
130 (2005) MATHEMATICA BOHEMICA No. 3, 277–282

A NOTE ON RADIO ANTIPODAL COLOURINGS OF PATHS
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Abstract. The radio antipodal number of a graph G is the smallest integer c such that
there exists an assignment f : V (G) → {1, 2, . . . , c} satisfying |f(u) − f(v)| > D − d(u, v)
for every two distinct vertices u and v of G, where D is the diameter of G. In this note
we determine the exact value of the antipodal number of the path, thus answering the
conjecture given in [G. Chartrand, D. Erwin and P. Zhang, Math. Bohem. 127 (2002), 57–
69]. We also show the connections between this colouring and radio labelings.
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1. Introduction

Let G be a connected graph and let k be an integer, k > 1. The distance between

two vertices u and v of G is denoted by d(u, v) and the diameter of G by D(G) or

simply D. A radio k-colouring f of G is an assignment of positive integers to the

vertices of G such that

|f(u) − f(v)| > 1 + k − d(u, v)

for every two distinct vertices u and v of G.

Following the notation of [1], [3], we define the radio k-colouring number rck(f)

of a radio k-colouring f of G to be the maximum colour assigned to a vertex of G

and the radio k-chromatic number rck(G) to be min{rck(f)} taken over all radio

k-colourings f of G.

Radio k-colourings generalize many graph colourings. For k = 1, rc1(G) = χ(G),

the chromatic number of G. For k = 2, the radio 2-colouring problem corresponds to

the well studied L(2, 1)-colouring problem and rc2(G) = λ(G) (see [5] and references

therein). For k = D(G) − 1, the radio (D − 1)-colouring is referred to as the radio
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antipodal colouring, because only antipodal vertices can have the same colour. In

that case, rck(G) is called the radio antipodal number, also denoted by ac(G). Finally,

for the case k = D(G), rck(G) is called the radio number and is studied in [1], [6].

In [2] the antipodal number for cycles was discussed and bounds were given. In [3],

Chartrand et al. gave general bounds for the antipodal number of a graph. The

authors proved the following result for the radio antipodal number of the path:

Theorem 1 ([3]). For every positive integer n,

ac(Pn) 6

(

n − 1

2

)

+ 1.

Moreover, they conjectured that the above upper bound is the value of the antipo-

dal number of the path. In [4], the authors found a sharper bound for the antipodal

number of an odd path (thus showing that the conjecture was false):

Theorem 2 ([4]). For the path Pn of odd order n > 7,

ac(Pn) 6

(

n − 1

2

)

−
n − 1

2
+ 4.

In this note we completely determine the antipodal number of the path:

Theorem 3. For any n > 5,

ac(Pn) =

{

2p2 − 2p + 3 if n = 2p + 1,

2p2 − 4p + 5 if n = 2p.

Notice that for n = 2p+1 we have
(

n−1

2

)

− n−1

2
+4 = p(2p−1)−p+4 = 2p2−2p+4,

thus the bound of Theorem 2 is one from the optimal.

Examples of minimal antipodal colourings of P7 and P8 are given in Figure 1.

4 16 9 21 1 13 6 18

11 4 15 8 1 12 5

Figure 1. Antipodal colouring of P7 and P8.

In order to prove Theorem 3, we shall use a result of Liu and Zhu [6] about the

radio number of the path. Notice that Liu and Zhu allow 0 to be used as a colour

but we do not. Then, when presenting their result, we will make the necessary

adjustment (adding “one”) to be consistent with the rest of the paper.
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Theorem 4 ([6]). For any n > 3

rcn−1(Pn) =

{

2p2 + 3 if n = 2p + 1,

2p2 − 2p + 2 if n = 2p.

2. Radio k-colourings

Lemma 1. Let G be a graph of order n and let k be an integer. If f is a radio

k-colouring of G then, for any integer k′ > k, there exists a radio k′-colouring f ′ of

G with rck′ (f ′) 6 rck(f) + (n − 1)(k′ − k).

���������
. We construct a radio k′-colouring f ′ of G with rck′(f ′) = c+(n−1)(k′−

k) from a radio k-colouring f with rck(f) = c in the following way: Let x1, x2, . . . , xn

be an ordering of the vertices of G such that f(xi) 6 f(xi+1), 1 6 i 6 n− 1, and set

f ′(xi) = f(xi) + (i − 1)(k′ − k).

For any two integers i and j, 1 6 i < j 6 n, we have |f ′(xj) − f ′(xi)| = |f(xj) −

f(xi)| + (j − i)(k′ − k).

As |f(xj)− f(xi)| > 1 + k − d(xj , xi) and j − i > 1, we obtain |f ′(xj)− f ′(xi)| >

1 + k + (j − i)(k′ − k)− d(xj , xi) > 1 + k′ − d(xj , xi). Thus f ′ is a radio k′-colouring

of G and rck′ (f ′) = c + (n − 1)(k′ − k). �

The above result can be strengthened a little in some cases:

Lemma 2. Let G be a graph of order n and let k, k′ be integers, k′ > k. Given a

radio k-colouring f of G, let x1, x2, . . . , xn be an ordering of the vertices of G such

that f(xi) 6 f(xi+1), 1 6 i 6 n−1 and let εi = |f(xi)−f(xi−1)|−(1+k−d(xi, xi−1)),

2 6 i 6 n. Consider a set I = {i1, i2, . . . , is} ⊂ {2, . . . , n}, where 1 6 s 6 n− 1, such

that ij+1 > ij + 1 for all j, 1 6 j 6 s − 1. Then there exists a radio k′-colouring f ′

of G with rck′(f ′) 6 rck(f) + (n − 1)(k′ − k) −
∑

i∈I

min(k′ − k, εi).

���������
. A radio k′-colouring f ′ of G is obtained simply by setting for all j with

1 6 j 6 n − 1:

f ′(xj) = f(xj) + (j − 1)(k′ − k) −
∑

i∈I,i6j

min(k′ − k, εi).

The vertex xn has the maximum colour: f ′(xn) = f(xn) + (n − 1)(k′ − k) −
∑

i∈I

min(k′ − k, εi) = rck(f) + (n − 1)(k′ − k) −
∑

i∈I

min(k′ − k, εi).
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Then, for any two integers j1 and j2, 1 6 j1 < j2 6 n, let us show that the

condition

|f ′(xj2 ) − f ′(xj1)| > 1 + k′ − d(xj2 , xj1)

is verified, i.e. that

|f(xj2)− f(xj1)|+ (j2 − j1)(k
′ − k)−

∑

i∈I,j1<i6j2

min(k′ − k, εi) > 1 + k′− d(xj2 , xj1 ).

If j2 = j1 + 1, then |f(xj2) − f(xj1)| = 1 + k − d(xj2 , xj1) + εj2 . Thus |f
′(xj2 ) −

f ′(xj1 )| > 1 + k − d(xj2 , xj1) + εj2 + (k′ − k)−min(k′ − k, εj2) > 1 + k′ − d(xj2 , xj1 ).

If j2 > j1 + 1, then
∑

i∈I,j1<i6j2

min(k′ − k, εi) 6 (j2 − j1 − 1)(k′ − k) since by

the hypothesis there are no two consecutive integers in the set I . Thus |f ′(xj2) −

f ′(xj1 )| > 1+k−d(xj2 , xj1)+(j2−j1)(k
′−k)−(j2−j1−1)(k′−k) = 1+k′−d(xj2 , xj1 ).

Therefore, f ′ is a radio k′-colouring of G and rck′(f ′) = rck(f) + (n− 1)(k′ − k)−
∑

i∈I

min(k′ − k, εi). �

3. Antipodal colourings of paths

Theorem 3 derives from the next two theorems.

Theorem 5. For any n > 5,

ac(Pn) 6

{

2p2 − 2p + 3 if n = 2p + 1,

2p2 − 4p + 5 if n = 2p.

���������
. The fact that ac(P5) = 7 is easily checked (see [3]). Thus take n > 6

and let Pn = (u1, u2, . . . , un). We consider two cases depending on whether n is even

or odd.���! �"
1. n = 2p + 1 is odd for an integer p > 3. Define a colouring f of P2p+1 by























































f(u1) = 3p + 2,

f(u2) = p + 1,

f(ui) = i(2p− 1) − p + 3, 3 6 i 6 p,

f(up+1) = 2p + 2,

f(up+2) = 1,

f(up+i) = i(2p− 1) − 2p + 3, 3 6 i 6 p,

f(u2p+1) = p + 2.
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Then the vertex up has the maximum colour: f(up) = p(2p−1)−p+3 = 2p2−2p+3.

We only have to show that the distance condition is verified for two vertices ui and

up+j , 3 6 i, j 6 p (the other cases can be easily checked). We want

|f(up+j) − f(ui)| > 1 + (D − 1) − d(up+j , ui) ⇔

|j(2p − 1) − 2p + 3 − (i(2p − 1) − p + 3)| > 2p− (p + j − i) ⇔

|(j − i)(2p − 1) − p| > p − j + i.

If j−i > 1 then |(j−i)(2p−1)−p| = (j−i)(2p−1)−p > 2p−1−p = p−1 > p−j+i.

If j−i < 1 then |(j−i)(2p−1)−p| = −(j−i)(2p−1)+p = (i−j)(2p−1)+p > p−j+i

for p > 1.���! �"
2. n = 2p is even for an integer p > 3. Define a colouring f of P2p by























f(u1) = p,

f(ui) = (p − i)(2p − 1) + 2, 2 6 i 6 p − 1,

f(up) = 2p2 − 4p + 5,

f(up+i) = 2p2 − 4p + 6 − f(up−i+1), 1 6 i 6 p.

Then the vertex up has the maximum colour: f(up) = 2p2 − 4p + 5. We only

have to show that the distance condition is verified for two vertices ui and up+j ,

2 6 i 6 p − 1, 1 6 j 6 p (the other cases can be easily checked). We want

|f(up+j) − f(ui)| > 1 + (D − 1) − d(up+j , ui) ⇔

|(p − j)(2p − 1) + 3 − ((p − i)(2p − 1) − p + 2)| > 2p − 1 − (p + j − i) ⇔

|(i − j)(2p − 1) + p + 1| > p − j + i − 1.

If i− j > 0 then |(i− j)(2p − 1) + p + 1| = (i − j)(2p − 1) + p + 1 > p− j + i− 1

since (i − j)(2p − 2) > −1 for p > 1.

If i− j < 0, i.e. if j − i > 1 then |(i− j)(2p− 1) + p + 1| = (j − i)(2p− 1)− p− 1 >

p − j + i − 1 since 2p(j − i) > 2p. �

Theorem 6. For any n > 5,

ac(Pn) >

{

2p2 − 2p + 3 if n = 2p + 1,

2p2 − 4p + 5 if n = 2p.

���������
. For n = 2p + 1, by Lemma 1 we have rcn−1(Pn) 6 ac(Pn) + (n − 1).

This together with Theorem 4 gives ac(P2p+1) > 2p2 + 3 − 2p.
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For n = 2p, let D = D(P2p) = 2p−1. We will use Lemma 2 with the radio (D−1)-

colouring f of P2p described in the proof of Theorem 5 and with k = D− 1 = 2p− 1

and k′ = D = 2p. Keeping the notation of Lemma 2, one can see that f is such that

x1 = up+1, x2 = u1, x3 = u2p−1, x4 = up−1, . . ., x2j+1 = u2p−j+1, x2j = up−j+1, . . .,

x2p−1 = u2p, x2p = up. Thus ε3 verifies

ε3 = |f(x3) − f(x2)| − (1 + k − d(x3, x2))

= |f(u2p−1) − f(u1)| − (1 + 2p− 2 − (2p − 2))

= |2p2 − 4p + 6 − f(u2) − f(u1)| − 1

= |2p2 − 4p + 6 − (p − 2)(2p − 1) − 2 − p| − 1 = 1.

A similar calculus gives ε2p−1 = 1 and εi = 0 for all other indices.

Thus, as k′ − k = 1 and p > 3, applying Lemma 2 with I = {3, 2p− 1} gives

rc2p−1(P2p) 6 ac(P2p) + (2p − 1) − ε3 − ε2p−1,

that is

ac(P2p) > rc2p−1(P2p) − (2p − 1) + ε3 + ε2p−1.

By virtue of Theorem 4 we obtain ac(P2p) > 2p2−2p+2−(2p−1)+1+1 = 2p2−4p+5.

�
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