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Abstract. In this paper, we determine the forbidden set and give an explicit formula for
the solutions of the difference equation

xn+1 =
axnxn−1

−bxn + cxn−2
, n ∈ N0

where a, b, c are positive real numbers and the initial conditions x−2, x−1, x0 are real
numbers. We show that every admissible solution of that equation converges to zero if
either a < c or a > c with (a− c)/b < 1.
When a > c with (a− c)/b > 1, we prove that every admissible solution is unbounded.

Finally, when a = c, we prove that every admissible solution converges to zero.

Keywords: difference equation; forbidden set; periodic solution; unbounded solution

MSC 2010 : 39A20, 39A21, 39A23, 39A30

1. Introduction

Recently, there has been a great interest in studying properties of nonlinear and

rational difference equations (see, for example [1]–[22]). Our motivation stems from

some recent papers on difference equations which can be solved (see, e.g. [2], [5], [6],

[9], [15], [16], [17], [18], [19], [20], [22]).

In this paper, we determine the forbidden set, give an explicit formula for the

solutions and discuss the global behavior of solutions of the difference equation

(1.1) xn+1 =
axnxn−1

−bxn + cxn−2

, n ∈ N0

where a, b, c are positive real numbers and the initial conditions x−2, x−1, x0 are real

numbers.
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2. Forbidden set and solutions of equation (1.1)

In this section we derive the forbidden set and give an explicit formula for well-

defined solutions of the difference equation (1.1).

Proposition 2.1. The forbidden set F of equation (1.1) is

F =

∞
⋃

n=0

{

(u0, u−1, u−2) : u0 = u−2

c

b
∑n

l=0
(a/c)i

}

∪ {(u0, u−1, u−2) : u0 = 0} ∪ {(u0, u−1, u−2) : u−1 = 0}.

P r o o f. Suppose that x0x−1 = 0. We have the following cases:

Case 1. If x0 = 0 and x−1 6= 0, then x3 is undefined.

Case 2. If x−1 = 0 and x0 6= 0, then x2 is undefined.

Case 3. If x−2 = 0 and x0x−1 6= 0, then x1 = −(a/b)x−1 6= 0. Therefore, we have

that x−1, x0 and x1 are different from zero. This case is reduced to the case when

the initial values x−2, x−1 and x0 are different from zero, by shifting indices by one.

The case is considered next.

Case 4. Now suppose that x−i 6= 0 for all i ∈ {0, 1, 2}. From equation (1.1), using

the substitution tn = xn−2/xn, we obtain the linear nonhomogeneous difference

equation

(2.1) tn+1 =
c

a
tn −

b

a
, t0 =

x−2

x0
.

We shall deduce the forbidden set of equation (1.1).

Consider the mapping f(x) = c/ax−b/a and suppose that we start from an initial

point (x0, x−1, x−2) such that x−2/x0 = b/c.

Now the backward orbits xn−2/xn = vn satisfy the equation

vn = f−1(vn−1) =
a

c
vn−1 +

b

c
with v0 =

x−2

x0
=
b

c
,

hence we obtain vn = xn−2/xn = f−n(v0) = (b/c)
n
∑

i=0

(a/c)i. Therefore, xn =

xn−2c
/

b
n
∑

i=0

(a/c)i.

On the other hand, we can observe that if we start from an initial point

(x0, x−1, x−2) such that t0 = x−2/x0 = (b/c)
n0
∑

i=0

(a/c)i for some n0 ∈ N, then

according to equation (2.1) we obtain

tn0
=
xn0−2

xn0

=
b

c
.

This implies that −bxn0
+cxn0−2 = 0. Therefore, xn0+1 is undefined. This completes

the proof. �
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Theorem 2.2. Let x−2, x−1 and x0 be real numbers such that (x0, x−1, x−2) /∈ F .

If a 6= c, then the solution {xn}
∞

n=−2 of equation (1.1) is

(2.2) xn =



























x−1

n−1

2
∏

j=0

a− c

θ(c/a)2j+1 − b
, n = 1, 3, 5, . . . ,

x0

n−2

2
∏

j=0

a− c

θ(c/a)2j+2 − b
, n = 2, 4, 6, . . .

where θ = (a− c+ bα)/α and α = x0/x−2.

P r o o f. We can write the solution (2.2) as

(2.3) x2m+i = x−2+i

m
∏

j=0

βi(j), i = 1, 2 and m = 0, 1, . . .

where

βi(j) =
a− c

θ(c/a)2j+i − b
, i = 1, 2.

Hence we can see that

x−1

a− c

(c/a)θ − b
= x−1

(a− c)aα

c(a− c+ bα)− baα
= x−1

aα

c− bα
=

ax0x−1

−bx0 + cx−2

= x1

and

x0
a− c

(c/a)2θ − b
= x0

(a− c)a2α

c2(a− c+ bα)− ba2α
= x0

a2α

c2 − bα(c+ a)

=
a2x20

c(cx−2 − bx0)− bx0a
=

ax0ax0/(−bx0 + cx−2)

c− bx0a/(−bx0 + cx−2)
=

ax0x1/x−1

c− bx1/x−1

=
ax1x0

−bx1 + cx−1

= x2.

Hence, we see that (2.2) holds for n = 1, n = 2.
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Now assume that m > 1. Then

x2m+3 =
ax2m+2x2m+1

−bx2m+2 + cx2m
=

ax0
m
∏

j=0

β2(j)x−1

m
∏

j=0

β1(j)

−bx0
m
∏

j=0

β2(j) + cx0
m−1
∏

j=0

β2(j)

=

ax0
m
∏

j=0

β2(j)x−1

m
∏

j=0

β1(j)

x0
m−1
∏

j=0

β2(j)(−bβ2(m) + c)

=

aβ2(m)x−1

m
∏

j=0

β1(j)

−bβ2(m) + c

=

a(a− c)/θ(c/a)2m+2 − bx−1

m
∏

j=0

β1(j)

−b(a− c)/(θ(c/a)2m+2 − b) + c
=

a(a− c)x−1

m
∏

j=0

β1(j)

−b(a− c) + c(θ(c/a)2m+2 − b)

=

a(a− c)x−1

m
∏

j=0

β1(j)

cθ(c/a)2m+2 − ab
= x−1

a− c

θ(c/a)2m+3 − b

m
∏

j=0

β1(j)

= x−1

m+1
∏

j=0

β1(j).

To complete the inductive proof, we shall show that formula (2.2) also holds for

x2m+4. We have

x2m+4 =
ax2m+3x2m+2

−bx2m+3 + cx2m+1

=

ax−1

m+1
∏

j=0

β1(j)x0
m
∏

j=0

β2(j)

−bx−1

m+1
∏

j=0

β1(j) + cx−1

m
∏

j=0

β1(j)

=

ax−1

m+1
∏

j=0

β1(j)x0
m
∏

j=0

β2(j)

x−1

m
∏

j=0

β1(j)(−bβ1(m+ 1) + c)
=

aβ1(m+ 1)x0
m
∏

j=0

β2(j)

−bβ1(m+ 1) + c

=

a(a− c)/(θ(c/a)2m+3 − b)x0
m
∏

j=0

β2(j)

−b(a− c)/θ(c/a)2m+3 − b+ c
=

a(a− c)x0
m
∏

j=0

β2(j)

−b(a− c) + c(θ(c/a)2m+3 − b)

=

a(a− c)x0
m
∏

j=0

β2(j)

cθ(c/a)2m+3 − ab
= x0

a− c

θ(c/a)2m+4 − b

m
∏

j=0

β2(j) = x0

m+1
∏

j=0

β2(j).

This completes the inductive proof of the theorem. �
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3. Global behavior of equation (1.1)

In this section, we investigate the global behavior of equation (1.1) with a 6= c,

using the explicit formula for its solution.

Theorem 3.1. Let {xn}
∞

n=−2 be a solution of equation (1.1) such that (x0, x−1,

x−2) /∈ F . Then the following statements are true.

(1) If a < c, then {xn}
∞

n=−2 converges to 0.

(2) If a > c, then we have the following cases:

(a) If (a− c)/b < 1, then {xn}
∞

n=−2 converges to 0.

(b) If (a− c)/b > 1, then both {x2n}
∞

n=−1 and {x2n+1}
∞

n=−1 are unbounded.

P r o o f. (1) If a < c, then βi(j) converges to 0 as j → ∞, i = 1, 2. It follows

that there exists j0 ∈ N such that |βi(j)| < µ, with some 0 < µ < 1 for all j > j0.

Therefore,

|x2m+i| = |x−2+i|

∣

∣

∣

∣

m
∏

j=0

βi(j)

∣

∣

∣

∣

= |x−2+i|

∣

∣

∣

∣

j0−1
∏

j=0

βi(j)

∣

∣

∣

∣

∣

∣

∣

∣

m
∏

j=j0

βi(j)

∣

∣

∣

∣

< |x−2+i|

∣

∣

∣

∣

j0−1
∏

j=0

βi(j)

∣

∣

∣

∣

µm−j0+1.

As m tends to infinity, the solution {xn}
∞

n=−2 converges to 0.

(2) Suppose that a > c. Then we have the following cases:

(a) If (a− c)/b < 1, then βi(j) converges to −(a− c)/b ∈ (−1, 0) as j → ∞, i = 1, 2.

Then there exists j1 ∈ N such that, βi(j) ∈ (µ1, 0), with some 0 > µ1 > −1 for

all j > j1 and i = 1, 2. Therefore, |βi(j)| < µ1 for all j > j1 and the solution

{xn}
∞

n=−2 converges to 0 as in (1).

(b) If (a− c)/b > 1, then βi(j) converges to −(a− c)/b < −1 as j → ∞, i = 1, 2.

Then there exists j2 ∈ N such that βi(j) < ν < −1 for some ν < −1 for all

j > j2 and i = 1, 2.

For large values of m we have

|x2m+i| = |x−2+i|

∣

∣

∣

∣

m
∏

j=0

βi(j)

∣

∣

∣

∣

= |x−2+i|

∣

∣

∣

∣

j2−1
∏

j=0

βi(j)

∣

∣

∣

∣

∣

∣

∣

∣

m
∏

j=j2

βi(j)

∣

∣

∣

∣

> |x−2+i|

∣

∣

∣

∣

j2−1
∏

j=0

βi(j)

∣

∣

∣

∣

|ν|m−j2+1.

From this and since (x0, x−1, x−2) /∈ F , we have that both the subsequences

{x2n}
∞

n=−1 and {x2n+1}
∞

n=−1 are unbounded. �
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4. Case a− c = b

Using the transformation rn = xn/xn−1, equation (1.1) is reduced to the equation

(4.1) rn+1 =
arn−1

−brnrn−1 + c
, n = 0, 1, . . . .

Equation (4.1) has been studied in [2], [3], [4], [22].

In order to discuss equation (1.1) when a− c = b, we investigate the behavior of

equation (4.1).

The following theorem gives the solution of equation (4.1) in terms of the param-

eters a, b, c.

Theorem 4.1. Let r−1, r0 be real numbers such that r−1r0 = α 6= c
/

b
n
∑

i=0

(a/c)i

for any n ∈ N0. Then the solution of equation (4.1) is

(4.2) rn =



























r−1

n−1

2
∏

j=0

θ(c/a)2j − b

θ(c/a)2j+1 − b
, n = 1, 3, 5, . . . ,

r0

n−2

2
∏

j=0

θ(c/a)2j+1 − b

θ(c/a)2j+2 − b
, n = 2, 4, 6, . . .

where θ = (a− c+ bα)/α and α = x0/x−2.

We shall derive only some results concerning the behavior of the solutions of

equation (4.1) with a− c = b that we shall use.

The solution of equation (4.1) can be written as

r2m+i = r−2+i

m
∏

j=0

γi(j), i = 1, 2 and m = 0, 1, . . .

where

γi(j) =
θ(c/a)2j+i−1 − b

θ(c/a)2j+i − b
, i = 1, 2.

Theorem 4.2. Assume that a− c = b and let {rn}
∞

n=−1 be a solution of equation

(4.1) such that r−1r0 = α 6= c
/

b
n
∑

i=0

(a/c)i for any n ∈ N0. Then the necessary and

sufficient condition for the solution {rn}
∞

n=−1 to be a period-2 solution is α = −1.
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P r o o f. Necessity: Let {. . . , ϕ, ψ, ϕ, ψ, . . .} be a period-2 solution of equation

(4.1). Then we have that

(4.3) ϕ =
aϕ

−bψϕ+ c
and ψ =

aψ

−bϕψ + c
.

From equation (4.3) and since a− c = b, we get ϕψ = −1.

Sufficiency: If α = −1, then θ = (a− c+ bα)/α = 0. Therefore,

r2m+i = r−2+i

m
∏

j=0

γi(j) = r−2+i, i = 1, 2 and m = 0, 1, . . . .

�

Theorem 4.3. Assume that a− c = b and let {rn}
∞

n=−1 be a solution of equation

(4.1) such that α 6= −1 and r−1r0 = α 6= c
/

b
n
∑

i=0

(a/c)i for any n ∈ N0. Then the

solution {rn}
∞

n=−1 converges to a period-2 solution.

P r o o f. Let {rn}
∞

n=−1 be a solution of equation (4.1) such that r−1r0 = α 6=

c
/

b
n
∑

i=0

(a/c)i for any n ∈ N0.

The condition α 6= −1 (where a− c = b) ensures that the solution {rn}
∞

n=−1 is not

a period-2 solution.

As lim
j→∞

γi(j) = lim
j→∞

(θ(c/a)2j+i−1 − b)/(θ(c/a)2j+i − b) = 1, there exists j2 ∈ N

such that γi(j) > 0 for all i = 1, 2 and j > j2.

Now for each i ∈ {1, 2}, we have for large m

r2m+i = r−2+i

m
∏

j=0

γi(j) = r−2+i

j2−1
∏

j=0

γi(j)

m
∏

j=j2

γi(j)

= r−2+i

j2−1
∏

j=0

γi(j) exp

( m
∑

j=j2

ln γi(j)

)

.

Now we show the convergence of the series
∞
∑

j=j2

|ln γi(j)|.

Using the asymptotic relations (1 + x)−1 = 1 + O(x) and ln(1 + x) = x+ O(x2),

we have that

ln γi(j) = ln
θ(c/a)2j+i−1 − b

θ(c/a)2j+i − b
= ln

(

1 +
θ

a

(c/a)2j+i−1(a− c)

θ(c/a)2j+i − b

)

= ln
(

1 +
θ(c− a)

ab

( c

a

)2j+i−1)

+ o
(( c

a

)2j)

=
θ(c− a)

ab

( c

a

)2j+i−1

+ o
(( c

a

)2j)

.
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From this and since c/a < 1, by using a known criterion for the convergence of series

we get that the the series
∞
∑

j=j2

|ln γi(j)| converges.

Hence, there are two real numbers ̺i ∈ R such that

lim
m→∞

r2m+i = ̺i, i ∈ {0, 1}.

If we set n = 2m+ i− 1, i = 0, 1 in equation (4.1), we get

r2m+1 =
ar2m−1

−br2m−1r2m + c
and r2m+2 =

ar2m
−br2mr2m+1 + c

, m = 0, 1, . . . .

By taking the limit as m→ ∞, we obtain

(4.4) ̺1 =
a̺1

−b̺1̺0 + c
and ̺0 =

a̺0
−b̺0̺1 + c

.

If ̺1 = 0, then from the second equation in (4.4), we get ̺0 = 0. This is a contradic-

tion, as the equilibrium point r̄ = 0 of equation (4.1) is unstable (a repeller) when

a > c (see [2]).

This implies that ̺i 6= 0, i = 0, 1 and ̺0̺1 = −1. Therefore, {rn}
∞

n=−1 converges

to the 2-periodic solution

{. . . , ̺0, ̺1, ̺0, ̺1, . . .} with ̺0̺1 = −1.

�

Now we are ready to formulate the main results in this section.

Theorem 4.4. Assume that {xn}
∞

n=−2 is a solution of equation (1.1) such that

(x0, x−1, x−2) /∈ F and let a − c = b. If α = −1, then {xn}
∞

n=−2 is an eventually

periodic solution with period 4.

P r o o f. Assume that a− c = b. If α = −1, then θ = 0. Therefore,

x2m+i = x−2+i

m
∏

j=0

a− c

θ(c/a)2j+i − b
= x−2+i

m
∏

j=0

(−1)

= x−2+i(−1)m+1, i = 1, 2 and m = 0, 1, . . . .

Now if we set m = 2n+ l − 1, l = 0, 1, then

x4n+2l+i−2 = x−2+i(−1)2n+l, i = 1, 2, l = 0, 1 and n = 0, 1, . . . .

Therefore,

x4n−1 = x−1, x4n = x0, x4n+1 = −x−1, x4n+2 = −x0.

�
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Theorem 4.5. Assume that {xn}
∞

n=−2 is a solution of equation (1.1) such that

(x0, x−1, x−2) /∈ F and let a − c = b. If α 6= −1, then {xn}
∞

n=−2 converges to

a period-4 solution {µ0, µ1,−µ0,−µ1} such that µ1 = µ0|̺1|, where ̺1 is as in

Theorem 4.3.

P r o o f. Suppose that {xn}
∞

n=−2 is a solution of equation (1.1) such that

(x0, x−1, x−2) /∈ F and let a− c = b. As

lim
j→∞

βi(j) =
a− c

θ(c/a)2j+i − b
= −1, i = 1, 2,

there exists j0 ∈ N such that βi(j) < 0 for all i = 1, 2 and j > j0.

Hence

|x2m+i| = |x−2+i|

∣

∣

∣

∣

m
∏

j=0

βi(j)

∣

∣

∣

∣

= |x−2+i|

∣

∣

∣

∣

j0−1
∏

j=0

βi(j)

∣

∣

∣

∣

m
∏

j=j0

|βi(j)|

= |x−2+i|

∣

∣

∣

∣

j0−1
∏

j=0

βi(j)

∣

∣

∣

∣

exp

( m
∑

j=j0

ln |βi(j)|

)

.

Now we show the convergence of the series
∞
∑

j=j0

|ln(−βi(j))|. Using the asymptotic

relations (1 + x)−1 = 1 + x+O(x2) and ln(1 + x) = x+O(x2), we have that

ln |βi(j)| = ln
(

1 +
θ

b

( c

a

)2j+i

+O
(( c

a

)4j))

.

As c/a < 1, we get that the series
∞
∑

j=j0

ln |βi(j)| is convergent.

This ensures that there are two positive real numbers µ0, µ1 such that

(4.5) lim
m→∞

|x2m+i| = µi, i ∈ {0, 1}.

Now set

lim
m→∞

x4m+l = Ll, l ∈ {0, 1, 2, 3}.

As

r4m+1r4m+2 =
x4m+2

x4m
and r4m+2r4m+3 =

x4m+3

x4m+1

,

using Theorem (4.3) we obtain L2 = −L0 and L3 = −L1.

On the other hand, from (4.5) we get

|L2| = |−L0| = |L0| = µ0 and |L3| = |−L1| = |L1| = µ1.
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Then

L0 = µ0 or L0 = −µ0 and L1 = µ1 or L1 = −µ1.

Without loss of generality, we take L0 = µ0 and L1 = µ1. Then the solution

{xn}
∞

n=−2 converges to the period-4 solution

{. . . , µ0, µ1,−µ0,−µ1, µ0, µ1,−µ0,−µ1, . . .}.

Moreover, as |x2m+1| = |x2mr2m+1|, we have µ1 = µ0|̺1| where

̺1 = r−1

∞
∏

j=0

θ(c/a)2j − b

θ(c/a)2j+1 − b
and µ0 = |x0|

∞
∏

j=1

b

|θ(c/a)2j − b|
.

�

5. Case a = c

In this section, we study the case when a = c.

Proposition 5.1. Assume that a = c. Then the forbidden set G of equation (1.1)

is

G =

∞
⋃

n=0

{

(u0, u−1, u−2) : u0 = u−2

a

b(n+ 1)

}

∪ {(u0, u−1, u−2) : u0 = 0} ∪ {(u0, u−1, u−2) : u−1 = 0}.

Let x−2, x−1 and x0 be real numbers such that (x0, x−1, x−2) /∈ G. If a = c, then

the solution {xn}
∞

n=−2 of equation (1.1) is

(5.1) xn =



























x−1

n−1

2
∏

j=0

aα

a− bα(2j + 1)
, n = 1, 3, 5, . . . ,

x0

n−2

2
∏

j=0

aα

a− bα(2j + 2)
, n = 2, 4, 6, . . .

where α = x0/x−2.

P r o o f. We can write the solution (5.1) as

(5.2) x2m+i = x−2+i

m
∏

j=0

ηi(j), i = 1, 2 and m = 0, 1, . . .

where

ηi(j) =
aα

a− bα(2j + i)
, i = 1, 2.

By direct calculation, we can get the values of x1 and x2 as desired.
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Now assume that m > 1. Then

x2m+3 =
ax2m+2x2m+1

−bx2m+2 + ax2m
=

ax0
m
∏

j=0

η2(j)x−1

m
∏

j=0

η1(j)

−bx0
m
∏

j=0

η2(j) + ax0
m−1
∏

j=0

η2(j)

=

ax0
m
∏

j=0

η2(j)x−1

m
∏

j=0

η1(j)

x0
m−1
∏

j=0

η2(j)(−bη2(m) + a)

=

aη2(m)x−1

m
∏

j=0

η1(j)

−bη2(m) + a

=

a(aα/(a− bα(2m+ 2)))x−1

m
∏

j=0

η1(j)

−baα/(a− bα(2m+ 2)) + a
=

a(aα)x−1

m
∏

j=0

η1(j)

−baα+ a(a− bα(2m+ 2))

=
aα

a− bα(2m+ 3)
x−1

m
∏

j=0

η1(j) = η1(m+ 1)x−1

m+1
∏

j=0

η1(j)

= x−1

m+1
∏

j=0

η1(j).

To complete the inductive proof, we shall show that formula (2.2) also holds for

x2m+4. We have

x2m+4 =
ax2m+3x2m+2

−bx2m+3 + ax2m+1

=

ax−1

m+1
∏

j=0

η1(j)x0
m
∏

j=0

η2(j)

−bx−1

m+1
∏

j=0

η1(j) + ax−1

m
∏

j=0

η1(j)

=

ax−1

m+1
∏

j=0

η1(j)x0
m
∏

j=0

η2(j)

x−1

m
∏

j=0

η1(j)(−bη2(m+ 1) + a)
=

aη1(m+ 1)x0
m
∏

j=0

η2(j)

−bη1(m+ 1) + a

=

a(aα/(a− bα(2m+ 3)))x0
m
∏

j=0

η2(j)

−baα/(a− bα(2m+ 3)) + a
=

a(aα)x0
m
∏

j=0

η2(j)

−baα+ a(a− bα(2m+ 3))

=
aα

a− bα(2m+ 4)
x0

m
∏

j=0

η2(j) = η2(m+ 1)x0

m+1
∏

j=0

η2(j)

= x0

m+1
∏

j=0

η2(j).

This completes the inductive proof of the theorem. �
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Theorem 5.2. Let {xn}
∞

n=−2 be a solution of equation (1.1) such that (x0, x−1,

x−2) /∈ G. If a = c, then {xn}
∞

n=−2 converges to 0.

P r o o f. It is sufficient to see that ηi(j) → 0 as j → ∞, i = 1, 2. �

A c k n ow l e d g em e n t. The author is grateful to the anonymous referee for

his/her constructive suggestions.
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[16] S. Stević: On a system of difference equations. Appl. Math. Comput. 218 (2011),
3372–3378. zbl MR
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