EQUIVARIANT MAPPINGS FROM VECTOR PRODUCT INTO G-SPACE OF VECTORS AND ε -VECTORS WITH $G = O(n, 1, \mathbb{R})$

BARBARA GLANC, ALEKSANDER MISIAK, ZOFIA STĘPIEŃ, Szczecin

(Received September 15, 2004)

Abstract. In this note all vectors and ε -vectors of a system of $m \leqslant n$ linearly independent contravariant vectors in the n-dimensional pseudo-Euclidean geometry of index one are determined. The problem is resolved by finding the general solution of the functional equation $F(Au, Au, \dots, Au) = (\det A)^{\lambda} \cdot A \cdot F(u, u, \dots, u)$ with $\lambda = 0$ and $\lambda = 1$, for an arbitrary pseudo-orthogonal matrix A of index one and given vectors u, u, \dots, u and u, u, \dots, u arbitrary pseudo-orthogonal matrix u, u, \dots, u

Keywords: G-space, equivariant map, pseudo-Euclidean geometry

MSC 2000: 53A55

1. Introduction

For $n \ge 2$ consider the matrix $E_1 = [e_{i,j}] \in GL(n,\mathbb{R})$ where

$$e_{i,j} = \begin{cases} 0 & \text{for } i \neq j, \\ +1 & \text{for } i = j \neq n, \\ -1 & \text{for } i = j = n. \end{cases}$$

Definition 1. A pseudo-orthogonal group of index one is a subgroup of the group $GL(n, \mathbb{R})$ satisfying the condition

$$G = 0(n, 1, \mathbb{R}) = \{A : A \in GL(n, \mathbb{R}) \land A^T \cdot E_1 \cdot A = E_1\}.$$

Denoting $\varepsilon(A) = \operatorname{sign}(\det A) = \det A$ we have $\varepsilon(A \cdot B) = \varepsilon(A) \cdot \varepsilon(B)$.

The class of G-spaces $(M_{\alpha}, G, f_{\alpha})$, where f_{α} is an action of G on the space M_{α} , constitutes a category if we take as morphisms equivariant maps $F_{\alpha,\beta} \colon M_{\alpha} \longrightarrow M_{\beta}$,

i.e. the maps which satisfy the condition

(1.1)
$$\bigwedge_{\alpha,\beta} \bigwedge_{x \in M_{\alpha}} \bigwedge_{A \in G} F_{\alpha,\beta}(f_{\alpha}(x,A)) = f_{\beta}(F_{\alpha,\beta}(x),A).$$

This category is called a geometry of the group G. In particular, among the objects of this category are:

the G-spaces of contravariant vectors and ε -vectors

$$(1.2) \qquad (\mathbb{R}^n, G, f), \text{ where } \bigwedge_{u \in \mathbb{R}^n} \bigwedge_{A \in G} f(u, A) = \begin{cases} A \cdot u & \text{for vectors,} \\ \varepsilon(A) \cdot A \cdot u & \text{for } \varepsilon\text{-vectors,} \end{cases}$$

the G-spaces of scalars and ε -scalars

$$(1.3) \qquad (\mathbb{R},G,f), \text{ where } \bigwedge_{x\in\mathbb{R}}\bigwedge_{A\in G}f(x,A) = \begin{cases} x & \text{for scalars,} \\ \varepsilon(A)\cdot x & \text{for ε-scalars.} \end{cases}$$

For $m=1,2,\ldots,n$ let a system of linearly independent vectors u,u,\ldots,u be given. Every equivariant mapping F of this system into G-spaces of scalars, ε -scalars, vectors, ε -vectors satisfies the equality (1.1) which, applying the transformation rules (1.2) and (1.3), may be rewritten into the form

(1.4)
$$\bigwedge_{A \in G} F(Au, Au, \dots, Au) = F(u, u, \dots, u) \quad \text{for scalars,}$$

$$(1.5) \qquad \bigwedge_{A \in G} F(A_1^u, A_2^u, \dots, A_m^u) = \varepsilon(A) \cdot F(\underbrace{u}_{1}, \underbrace{u}_{2}, \dots, \underbrace{u}_{m}) \qquad \text{for } \varepsilon\text{-scalars},$$

(1.6)
$$\bigwedge_{A \in G} F(A_1, A_2, \dots, A_m) = A \cdot F(u, u, \dots, u) \quad \text{for vectors},$$

(1.7)
$$\bigwedge_{A \in G} F(A_1, A_2, \dots, A_m) = \varepsilon(A) \cdot A \cdot F(u, u_1, \dots, u_m)$$
 for ε -vectors.

For a pair u, v of contravariant vectors the mapping $p(u, v) = u^T E_1 v$ satisfies (1.4), namely

$$p(Au, Av) = (Au)^T E_1(Av) = u^T (A^T E_1 A)v = u^T E_1 v = p(u, v).$$

In [5] it was proved that the general solution of the equation (1.4) is of the form

(1.8)
$$F(\underbrace{u}_{1}, \underbrace{u}_{2}, \dots, \underbrace{u}_{m}) = \Theta(p(\underbrace{u}_{i}, \underbrace{u}_{j})) = \Theta(p_{ij}) \quad \text{for } i \leqslant j = 1, 2, \dots, m \leqslant n$$

where Θ is an arbitrary function of $\frac{1}{2}m(m+1)$ variables p_{ij} . The general solution of the equation (1.5) was found in [4]. Before presenting the explicit formula for it, let us denote by $L_m = L(u, u, \dots, u)$ the linear subspace generated by the vectors u, u, \dots, u and by $p|L_m$ the restriction of the form p to the subspace L_m .

Definition 2. The subspace L_m is called

- (1) an Euclidean subspace if the form $p|L_m$ is positively definite,
- (2) a pseudo-Euclidean subspace if the form $p|L_m$ is regular and indefinite,
- (3) a singular subspace if the form $p|L_m$ is singular.

If we denote

$$P(m) = P(\underbrace{u, u, \dots, u}_{1}, \dots, \underbrace{u}_{m}) = \begin{vmatrix} p_{11} & p_{12} & \dots & p_{1m} \\ p_{21} & p_{22} & \dots & p_{2m} \\ \dots & \dots & \dots \\ p_{m1} & p_{m2} & \dots & p_{mm} \end{vmatrix} = \det[p(\underbrace{u, u}_{i})]_{1}^{m} = \det[p_{ij}]_{1}^{m}$$

then the above three cases are equivalent to P(m) > 0, P(m) < 0 and P(m) = 0, respectively. Let P_{ij} denote the cofactor of the element p_{ij} of the matrix $[p_{ij}]_1^m$ and let $P_{11} = 1$, P(0) = 1 by definition.

Let us consider an isotropic cone $K_0 = \{u : u \in \mathbb{R}^n \land p(u,u) = 0 \land u \neq 0\}$. It is an invariant and transitive subset. Every isotropic vector $v \in K_0$ determines an isotropic direction which, by virtue of $v^n \neq 0$ and $v = v^n \left[\frac{v^1}{v^n}, \frac{v^2}{v^n}, \dots, \frac{v^{n-1}}{v^n}, 1\right]^T = v^n [q^1, q^2, \dots, q^{n-1}, 1]^T$ with $\sum_{i=1}^{n-1} (q^i)^2 = 1 = q^n$, is equivalent to the point q belonging to the sphere S^{n-2} .

In two cases we get particular solutions of the equation (1.5). In the case m=n that equation is fulfilled by the mapping \det . For $A\in G$ we have

$$W^{/} = \det(Au, Au, \dots, Au) = \varepsilon(A) \cdot \det(u, u, \dots, u) = \varepsilon(A) \cdot W.$$

If m=n-1 and P(n-1)=0 then the singular subspace $L(\underbrace{u},\underbrace{u}_1,\ldots,\underbrace{u}_{n-1})$ determines exactly one isotropic direction $q\in S^{n-2}$ whose representative, if $P(n-2)\neq 0$, is of the form

$$(1.9) v = \frac{1}{2P(n-2)} \sum_{i=1}^{n-1} {n-1 \choose P_{n-1,i}} \cdot u = v^n [q^1, q^2, \dots, q^{n-1}, 1]^T \in K_0 \cap L_{n-1}.$$

From p(u, v) = 0 for i = 1, 2, ..., n - 1 it follows that each vector u is of the form

$$(1.10) u_i = \left[u_i^1, u_i^2, \dots, u_i^{n-1}, \sum_{k=1}^{n-1} u_i^k q^k \right]^T \text{where } \Delta = \det[u_i^j]_1^{n-1} \neq 0.$$

The two 1-forms $\det(u_1, \ldots, u_r, v, u_r, \ldots, u_r, x)$ and p(v, x) vanish on the subspace $L(u_1, u_1, \ldots, u_r)$, and consequently there exist uniquely determined numbers $B_r = 0$

 $B_r(\underbrace{u}_1,\underbrace{u}_2,\ldots,\underbrace{u}_r,\ldots,\underbrace{u}_{n-1})$ such that

(1.11)
$$\det(u, \dots, u_{r-1}, v, u_{r+1}, \dots, u_{n-1}, x) = -B_r(u, u_{r-1}, \dots, u_{n-1}) \cdot p(v, x).$$

As det is an ε -scalar, p is a scalar as well, so it follows from (1.11) that each B_r is an ε -scalar. Taking any given $A \in G$ we have

$$B_r' = B_r(A_1^u, \dots, A_n^u, \dots, A_{n-1}^u) = \varepsilon(A) \cdot B_r(u_1, \dots, u_r, \dots, u_n) = \varepsilon(A) \cdot B_r.$$

From (1.9), (1.10) and (1.11) we get in terms of coordinates the formula

$$(1.12) \quad B_{r}(\underbrace{u, \dots, u, \dots, u}_{r}, \dots, \underbrace{u}_{n-1}) = \begin{vmatrix} u^{1} & \dots & u^{n-1} \\ \dots & \dots & \dots \\ u^{1} & \dots & u^{n-1} \\ r^{1} & \dots & q^{n-1} \\ q^{1} & \dots & q^{n-1} \\ u^{1} & \dots & u^{n-1} \\ r^{n-1} & \dots & \dots \\ u^{1} & \dots & \dots & u^{n-1} \\ \dots & \dots & \dots & \dots \\ u^{1} & \dots & u^{n-1} \\ n^{n-1} & \dots & u^{n-1} \end{vmatrix}$$
 for $r = 1, 2, \dots, n-1$.

We have $B_r \cdot B_k = P_{rk}^{n-1}$ and in particular $B_r^2 = P(u_1, \dots, u_{r-1}, u_1, \dots, u_{n-1})$, so at least one of the ε -scalars B_r is different from zero.

In [4] it was proved that the general solution of the equation (1.5) is of the form

$$(1.13) F(\underbrace{u, u, \dots, u}_{1}) = \begin{cases} 0 & \text{if } m < n - 1, \\ 0 & \text{if } m = n - 1, \ P(m) \neq 0, \\ \sum_{k=1}^{n-1} \Theta^{k}(p_{ij}) \cdot B_{k} & \text{if } m = n - 1, \ P(m) = 0, \\ \Theta(p_{ij}) \cdot \det(\underbrace{u, u, \dots, u}_{n}) & \text{if } m = n \end{cases}$$

where Θ , Θ^1 ,..., Θ^{n-1} are arbitrary functions of $\frac{1}{2}m(m+1)$ variables.

In this work we find the general solution of the functional equations (1.6) and (1.7).

2. The Schmidt process of pseudo-orthonormality

Definition 3. Two vectors $u \neq 0$ and $v \neq 0$ satisfying the condition p(u, v) = 0 are called orthogonal and write $u \perp v$.

Definition 4. We say that a vector u is

- (1) a versor, if p(u, u) = +1,
- (2) a pseudo-versor, if p(u, u) = -1.

Definition 5. We say that a system of vectors e, e, e, \dots, e constitutes a pseudo-orthonormal base if $[p(e, e)]_1^n = E_1$.

Let a sequence of linearly independent vectors $\underbrace{u}_1, \underbrace{u}_2, \ldots, \underbrace{u}_n, \underbrace{u}_n, \ldots, \underbrace{u}_n$ be given. This sequence generates a sequence of linear subspaces $L_1 = L(\underbrace{u}_1), L_2 = L(\underbrace{u}_1, \underbrace{u}_2), \ldots, L_s = L(\underbrace{u}_1, \underbrace{u}_2, \ldots, \underbrace{u}_n), \ldots, L_n$. Let us denote $\varepsilon_s = \operatorname{sign} P(s)$. Apparently $\varepsilon_n = -1$ and from the definition $\varepsilon_0 = +1$.

Definition 6. The sequence $(\varepsilon_0, \varepsilon_1, \dots, \varepsilon_s, \dots, \varepsilon_n) = (+1, \varepsilon_1, \dots, \varepsilon_s, \dots, \varepsilon_{n-1}, -1)$ will be called the signature of the sequence of subspaces $L_1, L_2, \dots, L_s, \dots, L_n$, or the signature of the sequence of vectors u, u, \dots, u, \dots, u .

In [5] it was proved that the only restriction is $\varepsilon_i \geqslant \varepsilon_{i+1}$ and that any given system of n linearly independent vectors can be arranged in the sequence $\underbrace{u}_1, \underbrace{u}_2, \ldots, \underbrace{u}_n, \ldots, \underbrace{u}_n$ with the signature either

- (1) $\varepsilon_0 = \ldots = \varepsilon_{s-1} = +1, \ \varepsilon_s = \ldots = \varepsilon_n = -1 \text{ for } s \in \{1, 2, \ldots, n\} \text{ or } s \in \{1, 2, \ldots, n\}$
- (2) $\varepsilon_0 = \ldots = \varepsilon_{s-1} = +1, \ \varepsilon_s = 0, \ \varepsilon_{s+1} = \ldots = \varepsilon_n = -1 \text{ for } s \in \{1, 2, \ldots, n-1\}.$

In both these cases we construct a pseudo-orthonormal base $e,\ldots,e_1,e,e_s,e_s,e_s,\ldots,e_{n-1},e_s$. In the former case the vectors

(2.1)
$$e = \frac{\sum_{i=1}^{k} P_{ki} \cdot u_{i}}{\sqrt{|P(k-1)P(k)|}} \quad \text{for } k = 1, 2, \dots, n$$

form a pseudo-orthonormal base such that

(2.2)
$$e = e(u, u, \dots, u)$$
 and
$$p(e, u) = \begin{cases} 0 & \text{for } r < k, \\ \Theta(p_{ij}) & \text{for } r \ge k. \end{cases}$$

In the latter case we determine vectors $e_1, \ldots, e_{s-1}, e_{s+2}, \ldots, e_n$ constituting a pseudo-orthonormal base using (2.1). Since P(s) = 0 we have

$$(P_{s+1,s}^{s+1})^2 = -P(s-1)P(s+1) \neq 0.$$

There exists only one isotropic direction, determined by the vector

(2.3)
$$v = \frac{1}{2P(s-1)} \sum_{i=1}^{s} {P_{si} \cdot u}_i \perp {u, u, \dots, u \atop 1}_2, \dots, {u, s \atop s-1}, {u, v \atop s}_s$$

in the singular space $L(\underbrace{u,u,\dots,u}_1)$. In the pseudo-Euclidean space $L(\underbrace{u,\dots,u}_s,\underbrace{u}_{s+1})$ there exists one more isotropic direction, which is orthogonal to $\underbrace{u,u,\dots,u}_1,\underbrace{u}_s$, determined by the vector

$$(2.4) v_1 = \frac{1}{2 P_{s+1,s} P(s+1)} \sum_{i=1}^{s+1} (2 P_{s+1,s} \cdot P_{si}^{s+1} - P_{ss}^{s+1} \cdot P_{s+1,i}^{s+1}) \cdot u_i.$$

We have p(v, u) = 1 contrary to p(v, u) = 0. The vectors

$$(2.5) \qquad \qquad e = \underset{s}{v} - v \qquad \text{and} \qquad \underset{s+1}{e} = \underset{1}{v} + v$$

complement the pseudo-orthonormal base. This base fulfils conditions (2.2) with only two exceptions,

(2.6)
$$e = e(u, \dots, u, u, u) \atop s = 1, \dots, u, u \atop s = 1, \dots, u = 1$$

To each vector $e \atop i$ of the pseudo-orthonormal base we assign the covector $e \atop i = e^T \cdot E_1$ and then

$$p(e, u) = e^T E_1 u = e^* \cdot u.$$

The matrix $A = A(\underbrace{u}_1, \underbrace{u}_2, \dots, \underbrace{u}_m)$ allows us to solve functional equations (1.6) and (1.7).

3. Solution of the equation
$$F(A_1, \ldots, A_m) = A \cdot F(u_1, \ldots, u_m)$$

We arrange a given system of $1 \leq m \leq n$ linearly independent vectors into a sequence u, u, \dots, u whose signature up to ε_m must be in one of the forms

- 1. (+1, ..., +1) for $m \in \{1, 2, ..., n-1\}$
- 2. $(+1,\ldots,+1,-1,\ldots,-1)$ for $m \in \{1,2,\ldots,n\}$
- 3. $(+1, \dots, +1, 0, -1, \dots, -1)$ for $m \in \{1, 2, \dots, n\}$
- 4. $(+1, \ldots, +1, 0)$ for $m \in \{1, 2, \ldots, n-1\}$.

We solve the equation (1.6) in the first three cases. We construct the vectors e, e, \ldots, e of a pseudo-orthonormal base using formulas (2.1) or (2.1) and (2.5). The other vectors of the base e, \ldots, e, e , if there is lack of them, are built in the orthogonal complement $L^{\perp}(\underbrace{u, u, \ldots, u}_{m})$. To simplify the following argument we consider only the first case. Inserting the matrix \underbrace{A}_{0} , which corresponds to the base $\underbrace{e, e, \ldots, e}_{n}$ and then the matrix \underbrace{A}_{m+1} , which corresponds to the base $\underbrace{e, \ldots, e, e}_{m}$ into equation (1.6) we get

(3.1)
$$F(\underbrace{u, u, \dots, u}_{1 \ 2}) = A^{-1}F(\underbrace{Au, Au, \dots, Au}_{0 \ n}) = (E_1A^TE_1)F(\underbrace{Au, Au, \dots, Au}_{0 \ n}) = E_1A^TF_0(p_{ij}) = E_1A^TF_0(p_{ij}).$$

The constant vector F_0 is the same in both cases and from the last equation we conclude that its (m+1) component is zero. Moreover, it is obvious that $F_0^{m+1} = F_0^{m+2} = \ldots = F_0^n = 0$. We get further from (3.1) that

$$(3.2) F(\underbrace{u}_{1}, \underbrace{u}_{2}, \dots, \underbrace{u}_{m}) = E_{1} \underbrace{A}^{T} F_{0}(p_{ij}) = \sum_{k=1}^{n} F_{0}^{k} \cdot \underbrace{e}_{k} = \sum_{k=1}^{m} F_{0}^{k} \cdot \underbrace{e}_{k} = \sum_{k=1}^{m} \Theta^{k}(p_{ij}) \cdot \underbrace{u}_{k},$$

where $\Theta^1, \Theta^2, \dots, \Theta^m$ are arbitrary functions of $\frac{1}{2}m(m+1)$ variables. The same result we get in the cases 2 and 3.

Let us consider the case 4. Now P(m-1)>0 and P(m)=0. In the singular subspace L_m there lies its only isotropic direction q=[v], where the vector v is given by the formula (2.3) for s=m. The subspace L_{m-1}^{\perp} is a pseudo-Euclidean space of dimension n-m+1. If n-m+1=2 or equivalently m=n-1 then there exists in L_{m-1}^{\perp} exactly one isotropic direction $[v]=q_1\neq q$ such that p(v,u)=1. If m< n-1 we find at least two such directions q_1 and q_2 represented by linearly independent vectors v and v. Since

$$P(\underbrace{u,\ldots,u}_{m-1},\underbrace{u,v}_{m}) = -P(\underbrace{u,\ldots,u}_{m-1}) < 0$$

we get the vectors e, \ldots, e_{m-1} of a pseudo-orthonormal base using formulas (2.1), the vectors e, e, m+1 we get using formulas (2.5) and the vectors $e, \dots, e, m+1$ we find in the orthogonal complement $L^{\perp}(u,\ldots,u,v)$. Let C_0 denote the pseudo-orthogonal matrix which corresponds to this base. We get similarly to (3.1) and (3.2)

(3.3)
$$F(\underbrace{u}_{1}, \underbrace{u}_{2}, \dots, \underbrace{u}_{m}) = E_{1} C^{T} F_{0}(p_{ij}) = \sum_{k=1}^{n} F_{0}^{k} \cdot \underbrace{e}_{k}$$
$$= \sum_{k=1}^{m+1} F_{0}^{k} \cdot \underbrace{e}_{k} = \sum_{k=1}^{m} \Theta^{k}(p_{ij}) \cdot \underbrace{u}_{k} + \Theta(p_{ij}) \cdot \underbrace{v}_{1}.$$

Now, if m < n - 1 we have at the same time

(3.4)
$$F(u, u, ..., u) = \sum_{k=1}^{m} \Theta^{k}(p_{ij}) \cdot u + \Theta(p_{ij}) \cdot v.$$

In this case we have $\Theta(p_{ij}) \equiv 0$ and analogously to the previous cases we get F =

 $\sum_{k=1}^{m} \Theta^k \cdot u.$ If m = n - 1 then the direction of the vector v is determined unambiguously. Euclidean space with exactly two isotropic directions q = [v] and $q_1 = [v]$, where $v \notin L(u, u, \dots, u)$ contrary to $v \in L_{n-1}$.

Let a sequence u, u, \dots, u of linearly independent vectors with P(n-2) > 0 and P(n-1)=0 be given. Let Δ^i for $i=1,2,\ldots,n-1$ denote the cofactors of the elements u_{n-1}^i of the determinant $\Delta(u, u, \dots, u_{n-1})$ and let by definition $\Delta^n = 0$. Let us denote $2D = \sum_{i=1}^{n-1} (\Delta^i)^2$ and $B = B_{n-1}$, where B_r is defined by formula (1.12). $B \neq 0$ because of $B^2 = P(n-2)$. Taking these facts into account we have

Theorem 1. Let the mapping η assign $\eta = \eta(\underbrace{u}_1, \underbrace{u}_2, \dots, \underbrace{u}_{n-1}) \in \mathbb{R}^n$ to the sequence

(3.5)
$$\eta^{i} = \frac{1}{\Delta \cdot B} (B\Delta^{i} - Dq^{i}) \quad \text{for } i = 1, 2, \dots, n.$$

Then the equation

(3.6)
$$\eta(A_1^u, A_2^u, \dots, A_{n-1}^u) = A \cdot \eta(u, u, \dots, u_{n-1}^u)$$

holds for an arbitrary matrix $A \in G$.

Proof. The mapping η is the only solution of the system of n equations

$$\begin{cases} p(\eta, u) = 0 & \text{for } i = 1, 2, \dots, n - 2, \\ p(\eta, u) = 1, \\ p(\eta, \eta) = 0. \end{cases}$$

As the right hand sides are scalars so η is a vector, so it fulfils (3.6). The vector η is linearly independent of u, u, \dots, u because

$$\det(\underbrace{u}_{1},\ldots,\underbrace{u}_{n-1},\eta(\underbrace{u}_{1},\ldots,\underbrace{u}_{n-1})) = -B(\underbrace{u}_{1},\ldots,\underbrace{u}_{n-1}) \neq 0.$$

The vector v_1 from (3.3) and η must be collinear. We have proved

Theorem 2. Every solution of the functional equation

$$F(A_1^u, A_2^u, \dots, A_m^u) = A \cdot F(u, u, \dots, u)$$

for given vectors $\underbrace{u,u,\dots,u}_{n}$ and any matrix $A\in G$ is of the form

$$(3.7) \quad F(\underbrace{u}_{1}, \underbrace{u}_{2}, \dots, \underbrace{u}_{m}) \\ = \begin{cases} \sum\limits_{k=1}^{m} \Theta^{k} \cdot \underbrace{u}_{k} & \text{for } m \neq n-1 \text{ or } m = n-1, P(n-1) \neq 0, \\ \Theta \cdot \eta + \sum\limits_{k=1}^{n-1} \Theta^{k} \cdot \underbrace{u}_{k} & \text{for } m = n-1, \ P(n-1) = 0, \ P(n-2) \neq 0 \end{cases}$$

where Θ , $\Theta^1, \ldots, \Theta^{n-1}$ are arbitrary functions of $\frac{1}{2}m(m+1)$ variables p_{ij} .

4. Solution of the equation
$$F(Au_1,\ldots,Au_m)=\varepsilon(A)\cdot A\cdot F(u_1,\ldots,u_m)$$

If m=n then according to (1.13) and (3.7) the general solution of the above equation is of the form

$$F = \det(\underbrace{u}_{1}, \dots, \underbrace{u}_{n}) \left(\sum_{k=1}^{n} \Theta^{k} \cdot \underbrace{u}_{k} \right).$$

If m < n and $P(m) \neq 0$ then at least one of the vectors of the required pseudoorthogonal base, let us say e, lies in the orthogonal complement $L^{\perp}(\underbrace{u}_{1},\underbrace{u}_{2},\ldots,\underbrace{u}_{m})$. Let

the matrix A corresponds to a base which includes e while the matrix A corresponds to the same base in which e is replaced by -e. We have

(4.1)
$$F(u_{1}, \dots, u_{m}) = \varepsilon(A)E_{1}A^{T}F_{0} = \varepsilon(A)\sum_{k=1}^{n}F_{0}^{k} \cdot e_{k}$$
$$= \varepsilon(A)\left(F_{0}^{r} \cdot e_{r} + \sum_{k \neq r}F_{0}^{k} \cdot e_{k}\right) = \varepsilon(A)\left(-F_{0}^{r} \cdot e_{r} + \sum_{k \neq r}F_{0}^{k} \cdot e_{k}\right).$$

In this case the required ε -vector F must have the direction of the vector e. It is obvious that if e is not uniquely determined by the vectors $u, u, \dots, u, then the equation (1.7) has only the trivial solution <math>F \equiv 0$. It is so for m < n - 1.

Let m=n-1. The equivalent of the well-known cross product in Euclidean geometry, the ε -vector $\omega(\underbrace{u}_1,\underbrace{u}_2,\ldots,\underbrace{u}_{n-1})$ given by the conditions

(4.2)
$$\begin{cases} p(u, \omega(u, u, \dots, u)) = 0 & \text{for } i = 1, 2, \dots, n-1 \\ \det(u, u, \dots, u, \omega) = -p(\omega, \omega) = P(n-1) \end{cases}$$

has the direction of the orthogonal complement if $P(n-1) \neq 0$. Then using (4.2) we obtain for $A \in G$

$$\omega(A_1^u, A_2^u, \dots, A_{n-1}^u) = \varepsilon(A) \cdot A \cdot \omega(u, u, \dots, u_{n-1}^u)$$

and in accordance with (4.1) we get $F=\Theta\cdot\omega$. In the case P(n-1)=0 we have a decomposition $\omega=\sum\limits_{r=1}^{n-1}B_r\cdot u$ and $L^\perp(\underbrace{u}_1,\ldots,\underbrace{u}_{n-1})$ is not the orthogonal complement. Starting from linearly independent vectors $\underbrace{u}_1,\underbrace{u}_2,\ldots,\underbrace{u}_{n-1},\eta(\underbrace{u}_1,\ldots,\underbrace{u}_{n-1})$, whose signature is $(+1,\ldots,+1,0,-1)$, we define $\underbrace{e}_1,\underbrace{e}_2,\ldots,\underbrace{e}_{n-2}$ by formulas (2.1) and additionally by $\underbrace{e}_{n-1}=\eta+v$ and $\underbrace{e}_n=\eta-v$. The matrix D corresponding to this base has the determinant $B/\sqrt{P(n-2)}$. Inserting D into equation (1.7) we get

$$F(u_1, \dots, u_{n-1}) = \varepsilon(D) \cdot E_1 \cdot D^T \cdot F_0 = \varepsilon(D) \sum_{k=1}^n F_0^k \cdot e_k$$

$$= \frac{B}{\sqrt{P(n-2)}} \left(\sum_{k=1}^{n-2} F_0^k \cdot e_k + F_0^{n-1}(\eta + v) + F_0^n(\eta - v) \right)$$

$$= B \left(\Theta \cdot \eta + \sum_{k=1}^{n-1} \Theta^k \cdot u_k \right).$$

Theorem 3. The general solution of the functional equation

$$F(A_1, A_2, \dots, A_m) = \varepsilon(A) \cdot A \cdot F(u, u, \dots, u)$$

for given vectors u, u, \dots, u and an arbitrary matrix $A \in G$ is of the form

$$F(\underbrace{u,\dots,u}_{1}) = \begin{cases} 0 & \text{for } m < n-1, \\ \Theta \cdot \omega(\underbrace{u,\dots,u}_{n-1}) & \text{for } m = n-1, \ P(n-1) \neq 0, \\ B \cdot \left(\Theta \cdot \eta + \sum_{k=1}^{n-1} \Theta^{k} \cdot \underbrace{u}_{k}\right) & \text{for } m = n-1, \ P(m) = 0, \ P(n-2) \neq 0, \\ \det(\underbrace{u,\dots,u}_{1}) \sum_{k=1}^{n} \Theta^{k} \cdot \underbrace{u}_{k} & \text{for } m = n, \end{cases}$$

where Θ , Θ^1 , Θ^2 , ..., Θ^n are arbitrary functions of $\frac{1}{2}m(m+1)$ variables p_{ij} .

References

- J. Aczél, S. Golab: Functionalgleichungen der Theorie der geometrischen Objekte. P.W.N. Warszawa, 1960.
- [2] L. Bieszk, E. Stasiak: Sur deux formes équivalentes de la notion de (r, s)-orientation de la géométrie de Klein. Publ. Math. Debrecen 35 (1988), 43–50.
- [3] M. Kucharzewski: Über die Grundlagen der Kleinschen Geometrie. Period. Math. Hung. 8 (1977), 83–89.
- [4] A. Misiak, E. Stasiak: Equivariant maps between certain G-spaces with G = O(n-1, n). Math. Bohem. 126 (2001), 555–560.
- [5] E. Stasiak: Scalar concomitants of a system of vectors in pseudo-Euclidean geometry of index 1. Publ. Math. Debrecen 57 (2000), 55–69.

Authors' addresses: Barbara Glanc, Aleksander Misiak, Zofia Stępień, Instytut Matematyki, Politechnika Szczecińska, Al. Piastów 17, 70-310 Szczecin, e-mail: misiak@ps.pl.