$ is called (φ, ψ)-inner if there exists $x \in\left(\mathcal{A}_{(\varphi, \psi)}\right)^{(2 n)}$ such that $D(a):=\delta_{a}(a)=\varphi(a) \cdot x-x \cdot \psi(a)$, for all $a \in \mathcal{A}$. Also $D: \mathcal{A} \rightarrow\left(\mathcal{A}_{(\varphi, \psi)}\right)^{(2 n-1)}$ is (φ, ψ)-inner if there exists $x \in\left(\mathcal{A}_{(\varphi, \psi)}\right)^{(2 n-1)}$ such that $D(a)=x \cdot \varphi(a)-\psi(a) \cdot x$ for all $a \in \mathcal{A}$. The Banach algebra \mathcal{A} is called (φ, ψ) - n-weakly amenable if every (φ, ψ)-derivation $D: \mathcal{A} \rightarrow\left(\mathcal{A}_{(\varphi, \psi)}\right)^{(n)}$ is (φ, ψ) inner.

The following proposition is analogous to Proposition 1.2 from [4] in a more general setting. Since the proof is similar, it is omitted.

Proposition 2.1. Let \mathcal{A} be a Banach algebra and let $n \in \mathbb{N}$. If \mathcal{A} is (φ, ψ) -$(n+2)$-weakly amenable, then \mathcal{A} is (φ, ψ)-n-weakly amenable.

For a Banach algebra \mathcal{A}, we put $\mathcal{A}^{2}=\operatorname{span}\{a b: a, b \in \mathcal{A}\}$. The next proposition is proved in [1, Proposition 2.1].

Proposition 2.2. Let \mathcal{A} be Banach algebra and let $\varphi, \psi \in \operatorname{Hom}(\mathcal{A})$ such that $\varphi(a) b=a \psi(b)$ for all $a, b \in \mathcal{A}$. If \mathcal{A} is (φ, ψ)-weakly amenable, then $\overline{\mathcal{A}^{2}}=\mathcal{A}$, where $\overline{\mathcal{A}^{2}}$ is the closure of \mathcal{A}^{2} in \mathcal{A}.

Let \mathcal{A} be a non-unital Banach algebra. Then $\mathcal{A}^{\#}=\mathcal{A} \oplus \mathbb{C} e$, the unitization of \mathcal{A}, is a unital Banach algebra with the following product:

$$
(a, \alpha)(b, \beta)=(a b+\alpha b+\beta a, \alpha \beta) \quad \forall a, b \in \mathcal{A}, \alpha, \beta \in \mathbb{C} .
$$

Define $e^{*} \in \mathcal{A}^{\# *}$ by requiring $\left\langle e^{*}, e\right\rangle=1$ and $\left\langle e^{*}, a\right\rangle=0$ for all $a \in \mathcal{A}$. Then we have the following identification:

$$
\begin{aligned}
\mathcal{A}^{\#(2 n)} & =\mathcal{A}^{(2 n)} \oplus \mathbb{C} e \quad \forall n \in \mathbb{N}, \\
\mathcal{A}^{\#(2 n+1)} & =\mathcal{A}^{(2 n+1)} \oplus \mathbb{C} e^{*} \quad \forall n \in \mathbb{Z}^{+} .
\end{aligned}
$$

Let $\varphi, \psi \in \operatorname{Hom}(\mathcal{A})$. Define the map $\widehat{\varphi}: \mathcal{A}^{\#} \rightarrow \mathcal{A}^{\#}$ via $\widehat{\varphi}(a, \alpha)=(\varphi(a), \alpha)$. It is easy to see that $\hat{\varphi} \in \operatorname{Hom}\left(\mathcal{A}^{\#}\right)$. The $\mathcal{A}^{\#}$-module actions on $\left(\mathcal{A}_{(\varphi, \psi)}\right)^{\#(2 n+1)}$ are given by

$$
\begin{aligned}
& (a+\alpha e) \cdot\left(a^{(2 n+1)}+\beta e^{*}\right)=\psi(a) \cdot a^{(2 n+1)}+\alpha a^{(2 n+1)}+\left(\alpha \beta+\left\langle a^{(2 n+1)}, a\right\rangle\right) e^{*}, \\
& \left(a^{(2 n+1)}+\beta e^{*}\right) \cdot(a+\alpha e)=a^{(2 n+1)} \cdot \varphi(a)+\alpha a^{(2 n+1)}+\left(\alpha \beta+\left\langle a^{(2 n+1)}, a\right\rangle\right) e^{*} .
\end{aligned}
$$

The following result is analogous to [4, Proposition 1.4], but we include the proof for the sake of completeness.

Theorem 2.1. Let \mathcal{A} be a non-unital Banach algebra and let $\varphi, \psi \in \operatorname{Hom}(\mathcal{A})$, $n \in \mathbb{N}$.
(i) Suppose that $\mathcal{A}^{\#}$ is $(\widehat{\varphi}, \widehat{\psi})$ - $2 n$-weakly amenable. Then \mathcal{A} is (φ, ψ) - $2 n$-weakly amenable;
(ii) Suppose $\varphi(a) b=a \psi(b)$ for all $a, b \in \mathcal{A}$. If \mathcal{A} is $(\varphi, \psi)-(2 n-1)$-weakly amenable, then $\mathcal{A}^{\#}$ is $(\widehat{\varphi}, \widehat{\psi})-(2 n-1)$-weakly amenable.

Proof. (i) Assume that $D: \mathcal{A} \rightarrow\left(\mathcal{A}_{(\varphi, \psi)}\right)^{(n)}$ is a bounded (φ, ψ)-derivation. Consider $\mathcal{A}^{\#}$-module actions on $\left(\mathcal{A}_{(\varphi, \psi)}\right)^{(2 n)}$ as follows:

$$
(a, \alpha) \cdot a^{(2 n)}=\varphi(a) a^{(2 n)}+\alpha a^{(2 n)}, \quad a^{(2 n)} \cdot(a, \alpha)=a^{(2 n)} \cdot \psi(a)+\alpha a^{(2 n)}
$$

for all $a \in \mathcal{A}, a^{(2 n)} \in \mathcal{A}^{(2 n)}$ and $\alpha \in \mathbb{C}$. Define the map $\widehat{D}: \mathcal{A}^{\#} \rightarrow \mathcal{A}^{\#(2 n)}$ by $\widehat{D}((a, \alpha))=D(a)$, for all $a \in \mathcal{A}$. One can check that \widehat{D} is a $(\widehat{\varphi}, \widehat{\psi})$-derivation. This shows that \mathcal{A} is (φ, ψ) - $2 n$-weakly amenable.
(ii) Since $\mathcal{A}^{\#}$ is unital, without loss of generality, we may assume that

$$
D: \mathcal{A}^{\#} \rightarrow\left(\mathcal{A}_{(\widehat{\varphi}, \widehat{\psi})}\right)^{\#(2 n-1)} ; \quad a \mapsto\left\langle a^{*}, a\right\rangle e^{*}+\widehat{D}(a)
$$

is a continuous $(\widehat{\varphi}, \widehat{\psi})$-derivation in which $a^{*} \in \mathcal{A}^{*}$. It is easy to see that $\widehat{D}: \mathcal{A} \rightarrow$ $\left(\mathcal{A}_{(\varphi, \psi)}\right)^{(2 n-1)}$ is a continuous (φ, ψ)-derivation. Thus there exists $a_{0}^{(2 n-1)} \in \mathcal{A}^{(2 n-1)}$ such that $\widehat{D}(a)=a_{0}^{(2 n-1)} \cdot \varphi(a)-\psi(a) \cdot a_{0}^{(2 n-1)}$ for all $a \in \mathcal{A}$. Given $a, b \in \mathcal{A}$ we have

$$
\begin{aligned}
\left\langle a^{*}, a b\right\rangle & =\langle\widehat{D}(b), a\rangle+\langle\widehat{D}(a), b\rangle \\
& =\left\langle a_{0}^{(2 n-1)} \cdot \varphi(b)-\psi(b) \cdot a_{0}^{(2 n-1)}, a\right\rangle+\left\langle a_{0}^{(2 n-1)} \cdot \varphi(a)-\psi(a) \cdot a_{0}^{(2 n-1)}, b\right\rangle \\
& =\left\langle a_{0}^{(2 n-1)}, \varphi(b) a-a \psi(b)\right\rangle+\left\langle a_{0}^{(2 n-1)}, \varphi(a) b-b \psi(a)\right\rangle=0 .
\end{aligned}
$$

Therefore $\left.a^{*}\right|_{\mathcal{A}^{2}}=0$. By Proposition 2.1, \mathcal{A} is (φ, ψ)-weakly amenable. Now, Proposition 2.2 shows that \mathcal{A}^{2} is dense in \mathcal{A}. Hence $a^{*}=0$ and thus $D=\widehat{D}$ is a (φ, ψ)-inner derivation.

Theorem 2.2. Let \mathcal{A} be a Banach algebra and $\psi, \varphi, \lambda \in \operatorname{Hom}(\mathcal{A})$. If φ is an epimorphism and \mathcal{A} is $(\psi \circ \varphi, \lambda \circ \varphi)$-n-weakly amenable, then \mathcal{A} is (ψ, λ) - n-weakly amenable. The converse is true if φ^{2} is an identity map.

Proof. We show the proof for the even case. The odd case is similar. Let $D: \mathcal{A} \rightarrow\left(\mathcal{A}_{(\psi, \lambda)}\right)^{(2 n)}$ be a continuous (ψ, λ)-derivation and $\widetilde{D}=D \circ \varphi$. For each $a, b, c \in \mathcal{A}$, we have

$$
\begin{aligned}
\widetilde{D}(a b) & =(D \circ \varphi)(a b)=D(\varphi(a) \varphi(b)) \\
& =D(\varphi(a)) \cdot \lambda(\varphi(b))+\psi(\varphi(a)) \cdot D(\varphi(b)) \\
& =\widetilde{D}(a) \cdot(\lambda \circ \varphi)(b)+(\psi \circ \varphi)(a) \cdot \widetilde{D}(b) .
\end{aligned}
$$

Thus \widetilde{D} is an $(\psi \circ \varphi, \lambda \circ \varphi)$-derivation. So there exists $\Phi \in\left(\mathcal{A}_{(\psi \circ \varphi, \lambda \circ \varphi)}\right)^{(2 n)}$ such that for each $a \in \mathcal{A}, \widetilde{D}(a)=(\psi \circ \varphi)(a) \cdot \Phi-\Phi \cdot(\lambda \circ \varphi)(a)$. Let $b \in \mathcal{A}$. Then there exists $a \in \mathcal{A}$ such that $\varphi(a)=b$ and so

$$
D(b)=D(\varphi(a))=\widetilde{D}(a)=\psi(\varphi(a)) \cdot \Phi-\Phi \cdot \lambda(\varphi(a)) \cdot \Phi=\psi(b) \cdot \Phi-\Phi \cdot \lambda(b)
$$

Therefore D is an (ψ, λ)-inner derivation.

Conversely, suppose that $D: \mathcal{A} \rightarrow\left(\mathcal{A}_{(\psi \circ \varphi, \lambda \circ \varphi)}\right)^{(2 n)}$ is a $(\psi \circ \varphi, \lambda \circ \varphi)$-derivation and let $\widetilde{D}=D \circ \varphi^{-1}$. For every $a, b \in \mathcal{A}$, we get

$$
\begin{aligned}
\widetilde{D}(a b)=D \circ \varphi^{-1}(a b) & =D\left(\varphi^{-1}(a) \varphi^{-1}(b)\right) \\
& =D\left(\varphi^{-1}(a)\right) \cdot \lambda \circ \varphi\left(\varphi^{-1}(b)\right)+\psi \circ \varphi\left(\varphi^{-1}(a)\right) \cdot D\left(\varphi^{-1}(b)\right) \\
& =D\left(\varphi^{-1}(a)\right) \cdot \lambda(b)+\psi(a) \cdot D\left(\varphi^{-1}(b)\right) \\
& =\widetilde{D}(a) \cdot \lambda(b)+\psi(a) \cdot \widetilde{D}(b) .
\end{aligned}
$$

Due to (ψ, λ) - n-weak amenability of \mathcal{A}, there exists an $\Psi \in\left(\mathcal{A}_{(\psi, \lambda)}\right)^{(2 n)}$ such that for all $a \in \mathcal{A}, \widetilde{D}(a)=\psi(a) \cdot \Psi-\Psi \cdot \lambda(a)$ and thus we have $D(a)=D\left(\varphi^{-1}(\varphi(a))=\right.$ $\widetilde{D}(\varphi(a))=\psi(\varphi(a)) \cdot \Psi-\Psi \cdot \lambda(\varphi(a))$. Therefore D is an $(\psi \circ \varphi, \lambda \circ \varphi)$-inner derivation.

Corollary 2.1. Let \mathcal{A} be a Banach algebra and let $\varphi \in \operatorname{Hom}(\mathcal{A})$. Then the following statements hold:
(i) If φ is an epimorphism and \mathcal{A} is $\left(\varphi^{m}, \varphi^{m}\right)$-n-weakly amenable for some $m \in \mathbb{N}$, then \mathcal{A} is n-weakly amenable;
(ii) If \mathcal{A} is n-weakly amenable such that $\varphi^{2}=1_{\mathcal{A}}$, then \mathcal{A} is $\left(\varphi^{2}, \varphi^{2}\right)$-n-weakly amenable.

Letand \diamond be the first and second Arens products on the second dual space $\mathcal{A}^{* *}$, then $\mathcal{A}^{* *}$ is a Banach algebra with respect to both of these products. Similar to [11, Proposition 4.4], we have the following result:

Proposition 2.3. Let \mathcal{A} be a Banach algebra, $\varphi, \psi \in \operatorname{Hom}(\mathcal{A})$ and let X be a Banach \mathcal{A}-bimodule. Suppose $D: \mathcal{A} \rightarrow X$ is a continuous (φ, ψ)-derivation. Then $D^{\prime \prime}:\left(\mathcal{A}^{* *}, \square\right) \rightarrow X^{* *}$ is a continuous $\left(\varphi^{\prime \prime}, \psi^{\prime \prime}\right)$-derivation.

Proposition 2.4. Let \mathcal{A} be a Banach algebra with a bounded approximate identity and let X be a Banach \mathcal{A}-bimodule. If $\varphi, \psi \in \operatorname{Hom}(\mathcal{A}), D: \mathcal{A} \rightarrow X^{*}$ is a continuous (φ, ψ)-derivation and there exists $\sigma \in X^{*}$ such that

$$
\langle D(a), \varphi(b) \cdot x \cdot \psi(c)\rangle=\langle\psi(a) \cdot \sigma-\sigma \cdot \varphi(a), \varphi(b) \cdot x \cdot \psi(c)\rangle,
$$

for all $a, b, c \in \mathcal{A}$ and $x \in X$, then D is (φ, ψ)-inner.
Proof. Replacing D with $D-\delta_{\sigma}$, we may suppose that

$$
\langle D(a), \varphi(b) \cdot x \cdot \psi(c)\rangle=0 \quad \forall a, b, c \in \mathcal{A}, x \in X
$$

The above equality shows that

$$
\begin{equation*}
\psi(c) \cdot D(a) \cdot \varphi(b)=0 \tag{2.1}
\end{equation*}
$$

for all $a, b, c \in \mathcal{A}$. Assume that $\left(e_{j}\right) \subseteq \mathcal{A}$ is a bounded approximate identity for which the iterated weak*-limit $\sigma_{0}=\lim _{j} \lim _{k}\left(\psi\left(e_{j}\right) \cdot D\left(e_{k}\right)-D\left(e_{k}\right) \cdot \varphi\left(e_{j}\right)\right)$ exists. For each $b \in \mathcal{A}$ and $x \in X$, by applying (2.1) we get

$$
\begin{aligned}
\langle D(b), x\rangle & =\lim _{j} \lim _{k}\left\langle D\left(e_{j} b e_{k}\right), x\right\rangle \\
& =\lim _{j} \lim _{k}\left\langle D\left(e_{j}\right) \cdot \varphi(b) \varphi\left(e_{k}\right)+\psi\left(e_{j}\right) \cdot D\left(b e_{k}\right), x\right\rangle \\
& =\lim _{j} \lim _{k}\left\langle D\left(e_{j}\right) \cdot \varphi(b) \varphi\left(e_{k}\right)+\psi\left(e_{j}\right) \cdot D(b) \cdot \varphi\left(e_{k}\right)+\psi\left(e_{j}\right) \psi(b) \cdot D\left(e_{k}\right), x\right\rangle \\
& =\lim _{k}\left\langle D\left(e_{k}\right) \cdot \varphi(b)+\psi(b) \cdot D\left(e_{k}\right), x\right\rangle \\
& =\lim _{j} \lim _{k}\left\langle\psi(b) \cdot\left[\psi\left(e_{j}\right) \cdot D\left(e_{k}\right)-D\left(e_{k}\right) \cdot \varphi\left(e_{j}\right)\right], x\right\rangle \\
& -\lim _{j} \lim _{k}\left\langle\left[\psi\left(e_{j}\right) \cdot D\left(e_{k}\right)-D\left(e_{k}\right) \cdot \varphi\left(e_{j}\right)\right] \cdot \varphi(b), x\right\rangle \\
& =\left\langle\psi(b) \cdot \sigma_{0}-\sigma_{0} \cdot \varphi(b), x\right\rangle .
\end{aligned}
$$

Consequently, D is a (φ, ψ)-inner derivation.
Let $m, n \in \mathbb{N}$ and let \mathcal{A} be a Banach algebra. The set of $m \times m$ matrices with entries from \mathcal{A}, denoted by $M_{m}(\mathcal{A})$, is a Banach algebra with product in the obvious way and ℓ^{1}-norm. Supposing that $\varphi, \psi \in \operatorname{Hom}(\mathcal{A})$, we consider $M_{m}\left(\mathcal{A}_{(\varphi, \psi)}\right)$ as a Banach $M_{m}(\mathcal{A})$-module as follows:

$$
(a \cdot x)_{i j}=\sum_{k=1}^{m} \varphi\left(a_{i k}\right) \cdot x_{k j}, \quad(x \cdot a)_{i j}=\sum_{k=1}^{m} x_{i k} \psi\left(a_{k j}\right),
$$

where $a=\left(a_{i j}\right) \in M_{m}(\mathcal{A}), \quad x=\left(x_{i j}\right) \in M_{m}\left(\mathcal{A}_{(\varphi, \psi)}\right)$. We identify $M_{m}\left(\mathcal{A}_{(\varphi, \psi)}\right)^{(n)}$ with $M_{m}\left(\left(\mathcal{A}_{(\varphi, \psi)}\right)^{(n)}\right)$ as Banach \mathcal{A}-modules and thus

$$
\begin{align*}
& \text { (2.2) } \quad\left(a \cdot x^{(2 n)}\right)_{i j}=\sum_{k=1}^{m} \varphi\left(a_{j k}\right) \cdot x_{i k}^{(2 n)},\left(x^{(2 n)} \cdot a\right)_{i j}=\sum_{k=1}^{m} x_{k j}^{(2 n)} \cdot \psi\left(a_{k i}\right) \tag{2.2}\\
& \text { (2.3) }\left(a \cdot x^{(2 n-1)}\right)_{i j}=\sum_{k=1}^{m} \psi\left(a_{j k}\right) \cdot x_{i k}^{(2 n-1)},\left(x^{(2 n-1)} \cdot a\right)_{i j}=\sum_{k=1}^{m} x_{k j}^{(2 n-1)} \cdot \psi\left(a_{k i}\right)
\end{align*}
$$

where $a=\left(a_{i j}\right) \in M_{m}(\mathcal{A})$ and $x^{(n)}=\left(x_{i j}^{(n)}\right) \in M_{m}\left(\left(\mathcal{A}_{(\varphi, \psi)}\right)^{(n)}\right)$. For $a \in \mathcal{A}$ and $i, j \in \mathbb{N}$, we put $(a)_{i j}=a \otimes \varepsilon_{i j} \in M_{m}(\mathcal{A})$, where $\varepsilon_{i j}$ is the matrix whose entries is 1 if $i=j$, and zero otherwise.

Theorem 2.3. Let \mathcal{A} be a Banach algebra with identity, $\varphi, \psi \in \operatorname{Hom}(\mathcal{A})$ and let $I: M_{m}(\mathcal{A}) \rightarrow M_{m}(\mathcal{A})$ be the identity map. Then
(i) \mathcal{A} is (φ, ψ)-2n-weakly amenable if and only if $M_{m}(\mathcal{A})$ is $(\varphi \otimes I, \psi \otimes I)$-2n-weakly amenable;
(ii) \mathcal{A} is (φ, ψ)-($2 n-1$-weakly amenable if and only if $M_{m}(\mathcal{A})$ is $(\varphi \otimes I, \psi \otimes I)$ ($2 n-1$)-weakly amenable.

Proof. (i) Suppose \mathcal{A} is (φ, ψ) - $2 n$-weakly amenable and $D: M_{m}(\mathcal{A}) \rightarrow$ $M_{m}\left(\left(\mathcal{A}_{(\varphi, \psi)}\right)^{2 n}\right)$ is a $(\varphi \otimes I, \psi \otimes I)$-derivation. We are regarding M_{m}, the Banach algebra of $m \times m$ matrices with entries from \mathbb{C}, as a subalgebra $M_{m}(\mathcal{A})$. Since M_{m} is amenable, there exists $x^{(2 n)}=\left(x_{i j}^{(2 n)}\right) \in M_{m}\left(\left(\mathcal{A}_{(\varphi, \psi)}\right)^{2 n}\right)$ such that $\left.D\right|_{M_{m}}=\left.\delta_{x^{(2 n)}}\right|_{M_{m}}$. Replacing $D-\delta_{x^{(2 n)}}$ by D, we may suppose $\left.D\right|_{M_{m}}=0$. For $a \in \mathcal{A}$ and $r, s \in \mathbb{N}$, set $D\left((a)_{r s}\right)=\left(d_{i j}^{r, s}: i, j \in \mathbb{N}_{m}\right) \in M_{m}\left(\left(\mathcal{A}_{(\varphi, \psi)}\right)^{2 n}\right)$ and $d_{11}^{(1,1)}=d(a)$. We have $D\left((a)_{r s}\right)=D\left(\varepsilon_{r 1}(a)_{11} \varepsilon_{1 s}\right)=\varepsilon_{r 1} \cdot D\left((a)_{11}\right) \cdot \varepsilon_{1 s}$, since $D\left(\varepsilon_{r 1}\right)=D\left(\varepsilon_{1 s}\right)=0$. According to (2.2), we have $d_{i j}^{(r, s)}=0$ unless $(i, j)=(r, s)$, and in this case set $d_{r s}^{(r, s)}=d(a)$. It is easy to see that $d: \mathcal{A} \rightarrow \mathcal{A}^{(2 n)}$ is a (φ, ψ) derivation. By assumption there exists $a^{(2 n)} \in \mathcal{A}^{(2 n)}$ such that

$$
\begin{equation*}
d(a)=\varphi(a) \cdot a^{(2 n)}-a^{(2 n)} \cdot \psi(a) \quad \forall a \in \mathcal{A} . \tag{2.4}
\end{equation*}
$$

Take $X \in M_{m}\left(\left(\mathcal{A}_{(\varphi, \psi)}\right)^{2 n}\right)$ to be the matrix that has $a^{(2 n)}$ in each diagonal position and zero elsewhere. By (2.2) and (2.4), we have

$$
D\left((a)_{i j}\right)=(\varphi(a))_{i j} \cdot X-X \cdot(\psi(a))_{i j}=(\varphi \otimes I)\left(a \otimes \varepsilon_{i j}\right) \cdot X-(\psi \otimes I)\left(a \otimes \varepsilon_{i j}\right) .
$$

On the other hand,

$$
D\left(\left(a_{i j}\right)\right)=(\varphi \otimes I)\left(\left(a_{i j}\right)\right) \cdot X-X \cdot(\psi \otimes I)\left(\left(a_{i j}\right)\right) .
$$

The above equalities show that $M_{m}\left(\left(\mathcal{A}_{(\varphi, \psi)}\right)^{(2 n)}\right)$ is $(\varphi \otimes I, \psi \otimes I)$ - $2 n$-weakly amenable.

Conversely, assume that $M_{m}\left(\left(\mathcal{A}_{(\varphi, \psi)}\right)^{(2 n)}\right)$ is $(\varphi \otimes I, \psi \otimes I)$ - $2 n$-weakly amenable and $D: \mathcal{A} \rightarrow\left(\mathcal{A}_{(\varphi, \psi)}\right)^{(2 n)}$ is a (φ, ψ)-derivation. It is easy to check that $D \otimes I: \mathcal{A} \otimes M_{m} \rightarrow$ $\left(\mathcal{A}_{(\varphi, \psi)}\right)^{(2 n)} \otimes M_{m}$ is a $(\varphi \otimes I, \psi \otimes I)$-derivation. We identify $M_{m}\left(\left(\mathcal{A}_{(\varphi, \psi)}\right)^{(2 n)}\right)$ with $\left(\mathcal{A}_{(\varphi, \psi)}\right)^{(2 n)} \otimes M_{m}$. By assumption there exists $x \in\left(\mathcal{A}_{(\varphi, \psi)}\right)^{(2 n)} \otimes M_{m}$ such that $x=\sum_{i, j=1}^{m} x_{i j}^{(2 n)} \otimes \varepsilon_{i j}$ and $D \otimes I=\delta_{x}$. For each $a \in \mathcal{A}$, we have

$$
\begin{aligned}
D \otimes I\left(a \otimes \varepsilon_{11}\right) & =D(a) \otimes \varepsilon_{11}=\left(a \otimes \varepsilon_{11}\right) \cdot x-x \cdot\left(a \otimes \varepsilon_{11}\right) \\
& =\left(\varphi(a) \otimes \varepsilon_{11}\right) \cdot x-x \cdot\left(\psi(a) \otimes \varepsilon_{11}\right) \\
& =\sum_{i=1}^{m}\left(\varphi(a) \cdot x_{i 1}^{(2 n)}\right) \otimes \varepsilon_{i 1}-\sum_{j=1}^{m}\left(x_{1 j}^{(2 n)} \cdot \psi(a)\right) \otimes \varepsilon_{1 j} .
\end{aligned}
$$

The above equalities imply that $D(a)=\varphi(a) \cdot x_{11}^{(2 n)}-x_{11}^{(2 n)} \cdot \psi(a)$, so \mathcal{A} is (φ, ψ) - $2 n$ weakly amenable.
(ii) The proof is similar to (i).

Let \mathcal{A} and \mathcal{B} be Banach algebras, $n \in \mathbb{N}$ and $\theta: \mathcal{A} \rightarrow \mathcal{B}$ is a continuous homomorphism. Then $\mathcal{B}^{(n)}$ (the n-th dual of \mathcal{B}) can be regarded as \mathcal{A}-module under the module actions

$$
a \cdot b^{(n)}=\theta(a) \cdot b^{(n)}, \quad b^{(n)} \cdot a=b^{(n)} \cdot \theta(a) \quad \forall a \in \mathcal{A}, b^{(n)} \in \mathcal{B}^{(n)}
$$

Let $n \in \mathbb{N}$. Then, the n-th adjoint map of θ is \mathcal{A}-module homomorphism.
Theorem 2.4. Let \mathcal{A} and \mathcal{B} be Banach algebras and let $\varphi, \psi \in \operatorname{Hom}(\mathcal{B})$. Let $\theta_{1} \in \operatorname{Hom}(\mathcal{A}, \mathcal{B})$ and $\theta_{2} \in \operatorname{Hom}(\mathcal{B}, \mathcal{A})$ such that $\theta_{1} \circ \theta_{2}=I_{\mathcal{B}}, n \in \mathbb{N}$. Then the maps $\widetilde{\varphi}=\theta_{2} \circ \varphi \circ \theta_{1}$ and $\widetilde{\psi}=\theta_{2} \circ \psi \circ \theta_{1}$ are in $\operatorname{Hom}(\mathcal{A})$ and
(i) If \mathcal{A} is $(\widetilde{\varphi}, \widetilde{\psi})$ - $2 n$-weakly amenable, then \mathcal{B} is (φ, ψ) - $2 n$-weakly amenable;
(ii) If \mathcal{A} is $(\widetilde{\varphi}, \widetilde{\psi})-(2 n-1)$-weakly amenable, then \mathcal{B} is $(\varphi, \psi)-(2 n-1)$-weakly amenable.

Proof. Obviously $\widetilde{\varphi}, \widetilde{\psi} \in \operatorname{Hom}(\mathcal{A})$.
(i) Suppose \mathcal{A} is $(\widetilde{\varphi}, \widetilde{\psi})$ - $2 n$-weakly amenable and $D: \mathcal{B} \rightarrow\left(\mathcal{B}_{(\varphi, \psi)}\right)^{(2 n)}$ is a (φ, ψ) derivation. The map $\widetilde{D}=\theta_{2}^{(2 n)} \circ D \circ \theta_{1}: \mathcal{A} \rightarrow\left(\mathcal{A}_{(\varphi, \psi)}\right)^{(2 n)}$ is a bounded linear map. For each $a_{1}, a_{2} \in \mathcal{A}$, we have

$$
\begin{aligned}
\widetilde{D}\left(a_{1} a_{2}\right) & =\theta_{2}^{(2 n)} \circ D \circ \theta_{1}\left(a_{1} a_{2}\right)=\theta_{2}^{(2 n)}\left(D\left(\theta_{1}\left(a_{1}\right) \theta_{1}\left(a_{2}\right)\right)\right) \\
& =\theta_{2}^{(2 n)}\left(D\left(\theta_{1}\left(a_{1}\right)\right) \cdot \psi\left(\theta_{1}\left(a_{2}\right)\right)+\varphi\left(\theta_{1}\left(a_{1}\right)\right) \cdot D\left(\theta_{1}\left(a_{2}\right)\right)\right) \\
& =\theta_{2}^{(2 n)} \circ D \circ \theta_{1}\left(a_{1}\right) \cdot \theta_{2}\left(\psi\left(\theta_{1}\left(a_{2}\right)\right)\right)+\theta_{2}\left(\varphi\left(\varphi\left(a_{1}\right)\right)\right) \cdot \theta_{2}^{(2 n)} \circ D \circ \theta_{1}\left(a_{2}\right) \\
& =\theta_{2}^{(2 n)} \circ D \circ \theta_{1}\left(a_{1}\right) \cdot \widetilde{\psi}\left(a_{2}\right)+\widetilde{\varphi}\left(a_{1}\right) \cdot \theta_{2}^{(2 n)} \circ D \circ \theta_{1}\left(a_{2}\right) .
\end{aligned}
$$

Then \widetilde{D} is a $(\widetilde{\varphi}, \widetilde{\psi})$-derivation, hence there exists $x \in\left(\mathcal{A}_{\varphi, \psi}\right)^{(2 n)}$ such that

$$
\begin{equation*}
\widetilde{D}(a)=\widetilde{\varphi}(a) \cdot x-x \cdot \widetilde{\psi}(a) \quad \forall a \in \mathcal{A} . \tag{2.5}
\end{equation*}
$$

It is easy to check that $\theta_{1}^{(2 n)}\left(\widetilde{\varphi}\left(\theta_{2}(b)\right) \cdot x\right)=\varphi(b) \cdot \theta_{1}^{(2 n)}(x)$ and $\theta_{1}^{(2 n)}\left(x \cdot \widetilde{\psi}\left(\theta_{2}\right)\right)=$ $\theta_{1}^{(2 n)}(x) \cdot \psi(b)$ for $b \in \mathcal{B}$. Also, $\theta_{1}^{(2 n)} \circ \theta_{2}^{(2 n)}=I_{\mathcal{B}(2 n)}$. By (2.5), we obtain

$$
\begin{aligned}
D(b) & =\theta_{1}^{(2 n)} \circ \theta_{2}^{(2 n)} \circ D \circ \theta_{1} \circ \theta_{2}(b) \\
& =\theta_{1}^{(2 n)}\left(\theta_{2}^{(2 n)} \circ D \circ \theta_{1} \circ \theta_{2}(b)\right) \\
& =\theta_{1}^{(2 n)}\left(\widetilde{\varphi}\left(\theta_{2}(b)\right) \cdot x-x \cdot \widetilde{\psi}\left(\theta_{2}(b)\right)\right) \\
& =\varphi(b) \cdot \theta_{1}^{(2 n)}(x)-\theta_{1}^{(2 n)}(x) \cdot \psi(b),
\end{aligned}
$$

for all $b \in \mathcal{B}$ and $\theta_{1}^{(2 n)}(x) \in\left(\mathcal{B}_{(\varphi, \psi)}\right)^{(2 n)}$. Therefore \mathcal{B} is (φ, ψ) - $2 n$-weakly amenable.
(ii) The proof is similar to (i).

In the case when φ and ψ are identity maps, we see that the homomorphic image of an n-weakly amenable Banach algebra is again n-weakly amenable.

Corollary 2.2. Let $\varphi, \psi \in \operatorname{Hom}(\mathcal{B}), n \in \mathbb{N}$. Let \mathcal{A} be a Banach algebra such that $\mathcal{A}=\mathcal{B} \oplus I$ for a closed subalgebra \mathcal{B} and closed ideal I. If \mathcal{A} is $(\iota \circ \varphi \circ P, \iota \circ \psi \circ P)$ -n-weakly amenable, then \mathcal{B} is (φ, ψ)-n-weakly amenable, where $P: \mathcal{A} \rightarrow \mathcal{B}$ is the natural projection and $\iota: \mathcal{B} \rightarrow \mathcal{A}$ is the inclusion map.

3. Examples

For any Banach space X, we will say that a net $\left(m_{\alpha}\right) \subseteq X^{*}$ converges weak \approx to $m \in X^{*}$ if $m_{\alpha} \rightarrow m$ in weak ${ }^{*}$ topology and $\left\|m_{\alpha}\right\| \rightarrow\|m\|$. This notion was introduced by Lau and Loy in [9]. In particular, if $\mu \in M(G)$, assume that $\nu \in$ $L^{\infty}(G)^{*}$ is a norm preserving extension of μ. Then there exists a net $\left(\varphi_{j}\right) \subseteq L^{1}(G)$ with $\left\|\varphi_{j}\right\| \leqslant\|\mu\|$ and $\varphi_{j} \rightarrow \nu$. Passing to a suitable subnet we may assume that $\left\|\varphi_{j}\right\| \rightarrow\|\mu\|$. Hence, we have $\varphi_{j} \rightarrow \mu$ in weak \approx topology. If $\varphi \in \operatorname{Hom}\left(L^{1}(G)\right)$, the we can extend φ to a homomorphism $\widehat{\varphi}$ on $M(G)$. Now, we need the following result which is analogous to [5, Theorem 2.4]. Since the proof is similar, it is omitted.

Theorem 3.1. Let G be a locally compact group and let $\varphi, \psi \in \operatorname{Hom}\left(L^{1}(G)\right)$. Let $L^{1}(G)$ be a $M(G)$-bimodule by module actions $\mu \cdot f=\widehat{\varphi}(\mu) * f$ and $f \cdot \mu=f * \widehat{\psi}(\mu)$ for each $f \in L^{1}(G)$ and $\mu \in M(G)$. Then every (φ, ψ)-derivation $D: L^{1}(G) \rightarrow$ $L^{1}(G)^{(2 n)}$ extends to a unique $(\widehat{\varphi}, \widehat{\psi})$-derivation $M(G)$ into $L^{1}(G)^{(2 n)}$.

Let G be a locally compact group, $\varphi, \psi \in \operatorname{Hom}\left(L^{1}(G)\right)$ and let X be a Banach space. Suppose that G acts on X from left (right), i.e., we have a continuous mapping $(g, x) \mapsto g \cdot x((x, g) \mapsto x \cdot g)$ from $G \times X$ into X in which $g \cdot x=\varphi(g) \cdot x(x \cdot g=x \cdot \psi(g))$. A map $d: G \rightarrow X$ is called a (φ, ψ)-derivation if

$$
d(g h)=d(g) \cdot \varphi(h)+\psi(g) \cdot d(h) \quad \forall g, h \in G .
$$

The (φ, ψ)-derivation d is called (φ, ψ)-inner if there exists $x \in X$ such that $d(g)=$ $x \cdot \varphi(g)-\psi(g) \cdot x$, for every $g \in G$. In this case we write $d=a d_{x}$. A map $T: G \rightarrow X$ is called a (φ, ψ)-crossed homomorphism if

$$
T(g h)=\psi(g) \cdot T(h) \cdot \varphi(g)^{-1}+T(g),
$$

for every $g, h \in G$, and T is called (φ, ψ)-principal if there exists $x \in X$ such that $T(s)=\psi(g) \cdot x \cdot \varphi(g)^{-1}-x$, for every $g \in G$. Let $d: G \rightarrow X$ be a (φ, ψ)-derivation
and set $T(g)=d(g) \cdot \varphi(g)^{-1}$, for $g \in G$. Then T is a crossed homomorphism and T is principal if d is (φ, ψ)-inner. Conversely, let $T: G \rightarrow X$ be a (φ, ψ)-crossed homomorphism. Set $d(g)=T(g) \cdot \varphi(g)$ for $g \in G$. Then d is a (φ, ψ)-derivation and d is (φ, ψ)-inner if T is principal. Let $D: \ell^{1}(G) \rightarrow X^{*}$ be continuous (φ, ψ) derivation. Set $d(g)=D\left(\delta_{g}\right)$ for every $g \in G$. Then d is a (φ, ψ)-derivation and it is clear that if D is an (φ, ψ)-inner derivation then so is d. Similar to [10, Theorem 1.1], we have the following result:

Theorem 3.2. Let G be a (discrete) group and X a locally compact space on which G has a 2 -sided action as above. Then any bounded (φ, ψ)-derivation $D: G \rightarrow$ $M(X)$ is (φ, ψ)-inner.

In the following example, we use techniques of the proofs from [3] and [4, Theorem 4.1] to show that $L^{1}(G)$ is (φ, ψ) - n-weakly amenable for all $n \in \mathbb{N}$ and $\varphi, \psi \in$ $\operatorname{Hom}\left(L^{1}(G)\right)$.

Example 3.1. Let G be a locally compact group and $\varphi, \psi \in \operatorname{Hom}\left(L^{1}(G)\right)$ be nonzero (for the cases where φ or ψ is zero homomorphism, refer to Example 3.2). It is known that $L^{1}(G)$ has a bounded approximate identity $\left(e_{\alpha}\right)$ with $\left\|e_{\alpha}\right\| \leqslant 1$ for all α. By [2, Proposition 28.7], there exists $E \in L^{1}(G)^{* *}$ such that $\|E\|=1$ and E is a right identity for $\left(L^{1}(G)^{* *}, \square\right)$. Since $L^{1}(G)$ is a closed ideal of measure algebra $M(G)$, the Banach algebra $\left(L^{1}(G)^{* *}, \square\right)$ is a closed ideal in $\left(M(G)^{* *}, \square\right)$. Hence, the $\operatorname{map} \mathcal{T}: M(G) \rightarrow\left(L^{1}(G)^{* *}, \square\right)$ defined by $\mathcal{T}(\mu)=E \square \mu$ is an isometric embedding. We write E_{g} for $E \square \delta_{g}$, where $g \in G$. Obviously, $E_{g h}=E_{g} \square E_{h}$ for all $g, h \in G$.

Let $X=L^{1}(G)^{(2 k+2)}$ and $D: L^{1}(G) \rightarrow X$ be a (φ, ψ)-derivation. Then $D^{\prime \prime}$: $\left(\mathcal{A}^{* *}, \square\right) \rightarrow X^{* *}$ is a bounded $\left(\varphi^{\prime \prime}, \psi^{\prime \prime}\right)$-derivation by Proposition 2.3. For any $g, h \in$ G, we have

$$
D^{\prime \prime}\left(E_{g h}\right)=D^{\prime \prime}\left(E_{g}\right) \cdot \varphi^{\prime \prime}\left(E_{h}\right)+\psi^{\prime \prime}\left(E_{g}\right) \cdot D^{\prime \prime}\left(E_{h}\right)
$$

and thus

$$
\begin{align*}
\psi^{\prime \prime}\left(E_{(g h)^{-1}}\right) \cdot D^{\prime \prime}\left(E_{g h}\right)= & \psi^{\prime \prime}\left(E_{h^{-1}}\right) \cdot\left(\psi^{\prime \prime}\left(E_{g^{-1}}\right) \cdot D^{\prime \prime}\left(E_{g}\right)\right) \cdot \varphi^{\prime \prime}\left(E_{h}\right) \tag{3.1}\\
& +\psi^{\prime \prime}\left(E_{h^{-1}}\right) \cdot D^{\prime \prime}\left(E_{h}\right) .
\end{align*}
$$

Since X^{*} is the underling space of a commutative von Neumann algebra, it is an $L^{\infty_{-}}$ space. Thus the real-valued functions in X^{*} form the space $X_{\mathbb{R}}^{*}$ which is a complete lattice, that is, every non-empty bounded subset of $X_{\mathbb{R}}^{*}$ has a supremum. Easily, we can see that

$$
\begin{equation*}
\operatorname{Re}\left(\psi^{\prime \prime}\left(E_{g}\right) \cdot \Phi\right)=\psi^{\prime \prime}\left(E_{g}\right) \cdot(\operatorname{Re} \Phi) \quad \forall g \in G, \Phi \in X^{*} . \tag{3.2}
\end{equation*}
$$

Similar to the proof of [4, Theorem 4.1], we can prove that

$$
\begin{equation*}
\psi^{\prime \prime}(E) \cdot \sup \left\{\psi^{\prime \prime}\left(E_{g}\right) \cdot \Phi: \Phi \in Y\right\}=\psi^{\prime \prime}\left(E_{g}\right) \cdot \sup \left\{\psi^{\prime \prime}(E) \cdot \Phi: \Phi \in Y\right\} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup \left\{\psi^{\prime \prime}\left(E_{g}\right) \cdot \Phi: \Phi \in Y\right\} \cdot \psi^{\prime \prime}(E)=\sup \left\{\psi^{\prime \prime}(E) \cdot \Phi: \Phi \in Y\right\} \cdot \psi^{\prime \prime}\left(E_{g}\right) \tag{3.4}
\end{equation*}
$$

for all $g \in G$, where Y is an arbitrary bounded subset of $X_{\mathbb{R}}^{*}$. Put

$$
S=\sup \left\{\psi^{\prime \prime}\left(E_{g^{-1}}\right) \cdot \operatorname{Re} D^{\prime \prime}\left(E_{g}\right): g \in G\right\} ;
$$

the supremum being taken in the complete lattice $X_{\mathbb{R}}^{*}$. It follows from (3.1)-(3.4) that

$$
\psi^{\prime \prime}(E) \cdot S \cdot \psi^{\prime \prime}(E)=\psi^{\prime \prime}\left(E_{h^{-1}}\right) \cdot S \cdot \psi^{\prime \prime}\left(E_{h}\right)+\psi^{\prime \prime}\left(E_{h^{-1}}\right) \cdot \operatorname{Re} D^{\prime \prime}\left(E_{h}\right) \cdot \psi^{\prime \prime}(E) .
$$

If $\psi^{\prime \prime}\left(E_{h}\right)$ acts from the left on the above equality, we get

$$
\begin{equation*}
\psi^{\prime \prime}(E) \cdot \operatorname{Re} D^{\prime \prime}\left(E_{h}\right) \cdot \varphi^{\prime \prime}(E)=\psi^{\prime \prime}\left(E_{h}\right) \cdot S \cdot \varphi^{\prime \prime}(E)-\psi^{\prime \prime}(E) \cdot S \cdot \varphi^{\prime \prime}\left(E_{h}\right) \tag{3.5}
\end{equation*}
$$

Similarly for the imaginary part of $D^{\prime \prime}\left(E_{h}\right)$, there exists an element T such that

$$
\begin{equation*}
\psi^{\prime \prime}(E) \cdot \operatorname{Im} D^{\prime \prime}\left(E_{h}\right) \cdot \varphi^{\prime \prime}(E)=\psi^{\prime \prime}\left(E_{h}\right) \cdot T \cdot \varphi^{\prime \prime}(E)-\psi^{\prime \prime}(E) \cdot T \cdot \varphi^{\prime \prime}\left(E_{h}\right) \tag{3.6}
\end{equation*}
$$

Taking $\Psi=S+\mathrm{i} T \in X^{* * *}$ and using (3.5) and (3.6), we deduce that

$$
\psi^{\prime \prime}(E) \cdot D^{\prime \prime}\left(E_{h}\right) \cdot \varphi^{\prime \prime}(E)=\psi^{\prime \prime}\left(E_{h}\right) \cdot \Psi \cdot \varphi^{\prime \prime}(E)-\psi^{\prime \prime}(E) \cdot \Psi \cdot \varphi^{\prime \prime}\left(E_{h}\right)
$$

Therefore for each discrete measure $\zeta \in \ell^{1}(G)$, we have

$$
\psi^{\prime \prime}(E) \cdot D^{\prime \prime}(E \square \zeta) \cdot \varphi^{\prime \prime}(E)=\psi^{\prime \prime}(E \square \zeta) \cdot \Psi \cdot \varphi^{\prime \prime}(E)-\psi^{\prime \prime}(E) \cdot \Psi \cdot \varphi^{\prime \prime}(\zeta) \cdot \varphi^{\prime \prime}(E)
$$

Now, assume that $f, g \in L^{1}(G)$, then

$$
\begin{equation*}
\psi(f) \cdot D^{\prime \prime}(E \square \zeta) \cdot \varphi(g)=\psi(f * \zeta) \cdot \Psi \cdot \varphi(g)-\psi(f) \cdot \Psi \cdot \varphi(\zeta * g) \tag{3.7}
\end{equation*}
$$

Given $h \in L^{1}(G)$, there is a net $\left(\zeta_{j}\right)$ of discrete measure such that $\zeta_{j} \rightarrow h$ in the strong operator topology on $L^{1}(G)$. So $\lim _{j} \varphi\left(\zeta_{j} * f\right)=\varphi(h * f)$ and $\lim _{j} \varphi\left(f * \zeta_{j}\right)=\varphi(f * h)$ for all $f \in L^{1}(G)$. Similarly, we have the same for ψ.

For each $f, g \in L^{1}(G)$, we have

$$
\begin{aligned}
\lim _{j} \psi(f) \cdot D^{\prime \prime} & \left(E \square \zeta_{j}\right) \cdot \varphi(g)=\lim _{j}\left(D^{\prime \prime}\left(f * \zeta_{j}\right) \cdot \varphi(g)-D^{\prime \prime}(f) \cdot \varphi\left(\zeta_{j} * g\right)\right) \\
& =D^{\prime \prime}(f * h) \cdot \varphi(g)-D^{\prime \prime}(f) \cdot \varphi(h * g) \\
& =D^{\prime \prime}(f) \cdot \varphi(h * g)+\psi(f) \cdot D^{\prime \prime}(h) \cdot \varphi(g)-D^{\prime \prime}(f) \cdot \varphi(h * g) \\
& =\psi(f) \cdot D^{\prime \prime}(h) \cdot \varphi(g) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\psi(f) \cdot D^{\prime \prime}(h) \cdot \varphi(g) & =\psi(f * h) \cdot \Psi \cdot \varphi(g)-\psi(f) \cdot \Psi \cdot \varphi(h * g) \\
& =\psi(f) \cdot(\psi(h) \cdot \Psi-\Psi \cdot \varphi(h)) \cdot \varphi(g)
\end{aligned}
$$

Note that in the above equalities we have used the relation (3.7). Let $P: X^{* * *} \rightarrow X^{*}$ be the natural projection such that P is an $L^{1}(G)$-bimodule morphism. We have $D=P \circ D^{\prime \prime}$. Put $\Psi_{0}=P(\Psi)$. Then

$$
\psi(f) \cdot D(h) \cdot \varphi(g)=\psi(f) \cdot\left(\psi(h) \cdot \Psi_{0}-\Psi_{0} \cdot \varphi(h)\right) \cdot \varphi(g) \quad \forall f, g, h \in L^{1}(G)
$$

and thus

$$
\langle D(h), \varphi(g) \cdot x \cdot \psi(f)\rangle=\left\langle\psi(h) \cdot \Psi_{0}-\Psi_{0} \cdot \varphi(h), \varphi(g) \cdot x \cdot \psi(f)\right\rangle
$$

for all $f, g, h \in L^{1}(G)$ and $x \in X$. Now, Proposition 2.4 shows that D is a (φ, ψ)-inner derivation and so $L^{1}(G)$ is $(\varphi, \psi)-(2 k+1)$-weakly amenable.

Let $D: L^{1}(G) \rightarrow L^{1}(G)^{(2 k)}$ be a continuous (φ, ψ)-derivation. By similar techniques as those of Theorem 3.1, we can extend D to a derivation $D: M(G) \rightarrow$ $L^{1}(G)^{(2 k)}$, where the measure algebra $M(G)$ acts on $L^{1}(G)^{(2 k)}$ through dualizations of the actions on $L^{1}(G)$ defined in Theorem 3.1. Hence $L^{1}(G)^{(2 k)}$ is isomorphic, as an $M(G)$-bimodule, to $M(X)$ for some compact space X. The action of point masses on $M(X)$ is as follows:

$$
\delta_{g} \cdot \Omega=\varphi\left(\delta_{g}\right) \cdot \Omega, \quad \Omega \cdot \delta_{g}=\Omega \cdot \psi\left(\delta_{g}\right) \quad \forall g \in G, \Omega \in M(X)
$$

These actions are equivalent to actions of G on $M(X)$ and $g \mapsto \widehat{D}\left(\delta_{g}\right)$ is a bounded (φ, ψ)-derivation from G into $M(X)$. By Theorem 3.2, this derivation is (φ, ψ) inner and this suffices to conclude that $D: M(G) \rightarrow L^{1}(G)^{(2 k)}$ is inner, by weak* continuity of D. Therefore $L^{1}(G)$ is $(\varphi, \psi)-(2 k)$-weakly amenable.

Example 3.2. Let \mathcal{A} be a Banach algebra with a bounded approximate identity. It is proved in [1, Example 4.2] that \mathcal{A} is $(0, \psi)$-weakly amenable and $(\varphi, 0)$ weakly amenable. The same process can be applied to show that \mathcal{A} is $(0, \psi)$ - n-weakly amenable and $(\varphi, 0)$ - n-weakly amenable for all $n \in \mathbb{N}$. Therefore every group algebra and C^{*}-algebra is $(\varphi, 0)$ and $(0, \psi)$ - n-weakly amenable for all $n \in \mathbb{N}$.

Example 3.3. Suppose that X is an infinite set and x_{0} is a fixed element in X. Define an algebra product in $l^{1}(X)$ via $a b:=a\left(x_{0}\right) b$ for all $a, b \in l^{1}(X)$. This Banach algebra has been introduced by Yong Zang in [13]. For every $\varphi, \psi \in \operatorname{Hom}(\mathcal{A})$, we wish to show that \mathcal{A} is $(\varphi, \psi)-(2 n-1)$-weakly amenable for all $n \in \mathbb{N}$. This Banach algebra has a left identity e_{0} defined by

$$
e_{0}(x)= \begin{cases}1 & \text { if } x=x_{0} \\ 0 & \text { if } x \neq x_{0}\end{cases}
$$

The $l^{1}(X)$-bimodule actions on the dual module $l^{1}(X)^{*}=l^{\infty}(X)$ are in fact formulated as follows:

$$
f \cdot a=a\left(x_{0}\right) f \quad a \cdot f=f(a) e_{0}^{*} \quad \forall a \in l^{1}(X), f \in l^{\infty}(X) .
$$

where e_{0}^{*} is the element of $l^{\infty}(X)$ satisfying $e_{0}^{*}\left(x_{0}\right)=1$ and $e_{0}^{*}(x)=0$ for $x \neq x_{0}$. Let $\varphi: l^{\infty}(X) \rightarrow l^{\infty}(X)$ be a non-zero homomorphism. Then

$$
a\left(x_{0}\right) \varphi(b)=\varphi\left(a\left(x_{0}\right) b\right)=\varphi(a b)=\varphi(a) \varphi(b)=\varphi(a)\left(x_{0}\right) \varphi(b) .
$$

Hence, $\varphi(b)\left(\varphi(a)\left(x_{0}\right)-a\left(x_{0}\right)\right)$ for all $a, b \in l^{1}(X)$. Since φ is non-zero,

$$
\begin{equation*}
\varphi(a)\left(x_{0}\right)=a\left(x_{0}\right) \quad \forall a \in l^{1}(X) . \tag{3.8}
\end{equation*}
$$

Now, suppose that $\varphi, \psi \in \operatorname{Hom}\left(l^{1}(X)\right)$ and $D: l^{1}(X) \rightarrow\left(l^{1}(X)_{(\varphi, \psi)}\right)^{(2 n-1)}$ is a bounded (φ, ψ)-derivation. For each $a, b \in l^{1}(X)$, we have

$$
\begin{aligned}
a\left(x_{0}\right) D(b) & =D\left(a\left(x_{0}\right) b\right)=D(a b) \\
& =D(a) \cdot \varphi(b)+\psi(a) \cdot D(b) \\
& =\varphi(b)\left(x_{0}\right) D(a)+\psi(a) \cdot D(b) .
\end{aligned}
$$

Letting $b=a$ in the above equalities and using (3.8), we get $\psi(a) \cdot D(a)=0$ for all $a \in l^{1}(X)$. The last equality implies that $\psi(a) \cdot D(b)=-\psi(b) \cdot D(a)$ for all $a, b \in l^{1}(X)$. Thus

$$
\begin{aligned}
D(a) & =D\left(e_{0} a\right)=D\left(e_{0}\right) \cdot \varphi(a)+\psi\left(e_{0}\right) \cdot D(a) \\
& =D\left(e_{0}\right) \cdot \varphi(a)-\psi(a) \cdot D\left(e_{0}\right)
\end{aligned}
$$

for all $a \in l^{1}(X)$. Therefore \mathcal{A} is $(\varphi, \psi)-(2 n-1)$-weakly amenable for all $n \in \mathbb{N}$. Since \mathcal{A} does not have a bounded right approximate identity [13], \mathcal{A} can not be amenable.

Acknowledgment. The authors sincerely thank the anonymous reviewer for his/her careful reading, constructive comments and fruitful suggestions to improve the quality of the first draft.

References

[1] A. Bodaghi, M. Eshaghi Gordji, A. R. Medghalchi: A generalization of the weak amenability of Banach algebras. Banach J. Math. Anal. (electronic only) 3 (2009), 131-142.
[2] F. F. Bonsall, J. Duncan: Complete Normed Algebra. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 80, Springer, New York, 1973.
[3] Y. Choi, F. Ghahramani, Y. Zhang: Approximate and pseudo-amenability of various classes of Banach algebras. J. Funct. Anal. 256 (2009), 3158-3191.
zbl MR
[4] H. G. Dales, F. Ghahramani, N. Grønback: Derivations into iterated duals of Banach algebras. Stud. Math. 128 (1998), 19-54.
[5] M. Eshaghi Gordji, A. Jabbari: Generalization of weak amenability of group algebras. arXiv:1303.4769v1.
[6] A. Jabbari, M. S. Moslehian, H. R. E. Vishki: Constructions preserving n-weak amenability of Banach algebras. Math. Bohem. 134 (2009), 349-357.
B. E. Johnson: Cohomology in Banach Algebras. Mem. Am. Math. Soc. vol. 127, AMS, Providence, R.I., 1972.
zbl MR
[8] B. E. Johnson: Weak amenability of group algebras. Bull. Lond. Math. Soc. 23 (1991), 281-284.
zbl MR
[9] A.T.-M.Lau, R.J.Loy: Weak amenability of Banach algebras on locally compact groups. J. Funct. Anal. 145 (1997), 175-204.

Zbl MR
[10] V. Losert: The derivation problem for group algebras. Ann. Math. (2) 168 (2008), 221-246.
[11] O. T. Mewomo, G. Akinbo: A generalization of the n-weak amenability of Banach algebras. An. Ştiinţ. Univ. "Ovidius" Constanţa, Ser. Mat. 19 (2011), 211-222.
[12] M.S. Moslehian, A. N. Motlagh: Some notes on (σ, τ)-amenability of Banach algebras. Stud. Univ. Babes-Bolyai Math. 53 (2008), 57-68.
[13] Y. Zhang: Weak amenability of a class of Banach algebras. Can. Math. Bull. 44 (2001), 504-508.

Authors' addresses: Abasalt Bodaghi, Department of Mathematics, Garmsar Branch, Islamic Azad University, Garmsar, Iran, e-mail: abasalt.bodaghi@gmail. com; Behrouz Shojaee, Department of Mathematics, Karaj Branch, Islamic Azad university, Karaj, Iran, e-mail: shoujaei@kiau.ac.ir.

