GLOBAL BEHAVIOR OF A THIRD ORDER RATIONAL DIFFERENCE EQUATION

RAAFAT ABO-ZEID, Cairo

(Received May 7, 2012)

Abstract. In this paper, we determine the forbidden set and give an explicit formula for the solutions of the difference equation

$$
x_{n+1} = \frac{ax_nx_{n-1}}{-bx_n + cx_{n-2}}, \quad n \in \mathbb{N}_0
$$

where a, b, c are positive real numbers and the initial conditions x_{-2} , x_{-1} , x_0 are real numbers. We show that every admissible solution of that equation converges to zero if either $a < c$ or $a > c$ with $(a - c)/b < 1$.

When $a > c$ with $(a - c)/b > 1$, we prove that every admissible solution is unbounded. Finally, when $a = c$, we prove that every admissible solution converges to zero.

Keywords: difference equation; forbidden set; periodic solution; unbounded solution MSC 2010: 39A20, 39A21, 39A23, 39A30

1. Introduction

Recently, there has been a great interest in studying properties of nonlinear and rational difference equations (see, for example $[1]-[22]$). Our motivation stems from some recent papers on difference equations which can be solved (see, e.g. $[2]$, $[5]$, $[6]$, [9], [15], [16], [17], [18], [19], [20], [22]).

In this paper, we determine the forbidden set, give an explicit formula for the solutions and discuss the global behavior of solutions of the difference equation

(1.1)
$$
x_{n+1} = \frac{ax_nx_{n-1}}{-bx_n + cx_{n-2}}, \quad n \in \mathbb{N}_0
$$

where a, b, c are positive real numbers and the initial conditions x_{-2} , x_{-1} , x_0 are real numbers.

2. Forbidden set and solutions of equation (1.1)

In this section we derive the forbidden set and give an explicit formula for welldefined solutions of the difference equation (1.1).

Proposition 2.1. The forbidden set F of equation (1.1) is

$$
F = \bigcup_{n=0}^{\infty} \left\{ (u_0, u_{-1}, u_{-2}) : u_0 = u_{-2} \frac{c}{b \sum_{l=0}^n (a/c)^i} \right\}
$$

$$
\cup \left\{ (u_0, u_{-1}, u_{-2}) : u_0 = 0 \right\} \cup \left\{ (u_0, u_{-1}, u_{-2}) : u_{-1} = 0 \right\}.
$$

P r o o f. Suppose that $x_0x_{-1} = 0$. We have the following cases:

Case 1. If $x_0 = 0$ and $x_{-1} \neq 0$, then x_3 is undefined.

Case 2. If $x_{-1} = 0$ and $x_0 \neq 0$, then x_2 is undefined.

Case 3. If $x_{-2} = 0$ and $x_0x_{-1} \neq 0$, then $x_1 = -(a/b)x_{-1} \neq 0$. Therefore, we have that x_{-1}, x_0 and x_1 are different from zero. This case is reduced to the case when the initial values x_{-2}, x_{-1} and x_0 are different from zero, by shifting indices by one. The case is considered next.

Case 4. Now suppose that $x_{-i} \neq 0$ for all $i \in \{0, 1, 2\}$. From equation (1.1), using the substitution $t_n = x_{n-2}/x_n$, we obtain the linear nonhomogeneous difference equation

(2.1)
$$
t_{n+1} = \frac{c}{a}t_n - \frac{b}{a}, \quad t_0 = \frac{x_{-2}}{x_0}.
$$

We shall deduce the forbidden set of equation (1.1) .

Consider the mapping $f(x) = c/ax - b/a$ and suppose that we start from an initial point (x_0, x_{-1}, x_{-2}) such that $x_{-2}/x_0 = b/c$.

Now the backward orbits $x_{n-2}/x_n = v_n$ satisfy the equation

$$
v_n = f^{-1}(v_{n-1}) = \frac{a}{c}v_{n-1} + \frac{b}{c}
$$
 with $v_0 = \frac{x_{-2}}{x_0} = \frac{b}{c}$,

hence we obtain $v_n = x_{n-2}/x_n = f^{-n}(v_0) = (b/c)\sum_{i=0}^n (a/c)^i$. Therefore, $x_n = (b/c)^n$ $x_{n-2}c/b \sum_{n=1}^{n}$ $\sum_{i=0}^\infty (a/c)^i$.

On the other hand, we can observe that if we start from an initial point (x_0, x_{-1}, x_{-2}) such that $t_0 = x_{-2}/x_0 = (b/c) \sum_{i=0}^{n_0} (a/c)^i$ for some $n_0 \in \mathbb{N}$, then according to equation (2.1) we obtain

$$
t_{n_0} = \frac{x_{n_0 - 2}}{x_{n_0}} = \frac{b}{c}.
$$

This implies that $-bx_{n_0} + cx_{n_0-2} = 0$. Therefore, x_{n_0+1} is undefined. This completes the proof. \Box

Theorem 2.2. Let x_{-2} , x_{-1} and x_0 be real numbers such that $(x_0, x_{-1}, x_{-2}) \notin F$. If $a \neq c$, then the solution $\{x_n\}_{n=-2}^{\infty}$ of equation (1.1) is

(2.2)
$$
x_n = \begin{cases} x_{-1} \prod_{j=0}^{\frac{n-1}{2}} \frac{a-c}{\theta(c/a)^{2j+1} - b}, & n = 1, 3, 5, \dots, \\ x_0 \prod_{j=0}^{\frac{n-2}{2}} \frac{a-c}{\theta(c/a)^{2j+2} - b}, & n = 2, 4, 6, \dots \end{cases}
$$

where $\theta = (a - c + b\alpha)/\alpha$ and $\alpha = x_0/x_{-2}$.

P r o o f. We can write the solution (2.2) as

(2.3)
$$
x_{2m+i} = x_{-2+i} \prod_{j=0}^{m} \beta_i(j), \quad i = 1, 2 \text{ and } m = 0, 1, ...
$$

where

$$
\beta_i(j) = \frac{a-c}{\theta(c/a)^{2j+i} - b}, \quad i = 1, 2.
$$

Hence we can see that

$$
x_{-1}\frac{a-c}{(c/a)\theta - b} = x_{-1}\frac{(a-c)a\alpha}{c(a-c+b\alpha) - ba\alpha} = x_{-1}\frac{a\alpha}{c-b\alpha} = \frac{ax_0x_{-1}}{-bx_0 + cx_{-2}} = x_1
$$

and

$$
x_0 \frac{a-c}{(c/a)^2 \theta - b} = x_0 \frac{(a-c)a^2 \alpha}{c^2 (a-c+b\alpha) - ba^2 \alpha} = x_0 \frac{a^2 \alpha}{c^2 - b\alpha (c+a)}
$$

=
$$
\frac{a^2 x_0^2}{c(cx_{-2} - bx_0) - bx_0 a} = \frac{ax_0 ax_0/(-bx_0 + cx_{-2})}{c - bx_0 a/(-bx_0 + cx_{-2})} = \frac{ax_0 x_1/x_{-1}}{c - bx_1/x_{-1}}
$$

=
$$
\frac{ax_1 x_0}{-bx_1 + cx_{-1}} = x_2.
$$

Hence, we see that (2.2) holds for $n = 1$, $n = 2$.

Now assume that $m > 1$. Then

$$
x_{2m+3} = \frac{ax_{2m+2}x_{2m+1}}{-bx_{2m+2} + cx_{2m}} = \frac{ax_0 \prod_{j=0}^{m} \beta_2(j)x_{-1} \prod_{j=0}^{m} \beta_1(j)}{-bx_0 \prod_{j=0}^{m} \beta_2(j) + cx_0 \prod_{j=0}^{m-1} \beta_2(j)}
$$

\n
$$
= \frac{ax_0 \prod_{j=0}^{m} \beta_2(j)x_{-1} \prod_{j=0}^{m} \beta_1(j)}{x_0 \prod_{j=0}^{m-1} \beta_2(j)(-b\beta_2(m) + c)} = \frac{a\beta_2(m)x_{-1} \prod_{j=0}^{m} \beta_1(j)}{-b\beta_2(m) + c}
$$

\n
$$
= \frac{a(a-c)}{\beta_2(m)} = \frac{a(a-c)}{-b(a-c)} = \frac{a(a-c)}{-b(a-c)} = \frac{a(a-c)x_{-1} \prod_{j=0}^{m} \beta_1(j)}{-b(a-c)(-(b(c/a))^{2m+2} - b) + c} = \frac{a(a-c)x_{-1} \prod_{j=0}^{m} \beta_1(j)}{-b(a-c)x_{-1} \prod_{j=0}^{m} \beta_1(j)}
$$

\n
$$
= \frac{a(a-c)x_{-1} \prod_{j=0}^{m} \beta_1(j)}{c\theta(c/a)^{2m+2} - ab} = x_{-1} \frac{a-c}{\theta(c/a)^{2m+3} - b} \prod_{j=0}^{m} \beta_1(j)
$$

\n
$$
= x_{-1} \prod_{j=0}^{m+1} \beta_1(j).
$$

To complete the inductive proof, we shall show that formula (2.2) also holds for x_{2m+4} . We have

$$
x_{2m+4} = \frac{ax_{2m+3}x_{2m+2}}{-bx_{2m+3} + cx_{2m+1}} = \frac{ax_{-1} \prod_{j=0}^{m+1} \beta_1(j)x_0 \prod_{j=0}^m \beta_2(j)}{-bx_{-1} \prod_{j=0}^{m+1} \beta_1(j) + cx_{-1} \prod_{j=0}^m \beta_1(j)}
$$

=
$$
\frac{ax_{-1} \prod_{j=0}^{m+1} \beta_1(j)x_0 \prod_{j=0}^m \beta_2(j)}{x_{-1} \prod_{j=0}^m \beta_1(j)(-b\beta_1(m+1)+c)} = \frac{a\beta_1(m+1)x_0 \prod_{j=0}^m \beta_2(j)}{-b\beta_1(m+1)+c}
$$

=
$$
\frac{a(a-c)/(\theta(c/a)^{2m+3} - b)x_0 \prod_{j=0}^m \beta_2(j)}{-b(a-c)/(\theta(c/a)^{2m+3} - b + c} = \frac{a(a-c)x_0 \prod_{j=0}^m \beta_2(j)}{-b(a-c) + c(\theta(c/a)^{2m+3} - b)}
$$

=
$$
\frac{a(a-c)x_0 \prod_{j=0}^m \beta_2(j)}{-c\theta(c/a)^{2m+3} - ab} = x_0 \frac{a-c}{\theta(c/a)^{2m+4} - b} \prod_{j=0}^{m+1} \beta_2(j) = x_0 \prod_{j=0}^{m+1} \beta_2(j).
$$

This completes the inductive proof of the theorem. $\hfill \Box$

In this section, we investigate the global behavior of equation (1.1) with $a \neq c$, using the explicit formula for its solution.

Theorem 3.1. Let $\{x_n\}_{n=-2}^{\infty}$ be a solution of equation (1.1) such that $(x_0, x_{-1},$ x_{-2}) \notin F. Then the following statements are true.

- (1) If $a < c$, then $\{x_n\}_{n=-2}^{\infty}$ converges to 0.
- (2) If $a > c$, then we have the following cases:
	- (a) If $(a-c)/b < 1$, then $\{x_n\}_{n=-2}^{\infty}$ converges to 0.
	- (b) If $(a-c)/b > 1$, then both $\{x_{2n}\}_{n=-1}^{\infty}$ and $\{x_{2n+1}\}_{n=-1}^{\infty}$ are unbounded.

P r o o f. (1) If $a < c$, then $\beta_i(j)$ converges to 0 as $j \to \infty$, $i = 1, 2$. It follows that there exists $j_0 \in \mathbb{N}$ such that $|\beta_i(j)| < \mu$, with some $0 < \mu < 1$ for all $j \geq j_0$. Therefore,

$$
|x_{2m+i}| = |x_{-2+i}| \left| \prod_{j=0}^{m} \beta_i(j) \right| = |x_{-2+i}| \left| \prod_{j=0}^{j_0-1} \beta_i(j) \right| \left| \prod_{j=j_0}^{m} \beta_i(j) \right|
$$

< $|x_{-2+i}| \left| \prod_{j=0}^{j_0-1} \beta_i(j) \right| \mu^{m-j_0+1}.$

As m tends to infinity, the solution $\{x_n\}_{n=-2}^{\infty}$ converges to 0.

(2) Suppose that $a > c$. Then we have the following cases:

- (a) If $(a-c)/b < 1$, then $\beta_i(j)$ converges to $-(a-c)/b \in (-1,0)$ as $j \to \infty$, $i = 1, 2$. Then there exists $j_1 \in \mathbb{N}$ such that, $\beta_i(j) \in (\mu_1, 0)$, with some $0 > \mu_1 > -1$ for all $j \geq j_1$ and $i = 1, 2$. Therefore, $|\beta_i(j)| < \mu_1$ for all $j \geq j_1$ and the solution ${x_n}_{n=-2}^{\infty}$ converges to 0 as in (1).
- (b) If $(a-c)/b > 1$, then $\beta_i(j)$ converges to $-(a-c)/b < -1$ as $j \to \infty$, $i = 1, 2$. Then there exists $j_2 \in \mathbb{N}$ such that $\beta_i(j) < \nu < -1$ for some $\nu < -1$ for all $j \geqslant j_2$ and $i = 1, 2$.

For large values of m we have

$$
|x_{2m+i}| = |x_{-2+i}| \left| \prod_{j=0}^{m} \beta_i(j) \right| = |x_{-2+i}| \left| \prod_{j=0}^{j_2-1} \beta_i(j) \right| \left| \prod_{j=j_2}^{m} \beta_i(j) \right|
$$

> $|x_{-2+i}| \left| \prod_{j=0}^{j_2-1} \beta_i(j) \right| |\nu|^{m-j_2+1}.$

From this and since $(x_0, x_{-1}, x_{-2}) \notin F$, we have that both the subsequences ${x_{2n}}_{n=-1}^{\infty}$ and ${x_{2n+1}}_{n=-1}^{\infty}$ are unbounded. 4. CASE $a - c = b$

Using the transformation $r_n = x_n/x_{n-1}$, equation (1.1) is reduced to the equation

(4.1)
$$
r_{n+1} = \frac{ar_{n-1}}{-br_n r_{n-1} + c}, \quad n = 0, 1,
$$

Equation (4.1) has been studied in [2], [3], [4], [22].

In order to discuss equation (1.1) when $a - c = b$, we investigate the behavior of equation (4.1).

The following theorem gives the solution of equation (4.1) in terms of the parameters a, b, c .

Theorem 4.1. Let r_{-1}, r_0 be real numbers such that $r_{-1}r_0 = \alpha \neq c/b \sum_{i=0}^{n} (a/c)^i$ for any $n \in \mathbb{N}_0$. Then the solution of equation (4.1) is

(4.2)
$$
r_n = \begin{cases} r_{-1} \prod_{j=0}^{\frac{n-1}{2}} \frac{\theta(c/a)^{2j} - b}{\theta(c/a)^{2j+1} - b}, & n = 1, 3, 5, \dots, \\ r_0 \prod_{j=0}^{\frac{n-2}{2}} \frac{\theta(c/a)^{2j+1} - b}{\theta(c/a)^{2j+2} - b}, & n = 2, 4, 6, \dots \end{cases}
$$

where $\theta = (a - c + b\alpha)/\alpha$ and $\alpha = x_0/x_{-2}$.

We shall derive only some results concerning the behavior of the solutions of equation (4.1) with $a - c = b$ that we shall use.

The solution of equation (4.1) can be written as

$$
r_{2m+i} = r_{-2+i} \prod_{j=0}^{m} \gamma_i(j), \quad i = 1, 2 \text{ and } m = 0, 1, ...
$$

where

$$
\gamma_i(j) = \frac{\theta(c/a)^{2j+i-1} - b}{\theta(c/a)^{2j+i} - b}, \quad i = 1, 2.
$$

Theorem 4.2. Assume that $a - c = b$ and let $\{r_n\}_{n=-1}^{\infty}$ be a solution of equation (4.1) such that $r_{-1}r_0 = \alpha \neq c/b \sum_{i=0}^{n} (a/c)^i$ for any $n \in \mathbb{N}_0$. Then the necessary and sufficient condition for the solution ${r_n}_{n=-1}^{\infty}$ to be a period-2 solution is $\alpha = -1$.

P r o o f. Necessity: Let $\{\ldots, \varphi, \psi, \varphi, \psi, \ldots\}$ be a period-2 solution of equation (4.1). Then we have that

(4.3)
$$
\varphi = \frac{a\varphi}{-b\psi\varphi + c} \quad \text{and} \quad \psi = \frac{a\psi}{-b\varphi\psi + c}.
$$

From equation (4.3) and since $a - c = b$, we get $\varphi \psi = -1$.

Sufficiency: If $\alpha = -1$, then $\theta = (a - c + b\alpha)/\alpha = 0$. Therefore,

$$
r_{2m+i} = r_{-2+i} \prod_{j=0}^{m} \gamma_i(j) = r_{-2+i}, \quad i = 1, 2 \text{ and } m = 0, 1, \dots
$$

Theorem 4.3. Assume that $a - c = b$ and let $\{r_n\}_{n=-1}^{\infty}$ be a solution of equation (4.1) such that $\alpha \neq -1$ and $r_{-1}r_0 = \alpha \neq c/b \sum_{n=0}^{\infty}$ $\sum_{i=0}^{n} (a/c)^{i}$ for any $n \in \mathbb{N}_{0}$. Then the solution $\{r_n\}_{n=-1}^{\infty}$ converges to a period-2 solution.

P r o o f. Let ${r_n}_{n=-1}^{\infty}$ be a solution of equation (4.1) such that $r_{-1}r_0 = \alpha \neq$ $c/b \sum_{i=1}^{n} (a/c)^{i}$ for any $n \in \mathbb{N}_{0}$.

 $i=0$
The condition $\alpha \neq -1$ (where $a-c=b$) ensures that the solution $\{r_n\}_{n=-1}^{\infty}$ is not a period-2 solution.

As $\lim_{j\to\infty}\gamma_i(j) = \lim_{j\to\infty} (\theta(c/a)^{2j+i-1} - b)/(\theta(c/a)^{2j+i} - b) = 1$, there exists $j_2 \in \mathbb{N}$ such that $\gamma_i(j) > 0$ for all $i = 1, 2$ and $j \geq j_2$.

Now for each $i \in \{1, 2\}$, we have for large m

$$
r_{2m+i} = r_{-2+i} \prod_{j=0}^{m} \gamma_i(j) = r_{-2+i} \prod_{j=0}^{j_2-1} \gamma_i(j) \prod_{j=j_2}^{m} \gamma_i(j)
$$

$$
= r_{-2+i} \prod_{j=0}^{j_2-1} \gamma_i(j) \exp\bigg(\sum_{j=j_2}^{m} \ln \gamma_i(j)\bigg).
$$

Now we show the convergence of the series $\sum_{j=j_2}^{\infty} |\ln \gamma_i(j)|$.

Using the asymptotic relations $(1+x)^{-1} = 1 + O(x)$ and $\ln(1+x) = x + O(x^2)$, we have that

$$
\ln \gamma_i(j) = \ln \frac{\theta(c/a)^{2j+i-1} - b}{\theta(c/a)^{2j+i} - b} = \ln \left(1 + \frac{\theta}{a} \frac{(c/a)^{2j+i-1}(a-c)}{\theta(c/a)^{2j+i} - b}\right)
$$

$$
= \ln \left(1 + \frac{\theta(c-a)}{ab} \left(\frac{c}{a}\right)^{2j+i-1}\right) + o\left(\left(\frac{c}{a}\right)^{2j}\right)
$$

$$
= \frac{\theta(c-a)}{ab} \left(\frac{c}{a}\right)^{2j+i-1} + o\left(\left(\frac{c}{a}\right)^{2j}\right).
$$

31

From this and since $c/a < 1$, by using a known criterion for the convergence of series we get that the the series $\sum_{j=j_2}^{\infty}$ |ln $\gamma_i(j)$ | converges.

Hence, there are two real numbers $\varrho_i \in \mathbb{R}$ such that

$$
\lim_{m \to \infty} r_{2m+i} = \varrho_i, \quad i \in \{0, 1\}.
$$

If we set $n = 2m + i - 1$, $i = 0, 1$ in equation (4.1), we get

$$
r_{2m+1} = \frac{ar_{2m-1}}{-br_{2m-1}r_{2m} + c}
$$
 and $r_{2m+2} = \frac{ar_{2m}}{-br_{2m}r_{2m+1} + c}$, $m = 0, 1, ...$

By taking the limit as $m \to \infty$, we obtain

(4.4)
$$
\qquad \qquad \varrho_1 = \frac{a \varrho_1}{-b \varrho_1 \varrho_0 + c} \quad \text{and} \quad \varrho_0 = \frac{a \varrho_0}{-b \varrho_0 \varrho_1 + c}.
$$

If $\varrho_1 = 0$, then from the second equation in (4.4), we get $\varrho_0 = 0$. This is a contradiction, as the equilibrium point $\bar{r}=0$ of equation (4.1) is unstable (a repeller) when $a > c$ (see [2]).

This implies that $\varrho_i \neq 0$, $i = 0, 1$ and $\varrho_0 \varrho_1 = -1$. Therefore, $\{r_n\}_{n=-1}^{\infty}$ converges to the 2-periodic solution

$$
\{\ldots, \varrho_0, \varrho_1, \varrho_0, \varrho_1, \ldots\} \quad \text{with } \varrho_0 \varrho_1 = -1.
$$

Now we are ready to formulate the main results in this section.

Theorem 4.4. Assume that $\{x_n\}_{n=-2}^{\infty}$ is a solution of equation (1.1) such that $(x_0, x_{-1}, x_{-2}) \notin F$ and let $a - c = b$. If $\alpha = -1$, then $\{x_n\}_{n=-2}^{\infty}$ is an eventually periodic solution with period 4.

P r o o f. Assume that $a - c = b$. If $\alpha = -1$, then $\theta = 0$. Therefore,

$$
x_{2m+i} = x_{-2+i} \prod_{j=0}^{m} \frac{a-c}{\theta(c/a)^{2j+i} - b} = x_{-2+i} \prod_{j=0}^{m} (-1)
$$

= $x_{-2+i}(-1)^{m+1}$, $i = 1, 2$ and $m = 0, 1,$

Now if we set $m = 2n + l - 1$, $l = 0, 1$, then

$$
x_{4n+2l+i-2} = x_{-2+i}(-1)^{2n+l}
$$
, $i = 1, 2, l = 0, 1$ and $n = 0, 1, ...$

Therefore,

$$
x_{4n-1} = x_{-1}, \quad x_{4n} = x_0, \quad x_{4n+1} = -x_{-1}, \quad x_{4n+2} = -x_0.
$$

 \Box

Theorem 4.5. Assume that $\{x_n\}_{n=-2}^{\infty}$ is a solution of equation (1.1) such that $(x_0, x_{-1}, x_{-2}) \notin F$ and let $a - c = b$. If $\alpha \neq -1$, then $\{x_n\}_{n=-2}^{\infty}$ converges to a period-4 solution $\{\mu_0, \mu_1, -\mu_0, -\mu_1\}$ such that $\mu_1 = \mu_0 |\varrho_1|$, where ϱ_1 is as in Theorem 4.3.

P r o o f. Suppose that ${x_n}_{n=-2}^{\infty}$ is a solution of equation (1.1) such that $(x_0, x_{-1}, x_{-2}) \notin F$ and let $a - c = b$. As

$$
\lim_{j \to \infty} \beta_i(j) = \frac{a - c}{\theta(c/a)^{2j + i} - b} = -1, \quad i = 1, 2,
$$

there exists $j_0 \in \mathbb{N}$ such that $\beta_i(j) < 0$ for all $i = 1, 2$ and $j \geq j_0$.

Hence

$$
|x_{2m+i}| = |x_{-2+i}| \left| \prod_{j=0}^{m} \beta_i(j) \right| = |x_{-2+i}| \left| \prod_{j=0}^{j_0-1} \beta_i(j) \right| \prod_{j=j_0}^{m} |\beta_i(j)|
$$

= $|x_{-2+i}| \left| \prod_{j=0}^{j_0-1} \beta_i(j) \right| \exp \left(\sum_{j=j_0}^{m} \ln |\beta_i(j)| \right).$

Now we show the convergence of the series $\sum_{j=j_0}^{\infty} |\ln(-\beta_i(j))|$. Using the asymptotic relations $(1+x)^{-1} = 1 + x + O(x^2)$ and $\ln(1+x) = x + O(x^2)$, we have that

$$
\ln |\beta_i(j)| = \ln \left(1 + \frac{\theta}{b} \left(\frac{c}{a} \right)^{2j+i} + O\left(\left(\frac{c}{a} \right)^{4j} \right) \right).
$$

As $c/a < 1$, we get that the series $\sum_{j=j_0}^{\infty} \ln |\beta_i(j)|$ is convergent.

This ensures that there are two positive real numbers μ_0, μ_1 such that

(4.5)
$$
\lim_{m \to \infty} |x_{2m+i}| = \mu_i, \quad i \in \{0, 1\}.
$$

Now set

$$
\lim_{m \to \infty} x_{4m+l} = L_l, \quad l \in \{0, 1, 2, 3\}.
$$

As

$$
r_{4m+1}r_{4m+2} = \frac{x_{4m+2}}{x_{4m}}
$$
 and $r_{4m+2}r_{4m+3} = \frac{x_{4m+3}}{x_{4m+1}}$,

using Theorem (4.3) we obtain $L_2 = -L_0$ and $L_3 = -L_1$.

On the other hand, from (4.5) we get

$$
|L_2| = |-L_0| = |L_0| = \mu_0
$$
 and $|L_3| = |-L_1| = |L_1| = \mu_1$.

Then

$$
L_0 = \mu_0
$$
 or $L_0 = -\mu_0$ and $L_1 = \mu_1$ or $L_1 = -\mu_1$.

Without loss of generality, we take $L_0 = \mu_0$ and $L_1 = \mu_1$. Then the solution ${x_n}_{n=-2}^{\infty}$ converges to the period-4 solution

$$
\{\ldots,\mu_0,\mu_1,-\mu_0,-\mu_1,\mu_0,\mu_1,-\mu_0,-\mu_1,\ldots\}.
$$

Moreover, as $|x_{2m+1}| = |x_{2m}r_{2m+1}|$, we have $\mu_1 = \mu_0 |\rho_1|$ where

$$
\varrho_1 = r_{-1} \prod_{j=0}^{\infty} \frac{\theta(c/a)^{2j} - b}{\theta(c/a)^{2j+1} - b} \text{ and } \mu_0 = |x_0| \prod_{j=1}^{\infty} \frac{b}{|\theta(c/a)^{2j} - b|}.
$$

5. CASE $a = c$

In this section, we study the case when $a = c$.

Proposition 5.1. Assume that $a = c$. Then the forbidden set G of equation (1.1) is

$$
G = \bigcup_{n=0}^{\infty} \left\{ (u_0, u_{-1}, u_{-2}) : u_0 = u_{-2} \frac{a}{b(n+1)} \right\}
$$

$$
\cup \left\{ (u_0, u_{-1}, u_{-2}) : u_0 = 0 \right\} \cup \left\{ (u_0, u_{-1}, u_{-2}) : u_{-1} = 0 \right\}.
$$

Let x_{-2}, x_{-1} and x_0 be real numbers such that $(x_0, x_{-1}, x_{-2}) \notin G$. If $a = c$, then the solution ${x_n}_{n=-2}^{\infty}$ of equation (1.1) is

(5.1)
$$
x_n = \begin{cases} x_{-1} \prod_{j=0}^{\frac{n-1}{2}} \frac{a\alpha}{a - b\alpha(2j+1)}, & n = 1, 3, 5, \dots, \\ x_0 \prod_{j=0}^{\frac{n-2}{2}} \frac{a\alpha}{a - b\alpha(2j+2)}, & n = 2, 4, 6, \dots \end{cases}
$$

where $\alpha = x_0/x_{-2}$.

P r o o f. We can write the solution (5.1) as

(5.2)
$$
x_{2m+i} = x_{-2+i} \prod_{j=0}^{m} \eta_i(j), \quad i = 1, 2 \text{ and } m = 0, 1, ...
$$

where

$$
\eta_i(j) = \frac{a\alpha}{a - b\alpha(2j + i)}, \quad i = 1, 2.
$$

By direct calculation, we can get the values of x_1 and x_2 as desired.

Now assume that $m > 1$. Then

$$
x_{2m+3} = \frac{ax_{2m+2}x_{2m+1}}{-bx_{2m+2} + ax_{2m}} = \frac{ax_0 \prod_{j=0}^{m} \eta_2(j)x_{-1} \prod_{j=0}^{m} \eta_1(j)}{-bx_0 \prod_{j=0}^{m} \eta_2(j) + ax_0 \prod_{j=0}^{m-1} \eta_2(j)}
$$

\n
$$
= \frac{ax_0 \prod_{j=0}^{m} \eta_2(j)x_{-1} \prod_{j=0}^{m} \eta_1(j)}{x_0 \prod_{j=0}^{m-1} \eta_2(j)(-b\eta_2(m) + a)} = \frac{an_2(m)x_{-1} \prod_{j=0}^{m} \eta_1(j)}{-b\eta_2(m) + a}
$$

\n
$$
= \frac{a(a\alpha/(a - b\alpha(2m + 2)))x_{-1} \prod_{j=0}^{m} \eta_1(j)}{-b a\alpha/(a - b\alpha(2m + 2)) + a} = \frac{a(a\alpha)x_{-1} \prod_{j=0}^{m} \eta_1(j)}{-b a\alpha + a(a - b\alpha(2m + 2))}
$$

\n
$$
= \frac{a\alpha}{a - b\alpha(2m + 3)}x_{-1} \prod_{j=0}^{m} \eta_1(j) = \eta_1(m + 1)x_{-1} \prod_{j=0}^{m+1} \eta_1(j)
$$

\n
$$
= x_{-1} \prod_{j=0}^{m+1} \eta_1(j).
$$

To complete the inductive proof, we shall show that formula (2.2) also holds for x_{2m+4} . We have

$$
x_{2m+4} = \frac{ax_{2m+3}x_{2m+2}}{-bx_{2m+3} + ax_{2m+1}} = \frac{ax_{-1} \prod_{j=0}^{m+1} \eta_1(j)x_0 \prod_{j=0}^m \eta_2(j)}{-bx_{-1} \prod_{j=0}^{m+1} \eta_1(j) + ax_{-1} \prod_{j=0}^m \eta_1(j)}
$$

=
$$
\frac{ax_{-1} \prod_{j=0}^{m+1} \eta_1(j)x_0 \prod_{j=0}^m \eta_2(j)}{x_{-1} \prod_{j=0}^m \eta_1(j)(-b\eta_2(m+1)+a)} = \frac{a\eta_1(m+1)x_0 \prod_{j=0}^m \eta_2(j)}{-b\eta_1(m+1)+a}
$$

=
$$
\frac{a(a\alpha/(a-b\alpha(2m+3)))x_0 \prod_{j=0}^m \eta_2(j)}{-b a\alpha/(a-b\alpha(2m+3)) + a} = \frac{a(a\alpha)x_0 \prod_{j=0}^m \eta_2(j)}{-b a\alpha + a(a-b\alpha(2m+3))}
$$

=
$$
\frac{a\alpha}{a-b\alpha(2m+4)}x_0 \prod_{j=0}^m \eta_2(j) = \eta_2(m+1)x_0 \prod_{j=0}^{m+1} \eta_2(j)
$$

=
$$
x_0 \prod_{j=0}^{m+1} \eta_2(j).
$$

This completes the inductive proof of the theorem. $\hfill \Box$

35

Theorem 5.2. Let $\{x_n\}_{n=-2}^{\infty}$ be a solution of equation (1.1) such that $(x_0, x_{-1},$ $(x_{-2}) \notin G$. If $a = c$, then $\{x_n\}_{n=-2}^{\infty}$ converges to 0.

P r o o f. It is sufficient to see that $\eta_i(j) \to 0$ as $j \to \infty$, $i = 1, 2$.

A c k n o w l e d g e m e n t. The author is grateful to the anonymous referee for his/her constructive suggestions.

References

- [1] R. P. Agarwal: Difference Equations and Inequalities. Theory, Methods, and Applications. Pure and Applied Mathematics 155, Marcel Dekker, New York, 1992. **[zbl](http://www.emis.de/MATH-item?0925.39001) [MR](http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1155840)** [2] M. Aloqeili: Dynamics of a rational difference equation. Appl. Math. Comput. 176 (2006), 768–774. [zbl](http://www.emis.de/MATH-item?1100.39002) [MR](http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2232069) [3] A. Andruch-Sobilo, M. Migda: Further properties of the rational recursive sequence $x_{n+1} = \frac{ax_{n-1}}{b+cx_nx_{n-1}}$. Opusc. Math. 26 (2006), 387–394. **[zbl](http://www.emis.de/MATH-item?1131.39003)** [MR](http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2280266) [4] A. Andruch-Sobito, M. Migda: On the rational recursive sequence $x_{n+1} = \frac{ax_{n-1}}{b+cx_n x_{n-1}}$. Tatra Mt. Math. Publ. 43 (2009), 1–9. **[zbl](http://www.emis.de/MATH-item?1212.39008)** [MR](http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2588871) [5] L. Berg, S. Stević: On difference equations with powers as solutions and their connection with invariant curves. Appl. Math. Comput. 217 (2011), 7191–7196. [6] L. Berg, S. Stević: On some systems of difference equations. Appl. Math. Comput. 218 (2011), 1713–1718. [zbl](http://www.emis.de/MATH-item?1243.39009) [MR](http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2831394) [7] E. Camouzis, G. Ladas: Dynamics of Third-Order Rational Difference Equations with Open Problems and Conjectures. Advances in Discrete Mathematics and Applications 5, Chapman and Hall/HRC, Boca Raton, 2008. **[zbl](http://www.emis.de/MATH-item?1129.39002) [MR](http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2363297)** [8] E. A. Grove, G. Ladas: Periodicities in Nonlinear Difference Equations. Advances in Discrete Mathematics and Applications 4, Chapman and Hall/CRC, Boca Raton, 2005. [zbl](http://www.emis.de/MATH-item?1078.39009) [MR](http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2193366) [9] B. Iričanin, S. Stevi´c: On some rational difference equations. Ars Comb. 92 (2009), $67-72.$ [zbl](http://www.emis.de/MATH-item?1224.39014) [MR](http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2532566) [10] G. Karakostas: Convergence of a difference equation via the full limiting sequences method. Differential Equations Dynam. Systems 1 (1993), 289–294. **[zbl](http://www.emis.de/MATH-item?0868.39002) [MR](http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1259169)** [11] V. L. Kocić, G. Ladas: Global Behavior of Nonlinear Difference Equations of Higher Order with Applications. Mathematics and Its Applications 256, Kluwer Academic Publishers, Dordrecht, 1993. **[zbl](http://www.emis.de/MATH-item?0787.39001) [MR](http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1247956)** [12] N. Kruse, T. Nesemann: Global asymptotic stability in some discrete dynamical systems. J. Math. Anal. Appl. 235 (1999), 151–158. [zbl](http://www.emis.de/MATH-item?0933.37016) [MR](http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1758674) [13] M. R. S. Kulenović, G. Ladas: Dynamics of Second Order Rational Difference Equations. With Open Problems and Conjectures, Chapman and Hall/HRC, Boca Raton, 2002. [zbl](http://www.emis.de/MATH-item?0981.39011) [MR](http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1935074) [14] H. Levy, F. Lessman: Finite Difference Equations. Reprint of the 1961 edition. Dover Publications, New York, 1992. The contraction of the contraction of MR . [15] H. Sedaghat: Global behaviours of rational difference equations of orders two and three with quadratic terms. J. Difference Equ. Appl. 15 (2009), $215-224$. [zbl](http://www.emis.de/MATH-item?1169.39006) [MR](http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2498770) [16] S. Stević: On a system of difference equations. Appl. Math. Comput. 218 (2011), 3372–3378. **[zbl](http://www.emis.de/MATH-item?1242.39017) [MR](http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2851439)** [17] S. Stević: On a system of difference equations with period two coefficients. Appl. Math. Comput. 218 (2011), 4317–4324. **[zbl](http://www.emis.de/MATH-item?1256.39008) [MR](http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2862101)**
- [18] S. Stević: On a third-order system of difference equations. Appl. Math. Comput. 218 (2012), 7649–7654. [zbl](http://www.emis.de/MATH-item?1243.39011) [MR](http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2892731)
- [19] S. Stević: On the difference equation $x_n = x_{n-2}/(b_n + c_n x_{n-1}x_{n-2})$. Appl. Math. Comput. 218 (2011), 4507–4513. **[zbl](http://www.emis.de/MATH-item?1256.39009)** [MR](http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2862122)
- [20] S. Stević: On some solvable systems of difference equations. Appl. Math. Comput. 218 (2012), 5010–5018. [zbl](http://www.emis.de/MATH-item?1253.39011) [MR](http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2870025)
- [21] S. Stević: On positive solutions of a $(k + 1)$ th order difference equation. Appl. Math. Lett. 19 (2006), 427–431. **[zbl](http://www.emis.de/MATH-item?1095.39010)** [MR](http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2213143)
- [22] S. Stević: More on a rational recurrence relation. Appl. Math. E-Notes (electronic only) 4 (2004), 80–85. [zbl](http://www.emis.de/MATH-item?1069.39024) [MR](http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2077785)

Author's address: Raafat Abo-Zeid, Department of Basic Science, The High Institute for Engineering & Modern Technology, Cairo, Egypt, e-mail: abuzead73@yahoo.com.