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Abstract. In this note all vectors and e-vectors of a system of m < n linearly independent
contravariant vectors in the n-dimensional pseudo-Euclidean geometry of index one are
determined. The problem is resolved by finding the general solution of the functional
equation F(AzlL,Ag,...,A#l) = (detA))‘ CA- F(qlt,g,,%) with A = 0 and A = 1, for an

arbitrary pseudo-orthogonal matrix A of index one and given vectors 7.1L, g, ey U
m
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1. INTRODUCTION
For n > 2 consider the matrix Ey = [e; ;] € GL(n, R) where

0 for i # j,
e =1« +1 for i = j #n,

-1 fori=j5=n.

Definition 1. A pseudo-orthogonal group of index one is a subgroup of the
group GL(n, R) satisfying the condition

G=0n1,R) ={A: Ac GL(n,R) AAT - E;- A= E,}.

Denoting £(A) = sign(det A) = det A we have ¢(A- B) = ¢(A) - ¢(B).
The class of G-spaces (M, G, f,), where f, is an action of G on the space M,,
constitutes a category if we take as morphisms equivariant maps Fi, g: M, — Mg,
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i.e. the maps which satisfy the condition

(1.1) A N N\ Faplfale,A) = fo(Fap(x), A).
a,fxeMy AeG
This category is called a geometry of the group G. In particular, among the objects
of this category are:
the G-spaces of contravariant vectors and e-vectors

A-u for vectors,

(12)  (R",G.f), where A N f(u,A)=

u€R™ A€G e(A4)-A-u for e-vectors,
the G-spaces of scalars and e-scalars

x for scalars,

(13)  (RG,f), where N\ N\ f(z,4) =

z€R AEG e(A) -z for e-scalars.
For m =1,2,...,n let a system of linearly independent vectors Uty U be given.

Every equivariant mapping F' of this system into G-spaces of scalars, e-scalars, vec-
tors, e-vectors satisfies the equality (1.1) which, applying the transformation rules
(1.2) and (1.3), may be rewritten into the form

(1.4) /\ F(A’le, Ag, oo Au) = F(11¢, Uy %) for scalars,

AeG "
(1.5) A/e\G F(A’llj,, Ag, ey A;LTLL) =e(A)- F(11L, Uy ,%) for e-scalars,
(1.6) A/e\GF(A@lL,Ag,...,A}TLL) = A-F(qf,g,...,%) for vectors,
(1.7) F(Azf,Ag,...,Au) =¢e(A) ~A~F(11L,12L,...,u) for e-vectors.
AeG

For a pair u,v of contravariant vectors the mapping p(u,v) = u? Eyv satisfies (1.4),

namely
p(Au, Av) = (Au)T By (Av) = uT (AT By A)v = u? Eyv = p(u,v).
In [5] it was proved that the general solution of the equation (1.4) is of the form

(1.8) F(qf,g,...,u):@(p(u,u)):@(pij) fori<j=1,2,....m<n
m i g

where © is an arbitrary function of %m(m + 1) variables p;;. The general solution

of the equation (1.5) was found in [4]. Before presenting the explicit formula for it,

let us denote by L., = L(11L, Uy u) the linear subspace generated by the vectors
m

Ul U and by p|L,, the restriction of the form p to the subspace L,.
m

266



Definition 2. The subspace L, is called

(1) an Euclidean subspace if the form p|L,, is positively definite,

(2) a pseudo-Euclidean subspace if the form p|L,, is regular and indefinite,

(3) a singular subspace if the form p|L,, is singular.

If we denote

P11 P12 Pim
P21 P22 P2
P(m) = P(?) g’ ’%) = "= det[p(%?)];n = det[pijrln
Pm1 Pm2 Pmm

then the above three cases are equivalent to P(m) > 0, P(m) < 0 and P(m) = 0,

m
respectively. Let P;; denote the cofactor of the element p;; of the matrix [p;;]7* and

1
let P13 =1, P(0) =1 by definition.

Let us consider an isotropic cone Ko = {u: u € R™ A p(u,u) = 0 Au # 0}.
It is an invariant and transitive subset. Every isotropic vector v € Ky determines
vl 22 Tt T
v 1T =

Pyttt gn -

an isotropic direction which, by virtue of v™ # 0 and v = v"|
n—1

v gt ¢3, ..., ¢, 1]T with Y (¢°)% = 1 = ¢", is equivalent to the point ¢ belonging
i=1

to the sphere S™72.

In two cases we get particular solutions of the equation (1.5). In the case m =n
that equation is fulfilled by the mapping det. For A € G we have
W/ = det(Au, Ay, ..., Au) = £(A) - det(u,u, ..., u) = £(4) - W

n

If m =n—1and P(n—1) = 0 then the singular subspace L(’LIL, Uy ul) determines

exactly one isotropic direction ¢ € S™~2 whose representative, if P(n — 2) # 0, is of

the form
(1.9) v:;nilnﬁl u=v"[q", ¢ 1T eKonL
. 2P(n—2) ra n—1,: i ) PR ) 0 n—1-
From p(u,v) =0 for i =1,2,...,n — 1 it follows that each vector u is of the form
K3 3

n—1 T

(1.10) u = {ul,uQ,...,unl,Zuqu} where A = det[u/]!™" # 0.

K3 K3 K3 K3 K3 3

k=1

The two 1-forms det(llj,, e WU U U x) and p(v, ) vanish on the subspace

T— T n—
L(11¢, Uy ul), and consequently there exist uniquely determined numbers B, =
e
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Br(zlz,g, ey Uy ul) such that

T n—

r— r—+1 n—1 n—1

(1.11) det(tlt,..., U, Uy U ,z):fBT(zf,g,..., u ) p(v,x).

As det is an e-scalar, p is a scalar as well, so it follows from (1.11) that each B, is
an e-scalar. Taking any given A € G we have

VAR Vit
1 1
wl .. oynt
r—1 r—1
1 -1
(1.12)  Bp(u,...,uy..., u )= qa ... q" forr=1,2,...,n—1.
1 T n—1
Ul un—l
r+1 r+1
wl .. wnt
n—1 n—1
n—1 . . 9
We have B, - By = P ,; and in particular By = P(11¢,..., Uy U ul), so at
r—1 r+ n—

least one of the e-scalars B, is different from zero.

In [4] it was proved that the general solution of the equation (1.5) is of the form

0 ifm<n-—1,
0 ifm=n-1, P(m)#0,
1.13) F(u,u,...,u) =< n=l
( ) (1 2 m) ©*%(pij) - By ifm=n—-1, P(m)=0,
k=1

n

O(pij) - det(uy,...,u)  ifm=n
where ©, ©!,...,0" ! are arbitrary functions of %m(m + 1) variables.

In this work we find the general solution of the functional equations (1.6) and
(1.7).
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2. THE SCHMIDT PROCESS OF PSEUDO-ORTHONORMALITY

Definition 3. Two vectors u # 0 and v # 0 satisfying the condition p(u,v) = 0
are called orthogonal and write v L v.

Definition 4. We say that a vector u is
(1) a versor, if p(u,u) = +1,
(2) a pseudo-versor, if p(u,u) = —1.
Definition 5. We say that a system of vectors €6....¢ constitutes a pseudo-
n

orthonormal base if [p(e, e)]? = Ej.
i

Let a sequence of linearly independent vectors Uslhyeooy Uy ooy U be given. This
S n
sequence generates a sequence of linear subspaces L; = L(’llt), Ly, = L(11L,12L), R
L, = L(zlz,g, ceoy)y ..., L. Let us denote 5 = sign P(s). Apparently €,, = —1 and
S

from the definition £g = +1.

Definition 6. The sequence (£0,€1,...,€s,...,6n) = (+1,61,...,E5,++,En—1,
—1) will be called the signature of the sequence of subspaces L1, La, ..., Ls,..., Ly,

or the signature of the sequence of vectors 1{, ’LQL, ey Uy, U
S n

In [5] it was proved that the only restriction is &; > €;41 and that any given system

of n linearly independent vectors can be arranged in the sequence Usllyoy Uy U
with the signature either
(1) eg=...=es_1=+1l,es=...=¢g, =—1forse€{1,2,...,n} or
(2) eo=...=c5-1 =41, =0,6541,=...=e,=—1for s € {1,2,...,n—1}.
In both these cases we construct a pseudo-orthonormal base €vns €56, SJerl, ceey

e e In the former case the vectors
n— S

k k
> Pri-u
(2.1) o= ——=L - for k=1,2,...,n
k |P(k —1)P(k)|

form a pseudo-orthonormal base such that

(2.2) ( ) d (e.) 0 for r < k,
. e=e(u,u,...,u an ple,u) =
koo k172 k ko O(pij) for r > k.
In the latter case we determine vectors €iny €0 $2’ ..., e constituting a pseudo-
S— S n

orthonormal base using (2.1). Since P(s) = 0 we have

s+1 9
(Pstr1,s)"=—P(s—1)P(s+1) #0.
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There exists only one isotropic direction, determined by the vector

1 s
2.3 = — Py -u L .
(2:3) ! 2p<5f1>2 sy D
=
in the singular space L(’th, Uy ,u). In the pseudo-Euclidean space L(?li, A gl)
S S s
there exists one more isotropic direction, which is orthogonal to Usllyooy U, deter-
P

mined by the vector

1 A | s+l sl s+l
(2.4) ?11 = ] 2(2 Ps-l—l,s + Py — Pgs- Ps-l—l,i) /LZL
2" PoinsP(s +1) 51

We have p(qu, u) = 1 contrary to p(v,u) = 0. The vectors
S

S

(2.5)

[2Ne
I
=
I
<
&
=
o,
9y}
I
e
_|_
e

complement the pseudo-orthonormal base. This base fulfils conditions (2.2) with
only two exceptions,

(2.6) e=e(

To each vector e of the pseudo-orthonormal base we assign the covector ;f =el' By
2
and then

K2

*
ple,u) = el Eyu=e-u.
T % T i T

Definition 7. We say that a pseudo-orthogonal matrix A whose successive rows
consist of successive coordinates of covectors €rovs €58 €y €€ corresponds
s—1 n s+ n—1 s

to the pseudo-orthonormal base e,..., e ,e, e ,..., e ,e, or corresponds to the
1 s—1 n s+1 n—1 s

sequence of vectors Us Uy U
n

The matrix A = A(llt, Uy u) allows us to solve functional equations (1.6) and
(1.7).
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3. SOLUTION OF THE EQUATION F(Azf, . Au)=A F(u

4 oo )

We arrange a given system of 1 < m < n linearly independent vectors into a

sequence U, u, ..., u whose signature up to &,, must be in one of the forms
1. (+1,...,41) for me{1,2,...,n—1}
2. (+1,...,41,-1,...,=1) for me{1,2,...,n}
3. (+1,...,41,0,—-1,...,—-1) for me {1,2,...,n}
4. (41,...,41,0) for me {1,2,...,n—1}.

We solve the equation (1.6) in the first three cases. We construct the vectors
€.y of a pseudo-orthonormal base using formulas (2.1) or (2.1) and (2.5). The
m

other vectors of the base i g6 if there is lack of them, are built in the orthogonal
m n

complement L+ (111, Uy u). To simplify the following argument we consider only
m
the first case. Inserting the matrix 161, which corresponds to the base €6 ..t and
n

then the matrix A , which corresponds to the base e,...,e,—e , e ,... e into
m+1 1 m  m4+1l m—+42 n

equation (1.6) we get

_ A1 _ T
Py, u) = A7 F(du, Au, .., Au) = (B AT F(Au, Ay, .., Au)

om om

(3.1)
= Elf}TFO(Pz‘j) = ElmﬁlTFo(Pij)-

The constant vector Fj is the same in both cases and from the last equation we
conclude that its (m -+ 1) component is zero. Moreover, it is obvious that FJ"™! =

Eyt? = . = Fp = 0. We get further from (3.1) that
_ T N ko ko _ ki Y.
(32) F(?aga---a}fl)—Elé FO(le)—ZFO g—ZFO 2—29 (pij) U,
k=1 k=1 k=1
where ©1,0?,...,0™ are arbitrary functions of 2m(m + 1) variables. The same

result we get in the cases 2 and 3.

Let us consider the case 4. Now P(m — 1) > 0 and P(m) = 0. In the singular
subspace L, there lies its only isotropic direction ¢ = [v], where the vector v is given
by the formula (2.3) for s = m. The subspace L::_; is a pseudo-Euclidean space of
dimension n —m+ 1. If n —m+ 1 = 2 or equivalently m = n — 1 then there exists in
L | exactly one isotropic direction [11)] = ¢ # ¢ such that p(qu, 71711) =1.Ifm<n-1
we find at least two such directions g; and g2 represented by linearly independent
vectors v and v. Since

P(11¢,..., U ,u,zlj):—P(zlb,..., u )<0

m—1
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we get the vectors €y € of a pseudo-orthonormal base using formulas (2.1), the
me

vectors e, e we get using formulas (2.5) and the vectors e ,...,e we find in the
m m+1 m+2 n

orthogonal complement LJ-(zlz, s UL 1). Let Cy denote the pseudo-orthogonal
m— m
matrix which corresponds to this base. We get similarly to (3.1) and (3.2)

n

_ T Ny k
(3.3) Fluy,...,u) = ExC Fo(pw)—;Fo e

I
2
=0
I
NgE
®
ol
5
S
_|_
®
)
<

k=1 k=

—_

Now, if m < n — 1 we have at the same time

(3.4) Flu,u,....u) = ;ek@ij)-w@(w

In this case we have ©(p;;) = 0 and analogously to the previous cases we get F =

m
DO CARET
k=1 k
If m = n — 1 then the direction of the vector v is determined unambiguously.
As P(n —2) > 0 we conclude that LL(’llj,,’LQL, e u2) is a two dimensional pseudo-
e
Euclidean space with exactly two isotropic directions ¢ = [v] and ¢1 = [11)], where
v ¢ L(u,u,..., u ) contrary to v € L,_1.
1 272 n—1
Let a sequence Uyl U of linearly independent vectors with P(n—2) > 0 and
e

P(n —1) = 0 be given. Let A’ for i = 1,2,...,n — 1 denote the cofactors of the

elements ulz of the determinant A(llt, U ul) and let by definition A™ = 0. Let
n—1

us denote 2D = > (A%)? and B = B,,_1, where B, is defined by formula (1.12).
i=1

B # 0 because of B2 = P(n — 2). Taking these facts into account we have

Theorem 1. Let the mapping n assign n = n(u,u,. .., ul) € R™ to the sequence
ne

12
Uly oy U U such that P(n —2) # 0 and P(n — 1) = 0, by the formula
(3.5) ‘ ! (BA" — Dqg')  fori=1,2
. =—— - ri= cm.
77 A . B q O. ? ) ) 7n
Then the equation
(3.6) n(Au, Ay, . A w ) = Ay, u)

holds for an arbitrary matrix A € G.
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Proof. The mapping 7 is the only solution of the system of n equations

p(n,u)=0 fori=1,2,...,n—2,

As the right hand sides are scalars so 7 is a vector, so it fulfils (3.6). The vector 7 is
linearly independent of Ul U because
n—

det(?,...,nljl,n(?,..., U )):—B(tlt,..., u ) # 0.

The vector v from (3.3) and 1 must be collinear. We have proved

Theorem 2. Every solution of the functional equation

F(Au, Au,...,Au) = A F(u,u,...,u)
172 12

m m

for given vectors Uls.ons U and any matrix A € G is of the form
m
(3.7 F(u,u,...,u)
1 2 m
m
Z@k-% form#n—lorm=n—1,Pn—1)#0,
k=1

n—1
0-n+ Z@k'% form=n—1, P(lhn—1)=0, P(n—2)#0
k=1

where ©, ©1,...,0""! are arbitrary functions of m(m + 1) variables p;;.

4. SOLUTION OF THE EQUATION F(A’Lll,, o Au)=¢g(4)-A- F(qf, ceay )

m

If m = n then according to (1.13) and (3.7) the general solution of the above
equation is of the form

p— k.
Fdet(llt,...,zrf)<kz;® 1}:)

If m < n and P(m) # 0 then at least one of the vectors of the required pseudo-
orthogonal base, let us say e, lies in the orthogonal complement LJ-(zlz, Uy u). Let
T m
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the matrix il corresponds to a base which includes e while the matrix A corresponds
" s

to the same base in which e is replaced by —e. We have
T T

_ T _ k.

(4.1) F(zf, - ,;LTLL) = E(il)Elil Fy = E(é) kg_l Fy e
=c(A)(Fy e+ > Ffe|=c(A)|-Fj-e+> Ff-e).
5(+)(0 f‘f'k# 0 g) 5(_)( 0 f“‘k# 0 g)

In this case the required e-vector F' must have the direction of the vector e. It is
obvious that if e is not uniquely determined by the vectors Ul U, thren the
equation (1.7) has only the trivial solution F = 0. It is so for m < n — 1.

Let m = n — 1. The equivalent of the well-known cross product in Euclidean

geometry, the e-vector w(11L, Uy ul) given by the conditions
ne
p(u,w(u,u, ..., u))=0 fort=1,2,...,n—1,
(4 2) 7 1 2 n—1
det(u,u,..., u ,w)=—p(w,w)=Pn—1)
12 n—1

has the direction of the orthogonal complement if P(n — 1) # 0. Then using (4.2)
we obtain for A € G

w(Azlt,Azzt,...,A u )zs(A)~A~w(11L,12L,..., u )

n—1 n—1

and in accordance with (4.1) we get F' = © - w. In the case P(n — 1) = 0 we have a

n—1
decomposition w = > B, -u and LL(11L, cel ul) is not the orthogonal complement.
r=1 T -
Starting from linearly independent vectors Usllyenoy U, 77(111, cen ul), whose signa-
n— n—
ture is (+1,...,+1,0,—1), we define €y € by formulas (2.1) and additionally
ne

by e =1 + v and e = n — v. The matrix D corresponding to this base has the
n— n
determinant B/+/P(n — 2). Inserting D into equation (1.7) we get

Fu, . ,ngl):s(D)-El-DT-FO:e(D)];Fé“-Z
B n—2
_ k n—1 n
—m(z% e+ Iy (77+U)+F0(77—U))
k=1
n—1
B(®~U+Z®k~%).
k=1
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Theorem 3. The general solution of the functional equation

F(AllL,Ag,...,Au)zs(A)~A~F(11L,12L,...,Zé)

m

for given vectors Uyl U and an arbitrary matrix A € G is of the form
m
0 form <n-—1,
@-w(’LlL,..., 1) form=n—-1, P(n—1)#0,
n—
n—1

\g/

F(Qf""’%): B~<®~7}+ @kka) form=n-—1, P(m)=0, P(n—2) #0,
k

Il
N

n
det(u,...,u) Y. O -u  form =n,
1 k=1 k
where ©, ©',02,...,O" are arbitrary functions of %m(m + 1) variables p;;.
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