# ESTIMATES OF THE PRINCIPAL EIGENVALUE OF THE $p$-LAPLACIAN AND THE $p$-BIHARMONIC OPERATOR 

Jiǩí Benedikt, Plzeň

(Received October 14, 2013)

Abstract. We survey recent results concerning estimates of the principal eigenvalue of the Dirichlet $p$-Laplacian and the Navier $p$-biharmonic operator on a ball of radius $R$ in $\mathbb{R}^{N}$ and its asymptotics for $p$ approaching 1 and $\infty$.

Let $p$ tend to $\infty$. There is a critical radius $R_{C}$ of the ball such that the principal eigenvalue goes to $\infty$ for $0<R \leqslant R_{C}$ and to 0 for $R>R_{C}$. The critical radius is $R_{C}=1$ for any $N \in \mathbb{N}$ for the $p$-Laplacian and $R_{C}=\sqrt{2 N}$ in the case of the $p$-biharmonic operator.

When $p$ approaches 1 , the principal eigenvalue of the Dirichlet $p$-Laplacian is $N R^{-1} \times$ $(1-(p-1) \log R(p-1))+o(p-1)$ while the asymptotics for the principal eigenvalue of the Navier $p$-biharmonic operator reads $2 N / R^{2}+O(-(p-1) \log (p-1))$.

Keywords: eigenvalue problem for $p$-Laplacian; eigenvalue problem for $p$-biharmonic operator; estimates of principal eigenvalue; asymptotic analysis

MSC 2010: 35J66, 35J92, 35P15, 35P30

## 1. $p$-LAPLACIAN

Let us consider the eigenvalue problem for the Dirichlet p-Laplacian

$$
\begin{cases}-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=\lambda|u|^{p-2} u & \text { in } \Omega  \tag{1.1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $p>1$ and $\Omega$ is a bounded open subset of $\mathbb{R}^{N}, N \geqslant 1$. It is well-known that the principal eigenvalue of (1.1) is

$$
\begin{equation*}
\lambda_{1}(\Omega, p) \stackrel{\text { def }}{=} \min \left(\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x / \int_{\Omega}|u|^{p} \mathrm{~d} x\right) \tag{1.2}
\end{equation*}
$$

where the minimum is taken over all $u \in W_{0}^{1, p}(\Omega), u \neq 0$.
The author was supported by the Grant Agency of the Czech Republic, Grant No. 1300863 S .

In the one dimensional case $N=1$ the precise formula

$$
\begin{equation*}
\lambda_{1}((-R, R), p)=\frac{1}{R^{p}}(p-1)\left(\frac{\pi}{p \sin (\pi / p)}\right)^{p}, \quad p>1 \tag{1.3}
\end{equation*}
$$

is known (see, e.g., [7], page 244). It implies

$$
\lim _{p \rightarrow 1+} \lambda_{1}((-R, R), p)=\frac{1}{R}, \quad \lim _{p \rightarrow 1+} \frac{\lambda_{1}((-R, R), p)-1 / R}{p-1}=\infty
$$

and

$$
\begin{gathered}
0<R \leqslant 1 \Rightarrow \lim _{p \rightarrow \infty} \lambda_{1}((-R, R), p)=\infty \\
R>1 \Rightarrow \lim _{p \rightarrow \infty} \lambda_{1}((-R, R), p)=0
\end{gathered}
$$

(see Figure 1).
When $N \geqslant 2$, an explicit formula for $\lambda_{1}(\Omega, p)$ is not known even in the case when $\Omega=B_{N}(0, R)$, the open ball of radius $R>0$ and centered at the origin. Using the Cheeger constant, Kawohl and Fridman [14], Remark 5, proved the lower estimate

$$
\begin{equation*}
\lambda_{1}\left(B_{N}(0, R), p\right) \geqslant\left(\frac{N}{R p}\right)^{p}, \quad p>1 \tag{1.4}
\end{equation*}
$$

which together with (1.2) implies (see [14], Corollary 6)

$$
\lim _{p \rightarrow 1+} \lambda_{1}\left(B_{N}(0, R), p\right)=\frac{N}{R}
$$

A more precise asymptotics for $\lambda_{1}\left(B_{N}(0, R), p\right)$ as $p \rightarrow 1+$ follows from the estimates

$$
\begin{equation*}
\frac{N}{R}\left(\frac{p^{\prime}}{R}\right)^{p-1} \leqslant \lambda_{1}\left(B_{N}(0, R), p\right) \leqslant \frac{N}{R}\left(\frac{p^{\prime}}{R}\right)^{p-1} \frac{\Gamma\left(p+1+N / p^{\prime}\right)}{\Gamma(p+1) \Gamma\left(2+N / p^{\prime}\right)}, \quad p>1 \tag{1.5}
\end{equation*}
$$

where $\Gamma$ is the Gamma function and $p^{\prime} \stackrel{\text { def }}{=} p /(p-1)$. The estimate from below was proved in ( $[8],(8.10)$ on page 332 ) and both the estimates from below and from above in [3]. The proof of the estimate from below is based on the Picone identity [1], the estimate from above follows from (1.2) by choosing an appropriate function $u$.

Moreover, it is proved in [3] that the estimates (1.5) yield the asymptotics

$$
\lambda_{1}\left(B_{N}(0, R), p\right)=\frac{N}{R}(1-(p-1) \log R(p-1))+o(p-1) \quad \text { as } p \rightarrow 1+
$$

This follows from the fact that both the lower and the upper bound in (1.5) are subject to the same asymptotics.


Figure 1. Dependence of $\lambda_{1}$ on $p$-second-order case.

On the other hand, it follows from [12], Lemma 1.5, that

$$
\begin{gathered}
0<R<1 \Rightarrow \lim _{p \rightarrow \infty} \lambda_{1}\left(B_{N}(0, R), p\right)=\infty, \\
R>1 \Rightarrow \lim _{p \rightarrow \infty} \lambda_{1}\left(B_{N}(0, R), p\right)=0 .
\end{gathered}
$$

The critical case $R=R_{C} \stackrel{\text { def }}{=} 1$ is not covered. In [5] we proved the estimates

$$
\begin{equation*}
\frac{N p}{R^{p}} \leqslant \lambda_{1}\left(B_{N}(0, R), p\right) \leqslant \frac{(p+1)(p+2) \ldots(p+N)}{N!R^{p}}, \quad p>1 \tag{1.6}
\end{equation*}
$$

which imply that, similarly to the one dimension,

$$
\begin{gathered}
0<R \leqslant 1 \Rightarrow \lim _{p \rightarrow \infty} \lambda_{1}\left(B_{N}(0, R), p\right)=\infty, \\
R>1 \Rightarrow \lim _{p \rightarrow \infty} \lambda_{1}\left(B_{N}(0, R), p\right)=0 .
\end{gathered}
$$

The estimates (1.6) can also be generalized to domains $\Omega$ other than a ball. Since the variational characterization (1.2) implies that $\lambda_{1}(\Omega, p)$ is decreasing with respect to $\Omega$ (in the sense of the set inclusion), the upper estimate in (1.6) applies to any bounded open subset of $\mathbb{R}^{N}$ that contains an inscribed ball of radius $R>0$ as well. On the other hand, it follows from the Schwarz symmetrization (see [13]) that the lower estimate in (1.6) holds also for any $\Omega$ such that $|\Omega|=\left|B_{N}(0, R)\right|$. Moreover, it is proved in [5] that

$$
\lambda_{1}(\Omega, p) \geqslant \frac{k p}{R^{p}}
$$

for any $\Omega \subset B_{k}(0, R) \times \mathbb{R}^{N-k}$ where $B_{k}(0, R)$ is the open ball in $\mathbb{R}^{k}$ of radius $R>0$ and centered at the origin, $k \in\{1,2, \ldots, N\}$. In particular, for $k=1$ and $R=1$ it implies $\lim _{p \rightarrow \infty} \lambda_{1}(\Omega, p)=\infty$ for any $\Omega$ situated between two parallel hyperplanes of distance 2 . However, if $\Omega$ cannot be squeezed between two parallel hyperplanes of distance 2 but the radius of the largest inscribed ball has the radius $R \leqslant 1$, the asymptotic behavior of $\lambda_{1}(\Omega, p)$ as $p \rightarrow \infty$ is an open problem. A concrete example of such $\Omega$ in the plane is the open equilateral triangle with the largest inscribed disc of the radius 1 .

In Figure 1 we present estimates of the principal eigenvalue $\lambda_{1}\left(B_{N}(0, R), p\right)$ in different dimensions $N=1,2,3,4,8,9$. The solid curve for $N=1$ depicts the exact value (1.3). For $N=2,3$ and 4 the thick dots represent approximate values of $\lambda_{1}$ for certain discrete values of $p$, which were evaluated in [6]. The dashed curves represent lower and upper estimates from (1.5), the dotted curves visualize those from (1.6). Finally, the dash-dotted curves illustrate the lower estimate (1.4). The shaded regions reflect all the above mentioned estimates for $\lambda_{1}\left(B_{N}(0, R), p\right)$.

The well-known continuous embedding $W_{0}^{1, p}\left(B_{N}(0, R)\right) \hookrightarrow L^{p}\left(B_{N}(0, R)\right)$ and the Rellich-Kondrachov Theorem (e.g., [9], Theorem 1.2.28) imply the existence of the minimal constant $C=C(p, N, R)=\lambda_{1}^{-1 / p}\left(B_{N}(0, R), p\right)$ such that for all $u \in W_{0}^{1, p}\left(B_{N}(0, R)\right)$

$$
\|u\|_{p} \leqslant C(p, N, R)\|u\|_{1, p}
$$

where

$$
\|u\|_{p} \stackrel{\text { def }}{=}\left(\int_{B_{N}(0, R)}|u|^{p} \mathrm{~d} x\right)^{1 / p}
$$

while

$$
\|u\|_{1, p} \stackrel{\text { def }}{=}\left(\int_{B_{N}(0, R)}|\nabla u|^{p} \mathrm{~d} x\right)^{1 / p}
$$

is an equivalent (radially symmetric) norm on $W_{0}^{1, p}\left(B_{N}(0, R)\right)$. It then follows from the estimates (1.5) and (1.6) that

$$
\frac{R}{N^{1 / p}\left(p^{\prime}\right)^{1 / p^{\prime}}}\left(\frac{\Gamma(p+1) \Gamma\left(2+N / p^{\prime}\right)}{\Gamma\left(p+1+N / p^{\prime}\right)}\right)^{1 / p} \leqslant C(p, N, R) \leqslant \frac{R}{N^{1 / p}\left(p^{\prime}\right)^{1 / p^{\prime}}}
$$

and

$$
R\left(\frac{N!}{(p+1)(p+2) \ldots(p+N)}\right)^{1 / p} \leqslant C(p, N, R) \leqslant \frac{R}{N^{1 / p} p^{1 / p}}
$$

respectively. Consequently, for all $u \in W_{0}^{1, p}\left(B_{N}(0, R)\right)$ we have

$$
\|u\|_{p} \leqslant \frac{R}{N^{1 / p} \max \left\{p^{1 / p},\left(p^{\prime}\right)^{1 / p^{\prime}}\right\}}\|u\|_{1, p}
$$

## 2. $p$-BIHARMONIC OPERATOR

We also study the Navier $p$-biharmonic (fourth-order) eigenvalue problem

$$
\begin{cases}\Delta\left(|\Delta u|^{p-2} \Delta u\right)=\lambda|u|^{p-2} u & \text { in } B_{N}(0, R),  \tag{2.1}\\ u=\Delta u=0 & \text { on } \partial B_{N}(0, R)\end{cases}
$$

where $p>1$. The principal eigenvalue of (2.1) is

$$
\begin{equation*}
\lambda_{1}\left(B_{N}(0, R), p\right) \stackrel{\text { def }}{=} \min \frac{\int_{B_{N}(0, R)}|\Delta u|^{p} \mathrm{~d} x}{\int_{B_{N}(0, R)}|u|^{p} \mathrm{~d} x} \tag{2.2}
\end{equation*}
$$

where the minimum is taken over all $u \in W^{2, p}\left(B_{N}(0, R)\right) \cap W_{0}^{1, p}\left(B_{N}(0, R)\right), u \neq 0$ (see [10]).

A precise formula for $\lambda_{1}\left(B_{N}(0, R), p\right)$ is not known even in one dimension. The estimates

$$
\begin{align*}
& \left(\frac{2 N}{R^{2}}\right)^{p}\left(\frac{\sqrt{\pi} \Gamma\left(p^{\prime}\right)}{\Gamma\left(p^{\prime}+1 / 2\right)}-\frac{1}{p^{\prime}}\right)^{1-p}  \tag{2.3}\\
& \quad \leqslant \lambda_{1}\left(B_{N}(0, R), p\right) \leqslant\left(\frac{2 N}{R^{2}}\right)^{p}\left(\frac{2 \Gamma\left(p^{\prime}+1+N / 2\right)}{N \Gamma(N / 2) \Gamma\left(p^{\prime}+1\right)}\right)^{p-1}, \quad p>1
\end{align*}
$$

were proved in [2] using [4]. These estimates imply the asymptotics

$$
\lambda_{1}\left(B_{N}(0, R), p\right)=\frac{2 N}{R^{2}}+O(-(p-1) \log (p-1)) \quad \text { as } p \rightarrow 1+
$$

On the other hand, using the Picone identity for the $p$-biharmonic operator due to Jaroš [11] and the variational characterization (2.2), respectively, the lower and the upper estimate,

$$
\begin{align*}
\left(\frac{2 N}{R^{2}}\right)^{p} & \frac{1}{\sqrt{\pi} \Gamma(p) /[\Gamma(p+1 / 2)]-1 / p}  \tag{2.4}\\
& \leqslant \lambda_{1}\left(B_{N}(0, R), p\right) \leqslant\left(\frac{2 N}{R^{2}}\right)^{p} \frac{2 \Gamma(p+1+N / 2)}{N \Gamma(N / 2) \Gamma(p+1)}
\end{align*}
$$

were proved in [4]. They yield that, similarly to the second-order case, there is a critical radius $R_{C}=\sqrt{2 N}$ such that

$$
\begin{gathered}
0<R \leqslant R_{C} \Rightarrow \lim _{p \rightarrow \infty} \lambda_{1}\left(B_{N}(0, R), p\right)=\infty \\
R>R_{C} \Rightarrow \lim _{p \rightarrow \infty} \lambda_{1}\left(B_{N}(0, R), p\right)=0
\end{gathered}
$$

However, here the critical radius does depend on the dimension.
In Figure 2 we present estimates for the principal eigenvalue in different dimensions $N=1,2,3$, and 4 . The dashed curves represent lower and upper estimates from (2.3), the dotted curves visualize those from (2.4). The shaded regions reflect all the above mentioned estimates for $\lambda_{1}$.

Again, the well-known continuous embedding $W^{2, p}\left(B_{N}(0, R)\right) \cap W_{0}^{1, p}\left(B_{N}(0, R)\right) \hookrightarrow$ $L^{p}\left(B_{N}(0, R)\right)$ and the Rellich-Kondrachov Theorem imply the existence of the minimal constant $C=C(p, N, R)=\lambda_{1}^{-1 / p}\left(B_{N}(0, R), p\right)$ such that for all $u \in$ $W^{2, p}\left(B_{N}(0, R)\right) \cap W_{0}^{1, p}\left(B_{N}(0, R)\right)$

$$
\|u\|_{p} \leqslant C(p, N, R)\|u\|_{2, p}
$$

where

$$
\|u\|_{p} \stackrel{\text { def }}{=}\left(\int_{B_{N}(0, R)}|u|^{p} \mathrm{~d} x\right)^{1 / p}
$$



Figure 2. Dependence of $\lambda_{1}$ on $p$-fourth-order case.
and

$$
\|u\|_{2, p} \stackrel{\text { def }}{=}\left(\int_{B_{N}(0, R)}|\Delta u|^{p} \mathrm{~d} x\right)^{1 / p}
$$

is an equivalent (radially symmetric) norm on $W^{2, p}\left(B_{N}(0, R)\right) \cap W_{0}^{1, p}\left(B_{N}(0, R)\right)$. It follows from the estimates (2.3) and (2.4) that

$$
\frac{R^{2}}{2 N}\left(\frac{N \Gamma(N / 2) \Gamma\left(p^{\prime}+1\right)}{2 \Gamma\left(p^{\prime}+1+N / 2\right)}\right)^{1 / p^{\prime}} \leqslant C(p, N, R) \leqslant \frac{R^{2}}{2 N}\left(\frac{\sqrt{\pi} \Gamma\left(p^{\prime}\right)}{\Gamma\left(p^{\prime}+1 / 2\right)}-\frac{1}{p^{\prime}}\right)^{1 / p^{\prime}}
$$

and

$$
\frac{R^{2}}{2 N}\left(\frac{N \Gamma(N / 2) \Gamma(p+1)}{2 \Gamma(p+1+N / 2)}\right)^{1 / p} \leqslant C(p, N, R) \leqslant \frac{R^{2}}{2 N}\left(\frac{\sqrt{\pi} \Gamma(p)}{\Gamma(p+1 / 2)}-\frac{1}{p}\right)^{1 / p}
$$

respectively. Consequently, for all $u \in W^{2, p}\left(B_{N}(0, R)\right) \cap W_{0}^{1, p}\left(B_{N}(0, R)\right)$ we have

$$
\|u\|_{p} \leqslant \frac{R^{2}}{2 N} \min \left\{\left(\frac{\sqrt{\pi} \Gamma(p)}{\Gamma(p+1 / 2)}-\frac{1}{p}\right)^{1 / p},\left(\frac{\sqrt{\pi} \Gamma\left(p^{\prime}\right)}{\Gamma\left(p^{\prime}+1 / 2\right)}-\frac{1}{p^{\prime}}\right)^{1 / p^{\prime}}\right\}\|u\|_{2, p} .
$$

## References

[1] W. Allegretto, Y.X. Huang: A Picone's identity for the $p$-Laplacian and applications. Nonlinear Anal., Theory Methods Appl. 32 (1998), 819-830.
[2] J. Benedikt, P. Drábek: Asymptotics for the principal eigenvalue of the p-biharmonic operator on the ball as $p$ approaches 1. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 95 (2014), 735-742.
zbl MR
[3] J. Benedikt, P. Drábek: Asymptotics for the principal eigenvalue of the p-Laplacian on the ball as $p$ approaches 1. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 93 (2013), 23-29.
zbl MR
[4] J. Benedikt, P. Drábek: Estimates of the principal eigenvalue of the p-biharmonic operator. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 5374-5379.
[5] J. Benedikt, P. Drábek: Estimates of the principal eigenvalue of the p-Laplacian. J. Math. Anal. Appl. 393 (2012), 311-315.
zbl MR
] R. J. Biezuner, J. Brown, G. Ercole, E. M. Martins: Computing the first eigenpair of the p-Laplacian via inverse iteration of sublinear supersolutions. J. Sci. Comput. 52 (2012), 180-201.
zbl MR
zbl MR
[7] R. J. Biezuner, G. Ercole, E. M. Martins: Computing the first eigenvalue of the $p$-Laplacian via the inverse power method. J. Funct. Anal. 257 (2009), 243-270.
zbl MR
[8] H. Bueno, G. Ercole, A. Zumpano: Positive solutions for the $p$-Laplacian and bounds for its first eigenvalue. Adv. Nonlinear Stud. 9 (2009), 313-338.
zbl MR
[9] P. Drábek, J. Milota: Methods of Nonlinear Analysis. Applications to Differential Equations. Birkhäuser Advanced Texts: Basel Lehrbücher, Birkhäuser, Basel, 2007.
zbl MR
[10] P. Drábek, M. Ôtani: Global bifurcation result for the $p$-biharmonic operator. Electron. J. Differ. Equ. (electronic only) 2001 (2001), No. 48, 19 pages.
zbl MR
[11] J. Jaroš: Picone's identity for the p-biharmonic operator with applications. Electron. J. Differ. Equ. (electronic only) 2011 (2011), No. 122, 6 pages.
zbl MR
[12] P. Juutinen, P. Lindqvist, J. J. Manfredi: The $\infty$-eigenvalue problem. Arch. Ration. Mech. Anal. 148 (1999), 89-105.
zbl MR
[13] B. Kawohl: Rearrangements and Convexity of Level Sets in PDE. Lecture Notes in Mathematics 1150, Springer, Berlin, 1985.
zbl MR
[14] B. Kawohl, V. Fridman: Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the Cheeger constant. Commentat. Math. Univ. Carol. 44 (2003), 659-667. zbl MR

Author's address: Jiř̌ Benedikt, Department of Mathematics and New Technologies for the Information Society, Faculty of Applied Sciences, University of West Bohemia, Univerzitní 22, 30614 Plzeň, Czech Republic, e-mail: benedikt@kma.zcu.cz.

