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Abstract. We present a new approach to solving boundary value problems on noncompact
intervals for second order differential equations in case of nonlocal conditions. Then we ap-
ply it to some problems in which an initial condition, an asymptotic condition and a global
condition is present. The abstract method is based on the solvability of two auxiliary
boundary value problems on compact and on noncompact intervals, and uses some continu-
ity arguments and analysis in the phase space. As shown in the applications, Kneser-type
properties of solutions on compact intervals and a priori bounds of solutions on noncom-
pact intervals are key ingredients for the solvability of the problems considered, as well as
the properties of principal solutions of an associated half-linear equation. The application
of this method leads to some new existence results, which complement and extend some
previous ones in the literature.
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1. Introduction

The purpose of this work is twofold. First, based on the results in [5], [15], we

present a new approach that can be applied to solving a wide class of boundary value

problems on noncompact intervals for second order equations, also in the singular

case or in the presence of a parameter. This method is especially useful in the case
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qualitativo delle soluzioni delle Equazioni Differenziali Ordinarie (con eventuale ritardo)
and by the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Appli-
cazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).
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where the boundary conditions are of nonlocal type; multipoint, integral or functional

conditions can also be considered. Then, we show how this method can be applied

in some practical cases. In particular, a new existence result, complementing the

results in [15], is presented for solutions of a second order nonlinear equation with

nonconstant sign weight, satisfying an initial condition, an asymptotic condition and

a global condition on the half-line.

In order to present this method, consider the following boundary value problem

(BVP) for a second order nonlinear differential equation, possibly depending on a

parameter,

(1.1)

{(
a(t)Φ(x′)

)′
= f(t, x, x′) + λg(t, x, x′), t > 0,

x ∈ B,

where Φ: (−δ, δ) → (−σ, σ) is an increasing homeomorphism, with 0 < δ, σ 6 ∞,
a is a positive continuous function on [0,∞), f , g are continuous functions on [0,∞)×
R×R, λ > 0 is a real parameter and B is a subset of C[0,∞). The homeomorphism

Φ in (1.1) includes, as special cases, the 1-dimensional p-Laplacian operator Φp(u) =

|u|p sgnu, p > 0, u ∈ R, the curvature operator ΦC(u) = u/
√
1 + u2, u ∈ R, and the

relativistic operator ΦR(u) = u/
√
1− u2, |u| < 1.

Boundary value problems of type (1.1) have received an increasing interest in

the last years, due also to their physical applications, since, in some cases, they

are related to the existence of radial solutions of some boundary value problems

associated to elliptic operators. Many authors have dealt with problems of type (1.1)

in various frameworks. Fixed point theorems, continuation principles, upper and

lower solutions method and variational approaches have been employed to study the

solvability, uniqueness or multiplicity of solutions, see for instance [1], [14], [17], [18]

for a good survey of related results.

The method proposed here is particularly significant in the case where the condi-

tion x ∈ B is global, that is, it is nonlocal and can be verified only by examining the
behavior of x on the whole interval [0,∞). Examples of global conditions are x(t) > 0

for all t > 0, sup
t>0

x(t) 6 R, where R > 0 is a fixed constant, or
∫
∞

0
x(t) dt = 0. We

recall that a condition is called local if it acts on a compact subinterval of [0,∞),

and nonlocal otherwise.

This approach extends to noncompact intervals a method developed by Zanolin

et al. in [12], and allows also to treat problems depending on a parameter. It is

essentially based on the solvability of two auxiliary boundary value problems (typi-

cally one in a compact interval and the other on a half-line) and makes use of some

continuity arguments and simple analysis in the phase space.
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The abstract method is presented in Section 2, while in Section 3 some applications

show how it can be applied in some practical cases. In the applications presented

here, the lack of useful lower bounds, due to the fact that the boundary conditions

include both the initial condition x(0) = 0 and the global condition x(t) > 0 for t > 0,

leads to difficulties in using classical approaches for solving problems of type (1.1),

while our method is able to overcome these issues. The theory of principal solu-

tions of half-linear equations, developed in [9] (see also [2], [8]), plays an important

role in the study of the behavior of the positive solutions of an associated bound-

ary value problem on a noncompact interval. Combining Kneser-type properties of

solutions of a problem on a compact interval, a priori bounds of positive solutions

on a noncompact interval and continuity arguments, we prove an existence result

which complements and extends some previous ones in [6], [15]. Some comments

and related problems complete the paper.

2. The method

In order to study the solvability of (1.1), we consider two auxiliary boundary

value problems splitting the half-line [0,∞) in two parts, and study the properties

of solutions of the equations in (1.1) in each of them.

Let T > 0 be fixed. If B0 ⊂ C[0, T ] and BT ⊂ C[T,∞) are two given subsets,

we denote by B̃0 the subset of C[0,∞) consisting of functions whose “restriction” to

[0, T ] belongs to B0. Analogously, by B̃T we denote the subset of C[0,∞) consisting

of functions whose restriction to [T,∞) belongs to BT , i.e.,

B̃0 =
{
u ∈ C[0,∞) : ∃v ∈ B0 such that u(t) = v(t) in [0, T ]

}
,

B̃T =
{
u ∈ C[0,∞) : ∃v ∈ BT such that u(t) = v(t) in [T,∞)

}
.

Let B0 and BT be such that

(2.1) B̃0 ∩ B̃T ⊆ B.

First of all, for simplicity, we treat the case where the boundary value problem does

not depend on the parameter λ, i.e., we study the solvability of (1.1) with λ = 0.

Consider the following two auxiliary boundary value problems on the compact

interval [0, T ] and on the half-line [T,∞), respectively:

(2.2)

{(
a(t)Φ(x′)

)′
= f(t, x, x′), t ∈ [0, T ],

x ∈ B0,
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and

(2.3)

{(
a(t)Φ(x′)

)′
= f(t, x, x′), t > T,

x ∈ BT .

Assume that both the above problems are solvable, and let

(2.4) Γ0 =
{(

y(T ), y′(T )
)
: y is a solution of (2.2)

}
⊂ R

2,

ΓT =
{(

z(T ), z′(T )
)
: z is a solution of (2.3)

}
⊂ R

2.

Roughly speaking, the set Γ0 consists of all the points in the phase space reached

at time t = T by at least one solution of (2.2), while the set ΓT consists of all the

points with the following property: the solution of the Cauchy problem given by the

equation in (2.3) with any of these points as initial condition at time t = T is also

a solution of (2.3).

Theorem 2.1. Assume that (2.1) holds, and let Γ0, ΓT be the sets defined in (2.4).

Assume also that there exist two continuums S0, ST in R
2, with S0 ⊆ Γ0, ST ⊆ ΓT .

If

(2.5) S0 ∩ ST 6= ∅

then (1.1) with λ = 0 is solvable. Furthermore, if (c1, d1), (c2, d2) are two different

points in S0 ∩ ST , then the problem has at least two distinct solutions.

P r o o f. Let (c, d) ∈ S0 ∩ ST . Then (c, d) ∈ Γ0 and there exists a solution y

of (2.2) such that y(T ) = c, y′(T ) = d. Furthermore, (c, d) ∈ ΓT and there exists

a solution z of (2.3) such that z(T ) = c, z′(T ) = d. Put

x(t) =

{
y(t), t ∈ [0, T ],

z(t), t > T,

then x satisfies the equation in (1.1) with λ = 0 for all t > 0, and x, a(t)Φ(x′) ∈
C1[0,∞). Next, since y ∈ B0, then x ∈ B̃0, and since z ∈ BT , then x ∈ B̃T . Condi-

tion (2.1) implies that x ∈ B and therefore x is a solution of (1.1) with λ = 0. The

second assertion immediately follows by observing that if x1 is the solution corre-

sponding to (c1, d1) and x2 is the solution corresponding to (c2, d2), then x1(T ) = c1,

x′

1(T ) = d1, x2(T ) = c2, x
′

2(T ) = d2. �
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Now consider the case where the boundary value problem depends on a real pa-

rameter λ, and consider the two auxiliary problems

(2.6)

{(
a(t)Φ(x′)

)′
= f(t, x, x′) + λg(t, x, x′), t ∈ [0, T ],

x ∈ B0,

and

(2.7)

{(
a(t)Φ(x′)

)′
= f(t, x, x′) + λg(t, x, x′), t > T,

x ∈ BT ,

where B0 ⊂ C[0, T ], BT ⊂ C[T,∞) satisfy (2.1). Let

(2.8) Γ̂0 =
{(

Λ, y(T ), y′(T )
)
: y is a solution of (2.6) for λ = Λ

}
⊂ R

3,

Γ̂T =
{(

Λ, z(T ), z′(T )
)
: z is a solution of (2.7) for λ = Λ

}
⊂ R

3.

The following existence result holds, which is the extension of Theorem 2.1 to the

3-dimensional case. The proof of this result can be easily deduced from the previous

one, and is therefore omitted.

Theorem 2.2. Assume that (2.1) holds, and let Γ̂0, Γ̂T be the sets defined in (2.8).

Assume also that there exist two continuums Ŝ0, ŜT in R
3, with Ŝ0 ⊆ Γ̂0, ŜT ⊆ Γ̂T .

If

(2.9) Ŝ0 ∩ ŜT 6= ∅

then (1.1) is solvable. Furthermore, if (λ1, c1, d1), (λ2, c2, d2) are two different points

in Ŝ0 ∩ ŜT , then (1.1) has at least two distinct solutions.

The key point in Theorems 2.1, 2.2 is the choice of the sets B0 and BT . Indeed,

the auxiliary boundary value problems (2.2) and (2.3) (or (2.6) and (2.7)) need not

only to be solvable, but also to admit a sufficiently large number of solutions so that

the condition (2.5) (or (2.9)) is satisfied. Furthermore, the set of solutions of both

the problems needs to have some good topological properties, in order to have the

existence of the closed, connected subsets S0 ⊆ Γ0, ST ⊆ ΓT (Ŝ0 ⊆ Γ̂0, ŜT ⊆ Γ̂T ).

This condition is fulfilled if, for instance, the solutions of both auxiliary problems

have the property of continuous dependence on the initial data. More specifically,

in order to apply Theorem 2.1, we have to choose two auxiliary problems such that

each of them has at least a continuum of solutions (i.e., to prove the existence of S0

and ST ), to study the properties of S0 and ST and to prove the existence of at least

one intersection point. The same applies to Theorem 2.2.
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In the next section, we present some applications of Theorems 2.1 and 2.2, pointing

out the construction of the auxiliary problems and the related properties of the sets

of solutions. The existence result for the first boundary value problem presented

here is new and complements some previous results in [6], [15].

3. Applications

As a first example, consider the boundary value problem

(3.1)

{(
r(t)Φ(x′)

)′
= q(t)f(x), t > 0,

x(0) = 0, x(t) > 0, t > 0, x′(t) < 0, t large, 0 < lim
t→∞

x(t) < ∞,

where Φ(u) = |u|p sgnu for u ∈ R and p > 0, r is a positive continuous function on

[0,∞), f is a continuous increasing function on R, satisfying the super-homogeneity

condition

(3.2) (a) lim
u→0+

f(u)

Φ(u)
= 0, (b) lim

u→∞

f(u)

Φ(u)
= ∞,

and q is a continuous function on [0,∞), with q(t) 6 0, q(t) 6≡ 0, for t ∈ [0, 1], and

q(t) > 0 for t > 1, q(t) 6≡ 0 for large t.

The “crucial” point in the boundary conditions of (3.1) is the global request that

the solution has to be positive for all t > 0 and zero at the initial point. This causes

a lack of useful lower bounds and makes standard approaches difficult to apply.

Let

R(t) =

∫ t

1

r−1/p(s) ds, J = lim
T→∞

∫ T

1

(
r−1(t)

∫ T

t

q(s) ds

)1/p
dt.

In [15] it is proved that the equation in (3.1) has at least one solution satisfying

x(0) = 0, x(t) > 0 for t > 0, lim
t→∞

x(t) = 0 if and only if R(∞) < ∞ or R(∞) = ∞
and J = ∞. We therefore study (3.1) in the remaining case, that is, we assume

(3.3) R(∞) = ∞, J < ∞.

We point out that the condition that q has no constant sign on [0,∞) is necessary

for the existence of at least one solution of (3.1). Indeed, if q(t) > 0 for t > 0, we

can consider the function G(t) = r(t)Φ(x′)x, where x is a solution of (3.1). Since

G′(t) = q(t)f(x)x+r(t)|x′|p+1, then G is nondecreasing, and, as G(0) = 0, we obtain

G(t) > 0 for t > 0. Thus, the positivity of x yields the existence of a point t0 > 0 such
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that G(t) > 0 for t > t0 which yields x
′(t) > 0 for t > t0, which is a contradiction. If

q(t) 6 0 for t > 0, for any solution x of (3.1) the quasiderivative x[1](t) = r(t)Φ(x′(t))

is nonincreasing. Clearly, if lim
t→∞

x[1](t) = k > 0, then x′(t) > 0 for all t, which is

a contradiction. Then lim
t→∞

x[1](t) = −k < 0, which implies x[1](t) < −k/2 for large t.

Integrating the inequality x′(t) < −r(t)−1/p(k/2)1/p on [T, t0], with T sufficiently

large, we get

x(T )− x(t0) < −(k/2)1/p
∫ T

t0

r−1/p(s) ds,

which contradicts as T → ∞ the positivity of x. Therefore, for the solvability of

(3.1), the function q needs to change its sign at least once.

In order to solve (3.1), we can consider the following two auxiliary boundary value

problems on [0, 1] and on [1,∞), respectively:

(3.4)

{(
r(t)Φ(x′)

)′
= q(t)f(x), t ∈ [0, 1],

x(0) = 0, x(t) > 0, t ∈ (0, 1),

and

(3.5)

{(
r(t)Φ(x′)

)′
= q(t)f(x), t > 1,

x(t) > 0, x′(t) < 0, t > 1.

Notice that q(t) 6 0 in [0, 1], while q(t) > 0 in [1,∞).

Step 1. Existence of the continuum S0 and its properties. By a classical result

by Erbe and Wang [10], [19], see also [15], problem (3.4) under conditions (3.2) has

at least two solutions y, w satisfying the additional conditions y(1) = 0, w′(1) = 0,

respectively. If we consider the Cauchy problem

(3.6)

{(
r(t)Φ(x′)

)′
= q(t)f(x+), t ∈ [0, 1],

x(0) = 0, x′(0) = A > 0,

where x+ = max{x, 0}, clearly every solution of (3.6) which is positive in (0, 1) is also
a solution of (3.4), and vice versa. Indeed, since r(t)Φ(x′) is nonincreasing, assuming

for contradiction x′(0) = 0, it follows that x′(t) 6 0 for t ∈ [0, 1], which, together

with the condition x(0) = 0, contradicts the positivity of x in (0, 1).

The following properties for the solutions of (3.6) hold. The proof can be found

in [15] and here is omitted.
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Lemma 3.1. Every solution of (3.6) is defined on the whole interval [0, 1]. Fur-

thermore, if x is a solution of (3.6), with x(t0) 6 0 for 0 < t0 6 1, then x′(t0) < 0.

In particular, since all the solutions of (3.6) are persistent, the following general-

ization of Kneser’s theorem (see for instance [4]) can be applied to solutions of (3.6).

Proposition 3.1. Consider the system

z′ = F (t, z), (t, z) ∈ [a, b]× R
n,

where F is continuous, and let K0 be a continuum (i.e., compact and connected) sub-

set of {(t, z) : t = a} and Z(K0) the family of all the solutions emanating from K0.

If any solution z ∈ Z(K0) is defined on the interval [a, b], then the cross-section

Z(b;K0) = {z(b) : z ∈ Z(K0)} is a continuum in R
n.

Now, let Ay = y′(0) > 0, Aw = w′(0) > 0, where y, w are the solutions of (3.4)

satisfying the additional conditions y(1) = 0, w′(1) = 0, respectively. Then y, w are

also nonnegative solutions of (3.6) for A = Ay and A = Aw, respectively. Assume,

without restriction, Ay < Aw. Then Proposition 3.1 ensures that the set

T =
{(

x(1), x′(1)
)
: x is a solution of (3.6) such that x′(0) = A ∈ [Ay, Aw]

}

is a continuum in R
2, containing the points (w(1), 0) and (0, y′(1)). Notice that

Lemma 3.1 gives w(1) > 0 and y′(1) < 0. Furthermore, T does not contain any

point (0, c) with c > 0. It follows that a continuum S0 ⊆ T exists, such that S0 is

contained in π = {(u, v) : u > 0, v 6 0}, (0, 0) /∈ S0, and there exist R,M > 0 such

that (R, 0) ∈ S0, (0,−M) ∈ S0. Furthermore,

S0 ⊆ Γ0 =
{(

x(1), x′(1)
)
: x is a solution of (3.4)

}
,

since every point of S0 corresponds to a solution of (3.6) which is positive on (0, 1).

Step 2. Existence of the continuum S1 and its properties. Now consider problem

(3.5). In order to derive the properties of the solutions of (3.5), it is useful to compare

them with the principal solutions of an associated half-linear equation. We recall that

the notion of principal solutions, introduced for second order nonoscillatory linear

equations by Leighton and Morse (see, e.g. [13], Chapter 11), has been extended to

the half-linear equation

(3.7)
(
r(t)Φ(x′)

)′
= p(t)Φ(x), t > 1

in [9] by using the Riccati equation approach. (See also [8] for a good survey on

the theory of principal solutions.) The set of principal solutions of (3.7) is always
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nonempty and for any µ 6= 0 there exists a unique principal solution z such that

z(1) = µ, i.e., principal solutions are determined up to a constant factor. The

characteristic properties of principal solutions for (3.7), when p is positive for t > 1,

are investigated in [2]. In particular, it is shown that, roughly speaking, principal

solutions of (3.7) are the smallest solutions in a neighborhood of infinity and, under

the assumptions

∫
∞

1

r−1/p(s) ds = ∞, lim
T→∞

∫ T

1

(
r−1(t)

∫ T

t

p(s) ds

)1/p
dt < ∞,

any principal solution z satisfies z(t)z′(t) < 0 for every t > 1, and lim
t→∞

z(t) = lz 6= 0,

see [2], Corollary 1. We point out that these properties hold also when p(t) > 0 for

t > 1, p(t) 6≡ 0 for large t.

Let c > 0 be a fixed constant. The following lemma compares the solutions of

(3.5) and the principal solutions of (3.7), with p(t) = Mq(t), where

M = max
u∈[0,c]

f(u)

Φ(u)
.

Notice that (3.2 a) ensures that M is well defined.

Lemma 3.2. Assume (3.2 a) and (3.3), and let zγ be the principal solution of the

half-linear equation (
r(t)Φ(z′)

)′
= Mq(t)Φ(z)

with zγ(1) = γ, 0 < γ 6 c. Then for any solution x of (3.5), with x(1) = c, we have

x(t) > zγ(t), t > 1,(3.8)

x′(1) >
c

γ
z′γ(1),(3.9)

0 < lim
t→∞

x(t) < ∞.(3.10)

P r o o f. The argument is similar to the one in [15], Lemma 2.3. Here we only

briefly indicate the main differences.

First of all notice that the assumption R(∞) = ∞ implies that lim
t→∞

x[1](t) =

lim
t→∞

z
[1]
γ (t) = 0, where we recall that x[1](t) = r(t)Φ(x′(t)), z

[1]
γ (t) = r(t)Φ(z′γ(t)).

Indeed, since x[1](t) is negative nondecreasing, it has a finite nonpositive limit. If

lim
t→∞

x[1](t) = −l < 0, integrating the inequality x[1](t) 6 −l on [1, t], t > 1, we get

x(t) 6 x(1)− l

∫ t

1

r−1/p(s) ds
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and letting t → ∞ we obtain a contradiction with the positivity of x. The same

holds for zγ .

Put g(t) = x(t) − zγ(t), since x and zγ are both positive decreasing, the limit

lim
t→∞

g(t) = g(∞) exists and it is finite. If g(∞) < 0, there exists T > 1 such that

x(t) < zγ(t) for every t > T , i.e., Φ(x(t)) < Φ(zγ(t)) for every t > T . Furthermore,

since g(1) = c − γ > 0, we can assume that g(T ) = 0. Then, taking into account

that lim
t→∞

x[1](t) = lim
t→∞

z
[1]
γ (t) = 0, it results for t > T that

−r(t)
[
Φ(x′)− Φ(z′γ)

]
=

∫
∞

t

q(s)
[
f(x(s)) −MΦ(zγ(s))

]
ds

6 M

∫
∞

t

q(s)
[
Φ(x(s))− Φ(zγ(s))

]
ds < 0,

i.e., Φ(x′) > Φ(z′γ), which implies g
′(t) > 0 for t > T . This is a contradiction, as

g(T ) = 0 and g(t) < 0 for t > T . Thus g(∞) > 0. Since g(1) > 0, in order to

prove that g is nonnegative on [1,∞), it is sufficient to prove that g has no negative

minimum. Now the proof goes on as in [15], Lemma 2.3, and (3.8), (3.9) are proved.

The positivity of the limit of x immediately follows from (3.8) since zγ has a positive

limit at infinity. �

The existence of solutions for (3.5) now follows as an easy consequence of a result

by Chanturiya [3].

Theorem 3.1. Assume (3.2 a) and (3.3). Then for every c > 0 fixed, (3.5) has

a unique solution satisfying x(1) = c.

P r o o f. The existence of a solution x of the equation in (3.5), satisfying x(1) = c,

x(t) > 0, x′(t) 6 0 for all t > 1 follows by [3], Theorem 1. In order to prove that

x satisfies also the conditions in (3.5), it is sufficient to show that x′(t) < 0 for all

t > 1. First of all we remark that, under assumption (3.2 a), any nontrivial solution

of the equation in (3.5), defined for all t > 1, is not eventually zero (see, e.g., [16],

Theorem 1.2 and Remark 1.1). Now assume, for contradiction, that t0 > 1 exists,

such that x′(t0) = 0. Let G(t) = r(t)Φ(x′)x. Since G′(t)= q(t)f(x)x+r(t)|x′|p+1 > 0,

then G is nondecreasing, with G(t0) = 0. If G(t) ≡ 0 for every t > t0, then the

positivity of r yields x′ ≡ 0 on [t0,∞), i.e., x is eventually constant and positive.

This is impossible since f(x) > 0 for x > 0. Then t1 > t0 exists, such that G(t) > 0

for every t > t1. Thus, x
′(t) > 0 for every t > t1, which is again a contradiction.

The uniqueness of the solution follows from a classical result by Mambriani, in

which the same property is proved for a generalized Thomas-Fermi equation. Indeed,

if f is increasing, then two positive solutions of the equation in (3.5), both defined for
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t > 1, can cross at most in one point, including t = ∞. Furthermore, there cannot
exist two positive solutions starting from the same point and having a finite limit at

infinity. �

For every c > 0 let x(t; c) be the unique solution of (3.5) such that x(1; c) = c, and

let G : (0,∞) → (−∞, 0) be the function that associates to every c > 0 the value of

the derivative of x at t = 1:

G(c) = x′(1; c).

Let S1 be the graph of G, i.e., S1 = {(c,G(c)), c > 0} ⊂ R
2. Then the following

holds.

Theorem 3.2. Under the assumptions of Theorem 3.1, S1 is an unbounded

continuum contained in π = {(u, v) : u > 0, v < 0} and lim
c→0+

G(c) = 0.

P r o o f. First we show that G is a continuous function on (0,∞). Fixed c > 0,

let {cn} be a positive sequence converging to c. Denote xn(t) = x(t; cn) and x(t) =

x(t; c), and choose n large enough so that c/2 6 cn 6 3c/2. Let M > 0 such that

f(u) 6 MΦ(u) for every u ∈ [0, 3c/2], and let z be the principal solution of the

half-linear equation (r(t)Φ(z′))′ = Mq(t)Φ(z) such that z(1) = c/2. Since xn(t) 6

cn 6 3c/2 and, taking into account Lemma 3.2, xn(t) > z(t) > lim
t→∞

z(t) = lz > 0,

the sequence {xn} is equibounded on [1,∞). Since

x[1]
n (1) = −

∫
∞

1

q(r)f(xn(r)) dr,

using the Lebesgue dominated convergence theorem we get

lim
n

G(cn) = lim
n

x′

n(1) = −
(

1

r(1)

∫
∞

1

q(s)f(x(s)) ds

)1/p
= x′(1) = G(c).

Thus, G is a continuous map and so S1 is a continuum.

It remains to show that S1 has (0, 0) as a cluster point. To this aim, let {cn} be
a positive sequence such that limn cn = 0, and let xn(t) = x(t; cn). Assume without

restriction that cn 6 1 for every n, and let M > 0 be such that f(u) 6 MΦ(u)

for every u ∈ [0, 1]. Considering the half-linear equation (r(t)Φ(z′))′ = Mq(t)Φ(z),

let zn(t) and z(t) be the principal solutions satisfying zn(1) = cn and z(1) = 1,

respectively. By the uniqueness up to a constant factor clearly we have zn(t) = cnz(t),

t > 1. Then, from (3.9), it results that

0 > x′

n(1) > z′n(1) = cnz
′(1),

and letting n → ∞ we have the assertion. �
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Step 3. Application of Theorem 2.1. We are now in a position to apply Theo-

rem 2.1.

Theorem 3.3. Assume that (3.2) and (3.3) hold. Then (3.1) has at least one

solution.

P r o o f. First of all notice that from (3.10) in Lemma 3.2 the problem (3.5) is

equivalent to the following one:

(3.11)

{(
r(t)Φ(x′)

)′
= q(t)f(x), t > 1,

x(t) > 0, x′(t) < 0, t > 1, 0 < lim
t→∞

x(t) < ∞.

If we put

B =
{
x ∈ C[0,∞) : x(0) = 0, x(t) > 0, t > 0,

x′(t) < 0, t large, 0 < lim
t→∞

x(t) < ∞
}
,

B0 =
{
x ∈ C[0, 1] : x(0) = 0, x(t) > 0, t ∈ (0, 1]

}
,

B1 =
{
x ∈ C[1,∞) : x(t) > 0, x′(t) < 0, t > 1, 0 < lim

t→∞

x(t) < ∞
}
,

then clearly B̃0 ∩ B̃1 ⊂ B. We have seen that

S0 ⊆ Γ0 =
{(

x(1), x′(1)
)
: x is a solution of (3.4)

}

is a continuum in R
2, and also

S1 =
{(

x(1), x′(1)
)
: x is a solution of (3.11)

}

is a continuum in R2, emanating from the origin and unbounded, see Figure 1 below.

Since, clearly, S0 ∩ S1 6= ∅, then (3.1) has at least one solution. �

x(1)

x′(1)

(0,−M)

(R, 0)

S0

x(1)

x′(1)

S1

Figure 1. The connected sets S0 and S1.
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Theorem 3.3 complements the results in [15], since it deals with complementary

assumptions on the coefficients, and the results in [7] since the zero initial condition

is assumed.

Other applications of Theorems 2.1 and 2.2 can be found in [5], [15]. More pre-

cisely, in [15] the boundary value problem

(3.12)

{(
r(t)Φ(x′)

)′
= q(t)f(x), t > 0,

x(0) = 0, x(t) > 0, t > 0, lim
t→∞

x(t) = 0,

is considered, where, as in the previous example, Φ(u) = |u|p sgnu for u ∈ R and

p > 0, r is a positive continuous function on [0,∞), f is a continuous increasing

function on R, satisfying the super-homogeneity condition (3.2) and q is a continuous

function on [0,∞), with q(t) 6 0, q(t) 6≡ 0, for t ∈ [0, 1], and q(t) > 0 for t > 1,

q(t) 6≡ 0 for large t.

It is also possible to apply Theorem 2.1 to this problem in order to prove the

existence of at least one solution. The reasoning is very similar to that seen in the

first example, and the details can be found in [15].

An application of Theorem 2.2 can be found in [5]. We limit ourself to describe

here the main ideas. The problem is the following:

(3.13)

{(
r(t)Φ(x′)

)′
+ f(t, x) = λq(t)F (x), t > 0,

x(0) = 0, x′(1) 6 0, x(t) > 0, t > 0, 0 < lim
t→∞

x(t) < ∞,

where Φ(u) = |u|p sgnu for u ∈ R and 0 < p 6 1, r is a positive continuous function

on [0,∞) and f is a continuous function on [0,∞)× [0,∞) such that f(t, u) > 0 on

[0, 1] × [0,∞), f(t, u) ≡ 0 on [1,∞) × [0,∞), and there exists [T1, T2] ⊆ [0, 1] such

that min
t∈[T1,T2]

f(t, u) > 0 for any u > 0. Furthermore, λ > 0 is a real parameter, q

is a continuous function on [0,∞) such that q(t) ≡ 0 on [0, 1], and F is a positive

continuous function on [0,∞) and locally Lipschitz on (0,∞). No assumption is

made on the sign of q.

Put, similarly to the previous examples,

R(t) =

∫ t

1

r−1/p(s) ds, J = lim
T→∞

∫ T

1

(
r−1(t)

∫ T

t

|q(s)| ds
)1/p

dt.

The existence of solutions of (3.13) is studied under the assumptions

(3.14) R(∞) = ∞, J < ∞,
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and the super-homogeneity or sub-homogeneity condition on f , i.e., in the case where

f satisfies

(3.15) lim
u→0+

(
max
t∈[0,1]

f(t, u)

Φ(u)

)
= 0, lim

u→∞

(
min

t∈[T1,T2]

f(t, u)

Φ(u)

)
= ∞,

or

(3.16) lim
u→0+

(
min

t∈[T1,T2]

f(t, u)

Φ(u)

)
= ∞, lim

u→∞

(
max
t∈[0,1]

f(t, u)

Φ(u)

)
= 0.

Since q ≡ 0 in [0, 1] and f ≡ 0 for t > 1, the auxiliary boundary value problems

considered are

(3.17)

{(
r(t)Φ(x′)

)′
+ f(t, x) = 0, t ∈ [0, 1],

x(0) = 0, x(t) > 0, t ∈ (0, 1),

and

(3.18)

{(
r(t)Φ(x′)

)′
= λq(t)F (x), t > 1,

x′(1) 6 0, x(t) > 0, t > 1, 0 < lim
t→∞

x(t) < ∞.

Step 1. Existence of the continuum Ŝ0 and its properties. Notice that prob-

lem (3.17) does not depend on the parameter λ. Since f satisfies the assumption

(3.15) or (3.16), the proof that the set of all solutions of (3.17) contains a continuum

S0 ⊂ R
2 follows with minor changes from the analogous result seen in the first appli-

cation. Also in this case S0 is contained in π = {(u, v) : u > 0, v 6 0}, (0, 0) /∈ S0,

and there exist R,M > 0 such that (R, 0) ∈ S0, (0,−M) ∈ S0, see Figure 1. Thus

Ŝ0 = {(λ, c, d) : λ ∈ R, (c, d) ∈ S0}

is a continuum in R
3. Roughly speaking, it is a “cylindric” surface, orthogonal to

the plane λ = 0, whose projection on λ = 0 is the continuum S0.

Step 2. Existence of the continuum Ŝ1 and its properties. For every c > 0 fixed,

let Ic = [c/2, 3c/2] and assume that

(3.19) Mc,F = inf
c>0

minIc F (x)

maxIc F (x)
> 0.

The class of continuous functions satisfying the above conditions is sufficiently wide.

For instance if F is a sum of positive powers then it satisfies (3.19). See [5] for

a complete discussion on this assumption. The following existence result for (3.18),

based on the Banach contraction theorem, holds.
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Theorem 3.4. Assume (3.14) and

(3.20)

∫
∞

1
q−(t) dt∫

∞

1 q+(t) dt
6 Mc,F ,

for every c > 0, where q−, q+ denote the negative and the positive part of q, respec-

tively. Then for any c > 0 there exists λc > 0, depending continuously on c, such

that for any positive λ 6 λc the problem (3.18) has a unique solution x satisfying

x(1) = c, c/2 6 x(t) 6 3c/2, for all t > 1.

Under the assumptions of Theorem 3.4, let D = {(λ, c) : 0 < λ 6 λc, c > 0} and
denote by x(t;λ, c), (λ, c) ∈ D, the unique solution of (3.18) satisfying x(1;λ, c) = c

and laying in the strip Ic. Let G : D → (−∞, 0] be the function that associates to

every (λ, c) ∈ D the value of the derivative of x at t = 1:

G(λ, c) = x′(1;λ, c),

and let Ŝ1 be the graph of G, i.e. Ŝ1 = {(λ, c,G(λ, c)), (λ, c) ∈ D} ⊂ R
3. The

properties of the set Ŝ1 are described by the following theorem, based on the proof

of the continuity of the map G.

Theorem 3.5. Under the assumptions of Theorem 3.4, Ŝ1 is an unbounded

continuum and lim
c→0+

G(λ, c) = 0 in D, lim
λ→0+

G(λ, c) = 0 for every c > 0.

Step 3. Application of Theorem 2.2. Taking into account Theorems 3.4 and 3.5,

the following holds.

Theorem 3.6. Assume that (3.15) or (3.16) holds and let (3.14) and (3.20) be

satisfied. Then the boundary value problem (3.13) has at least one solution for every

λ > 0 sufficiently small.

P r o o f. We have seen that Ŝ0, Ŝ1 are continuums in R
3, both contained in

{(u, v, w) : u > 0, v > 0, w 6 0}. In particular, Ŝ0 = {(λ, c, d) : λ > 0, (c, d) ∈ S0}
while Ŝ1 is the unbounded graph of a continuous function G of (λ, c). Then clearly

Ŝ0 and Ŝ1 have nonempty intersection, and there exists a continuous curve whose

image γ lays in the intersection

Ŝ0 ∩ Ŝ1 ⊇ γ,

and whose projection on the λ-axis is an interval (0, λ̂) for λ̂ > 0 sufficiently small.

�

167



Several open problems are related to the results presented in this section.

First of all, in the boundary value problems (3.1) and (3.12), the function q is

assumed to have only one change of sign, and in particular q(t) > 0 for t > 1. Thus

the auxiliary problem on [1,∞) has nonnegative weight, and this allows us to use

the principal solutions associated to a suitable half-linear equation as positive lower

bounds for the solutions of the problem in [1,∞). If q has no constant sign on [1,∞),

then the principal solutions of the half-linear equation still exist, but, in general, they

are no more positive on the whole half-line. How to deal with this case is still an

open problem for (3.12), in which the limit of the solution at infinity is required to

be zero.

The abstract method proposed in Section 2 allows also to prove the multiplicity of

solutions of (1.1), provided we are able to prove that the sets S0 and S1 (or Ŝ0 and

Ŝ1) have more than one point of intersection. Several results in the literature deal

with multiplicity of solutions for problems in compact intervals, see for instance [11]

and the literature therein, and can be applied to (2.2). It is an open problem how

to use these results to prove the existence of more than one solution for (1.1).

In (3.13) we have assumed that p 6 1. This condition is useful to obtain the

uniqueness of the solutions of the BVP (3.18) which take values on Ic. The uniqueness

property allows us to define the function G and to consider its graph, that is, the

surface Ŝ1. Under the more general condition p > 0, it is still possible to prove, for

instance using the Shauder-Tychonoff fixed point theorem, that (3.18) has at least

one solution. Then G comes out to be, in general, a multimap with real values,

and it is an open problem whether it has a continuous selection, whose graph would

define the set Ŝ1.
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