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BIFURCATION FOR A REACTION-DIFFUSION SYSTEM WITH

UNILATERAL AND NEUMANN BOUNDARY CONDITIONS

MILAN KUČERA AND MARTIN VÄTH

Abstract. We consider a reaction-diffusion system of activator-inhibitor or substrate-
depletion type which is subject to diffusion-driven instability if supplemented by pure
Neumann boundary conditions. We show by a degree-theoretic approach that an obstacle
(e.g. a unilateral membrane) modeled in terms of inequalities, introduces new bifurcation
of spatial patterns in a parameter domain where the trivial solution of the problem without
the obstacle is stable. Moreover, this parameter domain is rather different from the known
case when also Dirichlet conditions are assumed. In particular, bifurcation arises for fast
diffusion of activator and slow diffusion of inhibitor which is the difference from all situations
which we know.

1. Introduction

We will study bifurcations of stationary solutions of the reaction-diffusion system

du

dt
= d1∆u + b11u + b12v + f1(u, v),

dv

dt
= d2∆v + b21u + b22v + f2(u, v)

(1.1)

in a bounded domain Ω ⊆ R
N with Neumann boundary conditions for u and certain uni-

lateral conditions for v. A typical example are Neumann-Signorini boundary conditions



∂u
∂n

= 0 on ∂Ω,

v ≥ 0, ∂v
∂n

≥ 0, ∂v
∂n

· v = 0 on Γ,
∂v
∂n

= 0 on (∂Ω) \ Γ,

(1.2)

where Γ ⊆ ∂Ω. The diffusion coefficients d = (d1, d2) ∈ R
2
+ := (0,∞)2 will be bifurca-

tion parameters, fj are small perturbations. Our assumptions concerning the reals bij will
guarantee that Turing’s well-known effect [25] of “diffusion-driven instability” for (1.1) with
purely Neumann conditions

∂u

∂n
=

∂v

∂n
= 0 on ∂Ω (1.3)

occurs. In particular, the trivial solution of the system (1.1), (1.3) is linearly stable only if
d = (d1, d2) ∈ DS ⊂ R

2
+ (domain of stability), but unstable if d = (d1, d2) ∈ DU = R

2
+ \DS.

The systems of activator-inhibitor type are included in our assumptions.
Our goal is to show the existence and location of bifurcations of stationary spatially

nonconstant solutions (spatial patterns) of the problem (1.1), (1.2) in the domain DS,
where bifurcation is excluded for the problem (1.1), (1.3). Under the additional assumption
that there is also a Dirichlet condition replacing the Neumann condition for u and v in (1.2)
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BIFURCATION WITH UNILATERAL AND NEUMANN CONDITIONS 2

on at least a small part of the boundary, something similar was done in [1, 2, 4, 5, 6, 9, 10,
14, 15, 16, 17, 18, 23, 29]. However, such a Dirichlet condition was rather artificial from
the point of view of interpretation in models in biology, but the case of the conditions of
the type (1.2) without any Dirichlet part remained an open problem for many years, and
to our knowledge it is solved only in the current paper. The study of this case is essentially
more complicated than that of the case with Dirichlet data and, moreover, the results for
the case of the conditions of the type (1.2) without any Dirichlet part surprisingly differ
from those for the case with Dirichlet conditions on a part of ∂Ω. Let us mention here only
one basic difference.

In the case of classical Neumann or mixed (Dirichlet-Neumann) conditions the domain
of stability DS has such a shape that bifurcation for the classical Neumann problem (which
can take place only in DU) occurs only if the diffusion d1 of the activator is in some sense
fast with respect to the slow diffusion d2 of the inhibitor, and there is a simple heuristic
explanation of this phenomenon (see e.g. [3, p. 518]). This is true also if we replace on
a part of the boundary the Neumann condition by a unilateral condition and if similarly
Dirichlet condition on some part of the boundary is given, even if bifurcation occurs for
smaller relation d2/d1 than in the classical case. However, we will see that in the case of
the boundary conditions (1.2) (without Dirichlet part on ∂Ω) there are bifurcation points
also with arbitrarily large d1 and small d2. A possible interpretation of the unilateral
condition (1.2) for v is that there is a unilateral membrane or some other kind of regulation
on Γ which guarantees, by allowing a possible flux into the domain, that the concentration
cannot undergo a certain threshold (which is shifted to zero in our model).

Basic assumptions. Concerning the constant matrix B = (bij), we assume

b11 > 0, b11 + b22 < 0, |B| := b11b22 − b12b21 > 0. (1.4)

The last two inequalities mean that if we consider (1.1) as a dynamical system without the
diffusion terms, then the trivial solution is stable. This system is of an activator-inhibitor
or of a substrate-depletion type (see e.g. [3, 21]) since (1.4) implies in particular

b11 > 0 > b22, b12b21 < b11b22 < 0. (1.5)

It is well-known that with the diffusion terms and pure Neumann conditions (1.3) this
system is subject to Turing’s effect [25] of “diffusion-driven instability” mentioned above.

We will always assume that f1, f2 : R
2 → R are continuous and there is c > 0 such that

|fk(u, v)| ≤ c · (1 + |u| + |v|)p for all u, v ∈ R, k = 1, 2. (1.6)

for some p > 0 with p < N
N−2

if N ≥ 3, and p > 0 if N = 2 (no condition if N = 1), and

lim
(u,v)→(0,0)

fk(u, v)

|u| + |v| = 0 (k = 1, 2). (1.7)

Description of the domain of stability DS. Letting 0 < κ1 ≤ κ2 ≤ · · · denote the
nonzero eigenvalues of −∆ on Ω with Neumann boundary conditions (1.3), we define the
family of hyperbolas

Cn =
{
(d1, d2) ∈ R

2
+ : (κnd1 − b11)(κnd2 − b22) = b12b21

}

=
{

(d1, d2) ∈ R
2
+ : d2 =

b12b21/κ
2
n

d1 − b11/κn

+
b22

κn

} (1.8)

with vertical asymptotes b11
κn

. One can show that the trivial solution of (1.1), (1.3) is stable

if and only if d lies to the right/under the common envelope of the hyperbolas C1, C2, . . . ;
we denote this “domain of stability” by DS, see Figure 1. Roughly speaking, by “crossing”
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the hyperbola Cn, one loses the corresponding multiplicity of “stable directions”. In space
dimension N = 1 this was shown in [20], for N > 1 see e.g. [2]. Nontrivial solutions of the
corresponding stationary problem

d1∆u − b11u − b12v − f1(u, v) = 0,

d2∆v − b21u − b22v − f2(u, v) = 0
(1.9)

can bifurcate (and really bifurcate under additional assumptions) from trivial solutions only
at the hyperbolas Cn (see e.g. [20, 12]).

d1

d2

C3

b11
κ3

C2

b11
κ2

C1

b11
κ1

DS

Figure 1. Hyperbolas Cn, their vertical asymptotes, and DS

Let us formulate a special case of our main result. We call a point d0 ∈ R
2
+ a bifurcation

point of the problem (1.9), (1.2) if for any neighborhood of (d0, 0) ∈ R
2
+×W 1,2(Ω, R2) there

is a weak solution ((d1, d2), (u, v)) ∈ R
2
+ × W 1,2(Ω, R2) of (1.9), (1.2) with (u, v) 6= (0, 0),

see Section 2.
Actually, in the following result, we obtain spatial patterns in the sense that for all weak

solutions ((d1, d2), (u, v)) in a neighborhood of (d0, 0) ∈ R
2
+ × W 1,2(Ω, R2) the couple (u, v)

is spatially nonhomogeneous.

Theorem 1.1. Assume that mesN−1 Γ > 0. There are 0 < d0 < ω2 < ∞, ω1 ∈ (0,∞) and
for every ε > 0 some ωε ∈ (0,∞) such that there is a connected set C ⊆ DS of bifurcation
points of the problem (1.9), (1.2) which “separates” the sets

U+ := [ω1,∞) × [ω2,∞) and U− := [ωε,∞) × [ε, d0]

in the sense that C ∩ (U+ ∪ U−) = ∅, and

(1) C meets d1 = ∞ at some d2 ∈ (d0, ω2], i.e. there is a sequence (d1,n, d2,n) ∈ C with
d1,n → ∞ and d2,n → d2.

(2) C meets d2 = 0 or d2 = ∞ or
⋃∞

n=1 Cn, i.e. there is a sequence (d1,n, d2,n) ∈ C which
satisfies d2,n → 0 or d2,n → ∞ or which converges to some point of

⋃∞
n=1 Cn.

Actually, we will obtain an estimate for d0 which reminds of the characterization of the
second eigenvalue of linear problems (Remark 6.3).

Hence, qualitatively, C may look e.g. as sketched in Figure 2 (in the forthcoming pa-
per [11], we will show that in space dimension N = 1, this figure actually describes the
bifurcation points in DS completely.)

The main idea of the proof is to show that for (d1, d2) ∈ U± a certain associate map has
the Leray-Schauder degree 0 or −1, respectively (in small neighborhoods of 0).



BIFURCATION WITH UNILATERAL AND NEUMANN CONDITIONS 4

d1

d2

C3 C2 C1

U−

ωε

U+

ω1

ε

d0

ω2

CDS

Figure 2. Bifurcation points of (1.9), (1.2) and the two zones U±

Comparison with the Dirichlet case. As we mentioned on the beginning, the bifur-
cations of stationary solutions of (1.1) with boundary conditions of a type (1.2) but with
Neumann condition replaced by Dirichlet condition on a part ΓD ⊆ ∂Ω \ Γ were stud-
ied already in the past. In this case the domain of stability of the trivial solution of the
corresponding classical problem, i.e. (1.1) with mixed boundary conditions u = 0 on ΓD,
∂u/∂n = 0 on ∂Ω \ ΓD, is described again as above but now κj in the definition of Cj are
eigenvalues of −∆ with mixed boundary conditions mentioned. However, in this case there
cannot be bifurcation points in the zone

Z0 := ( b11
κ1

,∞) × (0,∞) (1.10)

to the right of the vertical asymptote of the right-most hyperbola C1. The shape of the
connected set C of bifurcation points lying in DS is in this case unbounded in d2-direction
with b11

κ1

as its vertical asymptote, i.e. C may look qualitatively as in Figure 3. Actually,
numerical calculations suggest that in space dimension N = 1 it really has roughly the
shape as in this figure. (We note that there are other branches of bifurcation points in

d1

d2

C3 C2 C1

Z0C

DS

Figure 3. Branch of bifurcation points C in the Dirichlet case and the zone (1.10)

DU [29], but we consider here only what happens in DS.) In fact, it can be shown that the
Leray-Schauder degree of the map associated naturally to the problem has for (d1, d2) ∈ Z0

the value 1 (in small neighborhoods of 0) but for (d1, d2) close to certain hyperbolas Cn the
value 0. Results of such type (with a Dirichlet part) can be found e.g. in [10, 29].
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In the forthcoming paper [11], we will show that for the case of the conditions (1.2) in
dimension N = 1 there is no bifurcation point (d1, d2) to the right of C1 with large d2 so
that actually the branch C in Figure 2 describes all bifurcation points in DS in the sense
that the existence of an additional branch as in Figure 3 is excluded.

Hence, the difference of the pure Neumann-Signorini case (1.2) from the case with a
Dirichlet part is not only that we need rather different mathematical methods to attack the
problem but also the location of the branch of bifurcation points is different. The branch
as shaped in Figure 3 cannot occur under boundary conditions (1.2), and vice versa.

A particular case of the conditions (1.2) was touched briefly in [2] (which is devoted
mainly to the case with Dirichlet conditions), but there is a mistake. The method used
cannot be applied in fact and the partial result mentioned there is wrong.

A partial motivation for the correct answer in the case without Dirichlet conditions given
in the current paper was an unpublished numerical simulation performed by Jan Eisner
some years ago, suggesting that in the one dimensional case the branches of critical points
do not look like in Figure 3 but are closer to Figure 2. The authors thank him for discussions
concerning those computations.

The plan of the paper is as follows. In Section 2, we formulate general bifurcation
results for problems of type (1.9) with unilateral conditions and give several examples.
In particular, these results contain Theorem 1.1. In Section 3, we introduce the general
functional analytic framework which will be used for the remainder of the paper. After
proving some auxiliary results about a “shadow system” in Section 4, we will be able to
show that the earlier mentioned degree is 0 for (d1, d2) ∈ U+. However, the crucial part
of the paper is to show that this degree is −1 for (d1, d2) ∈ U−. The proof of that part
is divided into two sections: In Section 5, we describe a rather general approach which
shows that the degree of an auxiliary map is ±1. We show in Section 6 how this can be
used to show that the degree for the map we are actually interested in is −1. In the final
Section 7, the results of the previous sections are combined to prove the bifurcation results
of Section 2. Actually, Sections 4–6 contain more general results concerning properties of
auxiliary systems than those necessary for the proof of our bifurcation theorems. In fact, we
could have used them to formulate more general bifurcation results in a functional analytic
setting, see Remark 7.2.

2. Main Bifurcation Results and Applications to Unilateral Problems

In the sequel, we will work with the spaces H0 := W 1,2(Ω, R) and H := H0 × H0.
Recall that eigenvalues κn of −∆ with Neumann boundary conditions (1.3) and the

corresponding eigenfunctions u ∈ H0 are characterized by the variational equality∫

Ω

∇u · ∇ϕ = κn

∫

Ω

uϕ dx for all ϕ ∈ H0. (2.1)

We define weak solutions of the problem (1.9), (1.3) in a standard manner as couples
(u, v) ∈ H which satisfy the variational equations

d1

∫

Ω

∇u · ∇ϕ =

∫

Ω

(
b11u + b12v + f1(u, v)

)
ϕ dx for all ϕ ∈ H0,

d2

∫

Ω

∇v · ∇ϕ =

∫

Ω

(
b21u + b22v + f2(u, v)

)
ϕ dx for all ϕ ∈ H0,

(2.2)

where all integrals are finite under the assumption (1.6) due to Sobolev’s embedding theo-
rems and Hölder’s inequality. Similarly, considering the cone

K0 := {v ∈ H0 : v|Γ ≥ 0 (in the sense of traces)} , (2.3)
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we define weak solutions of (1.9), (1.2) as couples (u, v) ∈ H satisfying the variational
inequality

d1

∫

Ω

∇u · ∇ϕ =

∫

Ω

(
b11u + b12v + f1(u, v)

)
ϕ dx for all ϕ ∈ H0,

v ∈ K0, d2

∫

Ω

∇v · (∇ϕ −∇v) ≥
∫

Ω

(
b21u + b22v + f2(u, v)

)
(ϕ − v) dx for all ϕ ∈ K0.

(2.4)

We call d0 ∈ R
2
+ a bifurcation point of (2.4) if for each neighborhood of (d0, 0) ∈ R

2
+×H there

are ((d1, d2), (u, v)) ∈ R
2
+×H with (u, v) 6= (0, 0) satisfying (2.4). We say that the bifurcation

point d0 is spatially nonhomogeneous if there is a neighborhood W of (d0, 0) ∈ R
2
+ such

that (u, v) is spatially nonhomogeneous (nonconstant) for every ((d1, d2), (u, v)) ∈ W × H

satisfying (2.4) with (u, v) 6= (0, 0). For the particular cone (2.3), we call these points
(spatially nonhomogeneous) bifurcation points of (1.9), (1.2).

We call a point d = (d1, d2) ∈ R
2
+ a critical point of (2.4) if there is a weak solution

(u, v) 6= (0, 0) of (2.4) with f1 = f2 = 0. A compactness argument implies that every
bifurcation point of (2.4) is a critical point, see Proposition 7.1; cf. also e.g. [2].

However, our main bifurcation result does not only deal with the cone (2.3), but actually
one can replace (2.3) by any closed convex cone K0 ⊆ H0 with its vertex in 0 (i.e. K0 is
closed and convex with 0 ∈ K0 + K0 ⊆ K0) satisfying certain hypotheses. In order to
formulate these hypotheses, we denote by e either

e(x) := 1 or e(x) := −1, (2.5)

the choice of the sign in (2.5) being arbitrary but fixed. Our main results concerning
bifurcation for the problem (1.9), (1.2) are the following two theorems.

Theorem 2.1. Suppose (1.4), and let f1, f2 : R
2 → R be continuous and satisfy (1.6), (1.7).

Let K0 ⊆ H0 be a closed convex cone with its vertex in 0 with the following properties.

For any eigenfunction u of ∆ with (1.3) there is ε > 0 with e + εu ∈ K0, (2.6)

−e /∈ K0, and there is

u0 ∈ e + K0 with

∫

Ω

u0 dx = 0 and
1

mesN Ω

∫

Ω

|u0|2 dx <
( |B|

b12b21

)2

. (2.7)

Then there are ω1, ω2 > 0, d0 > 0, and for each ε > 0 some ωε > 0 with the following
properties.

(1) The sets U+ := [ω1,∞)× [ω2,∞) and U− := [ωε,∞)× [ε, d0] contain no critical point
of (2.4).

(2) There is no sequence (d1,n, d2,n) ∈ R
2
+ of critical points of (2.4) with d1,n → ∞ and

d2,n → d0.
(3) The set of bifurcation points of (2.4) in DS contains a connected set C which sepa-

rates U+ and U− in the following sense:
(a) C contains a sequence (d1,n, d2,n) with d1,n → ∞ and d2,n → d∞ ∈ (d0, ω2).
(b) C contains a sequence (d1,n, d2,n) which converges to some point of a hyperbola

Cm (m = 1, 2, . . . ) or which satisfies d2,n → 0 or d2,n → ∞.

All bifurcation points of (2.4) in R
2
+ \ ⋃∞

n=1 Cn are spatially nonhomogeneous.
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Remark 2.1. Our proof will show that for each u0 satisfying (2.7) one can actually choose

d0 := −b22

( |B|
b12b21

)2

mesN Ω −
∫

Ω

|u0|2 dx
∫

Ω

|∇u0|2 dx

> 0 (2.8)

in Theorem 2.1. The quantities ω1, ω2 > 0 in Theorem 2.1 are independent of u0, but ωε > 0
might also depend on u0.

Theorem 2.2. Under the hypotheses of Theorem 2.1, let C0 ⊆ R
2
+ denote the critical points

of (2.4), and let Ũ± denote the component of R
2
+ \ C0 containing U±.

Let I be a closed (not necessarily bounded) interval, and let γ : I → R
2
+ be continuous

such that there are two points t± ∈ I, t− < t+ with γ(t±) ∈ Ũ±.
Then there is a global bifurcation of (2.4) on γ in the sense that there is a connected set

C0 ⊆ I ×H of (t, u, v), satisfying (u, v) 6= (0, 0) and (2.4) with (d1, d2) = γ(t), such that the
following holds.

(1) The closure C0 in I × H contains a point from (t−, t+) × {0}.
(2) C0 is unbounded, or C0 contains a point of the form (s, (u, v)) with either s ∈ ∂I

(boundary understood in R) and (u, v) 6= 0 or with s /∈ [t−, t+] and u = v = 0.

Actually, we will see that both results hold even for more general problems (Remarks 7.2
and 7.1).

Theorem 2.2 implies in particular, that the bifurcation of Theorem 2.1 is global in a sense
along every path γ connecting U− with U+.

Theorems 2.1 and 2.2 apply to a large class of cones K0. In fact, in the subsequent
examples, the hypothesis (2.6) of Theorem 2.1 follows from the fact that eigenfunctions
of ∆ and their traces are uniformly bounded. Hence, only the existence of a function u0

satisfying (2.7) needs some discussion.

Example 2.1. The hypotheses of Theorem 2.1 with e(x) ≡ 1 are satisfied for the cone (2.3),
corresponding to the situation described in the introduction, if only mesN−1 Γ > 0. Indeed,
the condition (2.7) is fulfilled by any function u0 = u1 −u2 with u1, u2 ∈ H0, uk(Ω) ⊆ [0, 1],
u1|Γ = 1, u2|Γ = 0,

∫
Ω

u1 dx =
∫
Ω

u2 dx, if the suppports of u1, u2 are sufficiently small.
In particular, the conclusion of Theorem 2.1 holds for weak solutions of (1.9), (1.2).

Hence, Theorem 1.1 is a special case of Theorem 2.1.

Example 2.2. Let us consider finitely many pairwise disjoint sets Γ1, . . . , Γn ⊆ ∂Ω with
mesN−1 Γk > 0 for all k and the cone

K0 := {v ∈ H0 :

∫

Γk

v dx ≥ 0 for all k = 1, . . . , n}.

In this case, the variational inequality (2.4) corresponds to weak solutions of (1.9) with the
unilateral boundary conditions of integral type

∂u

∂n
= 0 on ∂Ω,

∂v

∂n
= 0 on (∂Ω) \

n⋃

k=1

Γk,

∫

Γk

v dx ≥ 0,
∂v

∂n
≡ const ≥ 0,

∂v

∂n
·
∫

Γk

v dx = 0 on Γk,
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see e.g. [7, Observation 5.2]. The hypotheses of Theorem 2.1 are satisfied automatically.
One can choose the same function u0 as in Example 2.1 corresponding to Γ = Γ1 ∪ · · · ∪Γn.

Example 2.3. We consider now a set Ω0 ⊆ Ω, mesN Ω0 > 0, and the corresponding cone

K0 := {v ∈ H0 : v|Ω0
≥ 0} .

For this choice of K0, the variational inequality (2.4) corresponds to weak solutions of the
problem

d1∆u − b11u − b12v − f1(u, v) = 0 on Ω,

d2∆v − b21u − b22v − f2(u, v) = 0 on Ω \ Ω0,

d2∆v − b21u − b22v − f2(u, v) ≤ 0 ≤ v on Ω0,

(d2∆v − b21u − b22v − f2(u, v))v = 0 on Ω0

with Neumann boundary conditions (1.3). Thus, roughly speaking, we require now unilat-
eral conditions in the interior set Ω0. Assume that Ω0 ⊆ Ω and

0 < mesN Ω0 ≤ mesN Ω0 <
1

2

( |B|
b12b21

)2

mesN Ω. (2.9)

Then the hypotheses of Theorem 2.1 are satisfied. To construct the required function u0, let

us realize that |B|
−b12b21

< 1. Consider a closed set Ω1 ⊆ Ω \Ω0 with mesN Ω1 = mesN Ω0 and
fix for sufficiently small ε > 0 a function u ∈ H0 whose support lies in a sufficiently small
neighborhood of Ω1 ∪ Ω0 and which satisfies |u(x)| ≤ 1 + ε on Ω, u|Ω0

= 1 + ε, and u|Ω1
=

−(1+ε). We can assume
∣∣∫

Ω
u dx

∣∣ < ε mesN Ω, and then u0 := u−
∫
Ω

u dx/ mesN Ω ∈ e+K0

satisfies (2.7).

Example 2.4. We can similarly consider unilateral conditions of integral type on disjoint
sets Ω1, . . . , Ωn ⊆ Ω by considering the cone

K0 := {v ∈ H0 :

∫

Ωk

v dx ≥ 0 for all k = 1, . . . , n} .

In this case, the hypotheses of Theorem 2.1 are satisfied if (2.9) holds for Ω0 =
⋃n

k=1 Ωk.

Example 2.5. It is of course also possible to combine the previous examples and e.g. consider
a cone like

K0 :=
{
v ∈ H0 : v|Γ ≥ 0, v|Ω0

≥ 0,
∫

Γj

v dx ≥ 0 for j = 1, . . . , n,

∫

Ωk

v dx ≥ 0 for k = 1, . . . , m
}

.

In this case, the hypotheses of Theorem 2.1 are satisfied if at least one of the (disjoint) sets
Γ, Γj, Ω0, Ωk has positive measure, Ωk ⊆ Ω for all k (including k = 0) and if the measure of
the union of these sets Ωk is strictly less than

1

2

( |B|
b12b21

)2

mesN Ω.

Example 2.6. All above examples hold in the same manner when we reverse all inequalities
in the unilateral conditions. In this case, we just have to choose the cone −K0 instead of K0

and consider e(x) = −1 instead of e(x) ≡ 1 in (2.5) (and invert the sign of the constructed
function u0 required for Theorem 2.1).

However, it is not possible by our approach to invert only some but not all inequalities in
the unilateral conditions (i.e. if we have unilateral conditions acting in opposite directions
simultaneously): In this case, the first two hypotheses of Theorem 2.1 are not satisfied.
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3. Functional Analytic Setting

3.1. Considered Operators and their Basic Properties. Throughout this paper, we
assume that bij are constants satisfying (1.4). We consider the usual Sobolev space H0 :=
W 1,2(Ω) with the scalar product

〈u, v〉 :=

∫

Ω

∇u(x) · ∇v(x) dx +

∫

Ω

u(x)v(x) dx,

and the corresponding norm ‖ · ‖, and put H := H0 × H0.
We define A0 : H0 → H0 by the duality formula

〈A0u, ϕ〉 :=

∫

Ω

u(x)ϕ(x) dx for all u, ϕ ∈ H0

and we define e by (2.5) (the sign being fixed). We always assume that the functions
fk : R

2 → R (k = 1, 2) are continuous and satisfy (1.6). We define operators Fk : R
2
+ ×H →

H0 (k = 1, 2) and F : R
2
+ × H → H by the duality

〈Fk(d1, d2, u, v), ϕ〉 :=

∫

Ω

d−1
k fk(u(x), v(x))ϕ(x) dx for all ϕ ∈ H0,

and F = (F1, F2), respectively.

Proposition 3.1. The operator A0 : H → H is compact, symmetric and positive. Fk and F
are well-defined, continuous and compact in the sense that for compact D ⊆ R

2
+ and bounded

M ⊆ H the images Fk(D×M) (k = 1, 2) and F (D×M) are precompact. Moreover, if (1.7)

holds, then we have for each d̃ ∈ R
2
+

lim
(d,U)→(ed,0)

U 6=0

F (d, U)

‖U‖ = 0. (3.1)

Proof. See e.g. [8, Proposition 3.2] or [26]. �

It follows that A0 has a sequence of eigenvalues λ0 ≥ λ1 ≥ · · · > 0 (counting with multi-
plicities) and a corresponding system of eigenfunctions (e0, e1, . . . ) forming an orthonormal
base of H0. Let us set

κn :=
1

λn

− 1 ≥ 0, i.e. λn =
1

1 + κn

(n = 0, 1, 2, . . . ). (3.2)

Proposition 3.2. The numbers κn are the eigenvalues of −∆ (in the weak sense) with
Neumann boundary conditions, and en are corresponding eigenfunctions. In particular,
1 = λ0 > λ1, and e and e0 differ only by a nonzero factor.

Proof. Note that A0u = λu means that for all ϕ ∈ H0 we have
∫

Ω

u(x)ϕ(x) dx = 〈A0u, ϕ〉 = 〈λu, ϕ〉 =

∫

Ω

λ∇u(x) · ∇ϕ(x) dx +

∫

Ω

λu(x)ϕ(x) dx.

This is just (2.1) with κn = (1 − λ)/λ = λ−1 − 1, i.e. λ > 0 is an eigenvalue of A0 (with
corresponding eigenfunction u) if and only if λ = 1

µ+κn
= λn for some n ∈ {0, 1, . . .}. �

For d = (d1, d2) ∈ R
2
+, we define a linear operator A(d) : H → H by

A(d)

(
u
v

)
:=

(
b11+d1

d1

A0u + b12
d1

A0v
b21
d2

A0u + b22+d2

d2

A0v

)
. (3.3)
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Proposition 3.1 implies that A : R
2
+ × H → H is compact in the sense that for compact

D ⊆ R
2
+ and bounded M ⊆ H the image A(D × M) is precompact.

Also, we assume that K0 ⊆ H0 is some closed convex cone with its vertex in 0 (i.e.
0 ∈ K0 + K0 ⊆ K0). We denote by PK0

the canonical projection onto K0, i.e. PK0
u is the

unique element of K0 with closest distance to u. It is well-known that PK0
is a well-defined

continuous positively homogeneous operator, and that v = PK0
u is characterized by the

variational inequality

v ∈ K0, 〈v − u, ϕ − v〉 ≥ 0 for all ϕ ∈ K0,

see e.g. [13, Section 1.2]. We associate to K0 the cone

K := H0 × K0 ⊆ H,

and let PK denote the canonical projection onto K; then PK(u, v) = (u, PK0
v).

Observation 3.1. For d = (d1, d2) ∈ R
2
+, the couple U = (u, v) ∈ H is a weak solution

of (1.9), (1.3) if and only if

U = A(d)U + F (d, U),

and a solution of (2.4) if and only if

U = PK

(
A(d)U + F (d, U)

)
. (3.4)

In particular, U = (u, v) is a weak solution of (1.9), (1.2) if and only if the equality (3.4)
holds with the cone (2.3).

Proof. The first claim follows by just inserting the definitions into (2.2). For the second
claim observe in addition that (3.4) is equivalent to the variational inequality

U ∈ K, 〈U −
(
A(d)U + F (d, U)

)
, Φ − U〉 ≥ 0 for all Φ ∈ K

which is equivalent to (2.4). �

Remark 3.1. All results from here until Remark 6.2 hold also in the following more general
situation: H0 is a real Hilbert space, H := H0×H0, and A0 : H0 → H0 is a compact positive
symmetric linear operator with the simple largest eigenvalue λ0 = 1. In this general setting,
we let λ0 = 1 > λ1 ≥ · · · > 0 denote the eigenvalues with a corresponding orthonormal base
of eigenfunctions (e0, e1, . . . ), and we define κn by (3.2) (in particular, 0 = κ0 < κ1 ≤ · · · ).
In this abstract setting, we assume about e ∈ H0 that it is a nonzero multiple of e0, i.e. an
eigenvector to the eigenvalue λ0 = 1. Also, in this abstract setting, we define A by (3.3),
and we assume that F is any map with the properties described in Proposition 3.1. Finally,
we assume that K0 ⊆ H0 is a closed convex cone with vertex in 0, K := H0 × K0, and we
let PK and PK0

be the corresponding projections.
The only change for this abstract setting will be that one has to replace the hypothe-

sis (2.6) throughout by the condition

for each n = 1, 2, . . . there is δn > 0 with {e + δnen, e − δnen} ⊆ K0. (3.5)

Lemma 3.1. Suppose

e ∈ K0, −e /∈ K0, and there is u− ∈ K0 with 〈u−, e〉 < 0. (3.6)

Then αe = PK0
(βe), α, β ∈ R, if and only if α = β ≥ 0.

The assumption (3.6) means that PK0
(−e) 6= 0, and is satisfied under the hypotheses

of Theorem 2.1. Indeed, (2.6) implies e ∈ K0, and if u0 is from (2.7), u− := u0 − e then
u− ∈ K0 and 〈u−, e〉 = −mes Ω < 0.
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Proof. The equation αe = PK(βe) is equivalent to the variational inequality

αe ∈ K0, 〈αe − βe, ϕ − αe〉 ≥ 0 for all ϕ ∈ K0.

Choosing ϕ := αe + u− ∈ K0 + K0 ⊆ K0 with u− as in (3.6), we obtain (α− β) 〈e, u−〉 ≥ 0,

and choosing ϕ = e + αe ∈ K0 + K0 ⊆ K0, we obtain (α − β) ‖e‖2 ≥ 0. Both together
implies α = β. Finally, since e ∈ K0 \ (−K0), we have αe ∈ K0 if and only if α ≥ 0. �

We denote by

P0u :=
〈u, e〉
‖e‖2 e

the orthogonal projection onto the subspace spanned by e. Using either a straightforward
calculation or observing that P0 is the spectral projection onto the eigenspace of A0 to the
eigenvalue 1, one sees that P0 satisfies

P0A0 = A0P0 = P0. (3.7)

3.2. The meaning of Cn. The role of the hyperbolas (1.8) in our functional analytic
framework is explained by the following observation, cf. [20] for the case N = 1.

Proposition 3.3. For d ∈ R
2
+, the equation U = A(d)U has a solution U 6= 0 if and only

if d ∈ ⋃∞
n=1 Cn.

Recall that Observation 3.1 implies in particular that the solutions U = (u, v) of U =
A(d)U are the weak solutions of (1.9), (1.3) with f1 = f2 = 0.

Proof. Since (en) is an orthonormal basis, every u ∈ H0 can be written as a series u =∑∞
n=0 〈u, en〉 en. We thus have U − A(d1, d2)U = 0 with U = (u, v) ∈ H if and only if

(
1 − b11 + d1

d1

λn

)
〈u, en〉 −

b12

d1

λn 〈v, en〉 = 0

−b21

d2
λn 〈u, en〉 +

(
1 − b22 + d2

d2
λn

)
〈v, en〉 = 0

for all n = 0, 1, . . . . We have (u, v) 6= 0 if and only if the above system has a nontrivial
solution for some n, i.e. A(d1, d2)U = U has a nontrivial solution if and only if for some n
the determinant of the above system vanishes, i.e. if and only if

(
1 − b11 + d1

d1
λn

)(
1 − b22 + d2

d2
λn

)
=

b12

d1
λn

b21

d2
λn.

Multiplying by λ−2
n d1d2 = (1 + κn)2d1d2, we see that this does not happen when n = 0

(since |B| 6= 0) and for n ≥ 1, it means exactly (d1, d2) ∈ Cn. �

By deg, we will denote the classical Leray-Schauder degree (in the space H or H0).
Moreover, for r > 0 and U0 ∈ H, we use the notation

Br(U0) := {U ∈ H : ‖U − U0‖ < r} .

Corollary 3.1. For d ∈ DS and any r > 0, we have

deg
(
id − A(d), Br(0), 0

)
= −1.

Proof. By Proposition 3.3, the above degree is defined for all d = (d1, d2) ∈ R
2
+ \ ⋃∞

n=1 Cn,
in particular, for all d ∈ DS. By the homotopy invariance, the degree is independent of
d ∈ DS. Hence, without loss of generality, we can assume d1 > b11

κ1

and d2 < −b22. Consider
now the homotopy

H(t,

(
u
v

)
) :=

(
b11+d1

d1

A0u + tb12
d1

A0v
tb21
d2

A0u + b22+d2

d2

A0v

)
.
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Applying Proposition 3.3 for the case that b12 and b21 is replaced by tb12 and tb21, respec-
tively, since d lies in view of d1 > b11

κ1

for any value of t ∈ (0, 1] in the corresponding

zone (1.10) and thus not on any of the corresponding hyperbolas for t ∈ (0, 1], we find that
H(t, U) 6= U for t ∈ (0, 1]. Moreover, since

1

1 + κ1
<

d1

b11 + d1
< 1

implies that µ1 := d1

b11+d1

∈ (λ1, λ0), and since µ2 := d2

b22+d2

< 0 = infn λn, the operators

id − µ−1
1 A0 and id − µ−1

2 A0 are invertible, and thus also id − H(0, · ) is invertible. Hence,
if M ⊆ H0 denotes an open neighborhood of 0 satisfying M × M ⊆ Br(0), the homotopy
invariance, excision, and Cartesian product properties of the degree thus imply

deg
(
id − A(d), Br(0), 0

)
= deg

(
id − H(0, ·

)
, M × M, 0) =

deg
(
id − µ−1

1 A0, M, 0
)
· deg

(
id − µ−1

2 A0, M, 0
)
.

(3.8)

The Leray-Schauder index formula for a compact linear operator implies that deg
(
id −

µ−1
k A0, M, 0

)
= (−1)mk (k = 1, 2), where mk denotes the number (counted according to

multiplicities) of the real eigenvalues of µ−1
k A0 which are larger than 1, see e.g. [30, Proposi-

tion 14.5]. Since µ2 < 0, µ1 ∈ (λ1, λ0), and the eigenvalues of µ−1
k A0 are

{
µ−1

k λ0, µ
−1
k λ1, . . .

}
,

the operator µ−1
2 A0 has only negative eigenvalues while µ−1

1 A0 has exactly one eigenvalue
which is larger than 1 (namely µ−1

1 λ0), and this eigenvalue has multiplicity 1. Hence, we
have m1 = 1 and m2 = 0 which implies that the first factor in the product (3.8) is −1, and
the second factor is 1. �

4. Some auxiliary results

The aim of this section will be to provide lemmas which allow to calculate the Leray-
Schauder degree for a map associated to the family of systems

d1u −
(
(b11 + d1)A0u + b12A0v + h1e

)
= 0,

d2v − PK0

(
b21A0u + (b22 + d2)A0v + h2e

)
= 0

(4.1)

with d1, d2 ∈ R
2
+, h1, h2 ∈ R. The terms hke actually will help us to calculate the degree

also with h1 = h2 = 0.

4.1. Particular Solutions of (4.1). Consider for fixed d1, d2 ∈ R
2
+, h1, h2 ∈ R besides (4.1)

the same system without the operator PK0
:

d1u = (b11 + d1)A0u + b12A0v + h1e,

d2v = b21A0u + (b22 + d2)A0v + h2e ∈ K0.
(4.2)

Note that we added in (4.2) the requirement v ∈ K0. By that requirement, every solution
(u, v) of (4.2) is automatically a solution of (4.1). These are in a sense the simplest solutions
of (4.1), and the following result characterizes these almost completely.

Lemma 4.1. Suppose (3.6) holds. Let d1, d2 ∈ R
2
+, h1, h2 ∈ R be fixed.

(1) If (u, v) satisfies (4.1) but not (4.2), then u and v are not both multiples of e.
(2) If d = (d1, d2) /∈ ⋃∞

n=1 Cn, then (4.2) has a solution if and only if

b21h1 ≥ b11h2. (4.3)

Then the solution (u, v) is unique, (u, v) = (αe, βe) with some α, β ∈ R, and β 6= 0
if and only if the inequality in (4.3) is strict.
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Proof. If (u, v) = (αe, βe) are solutions of (4.1), then the second equation of (4.1) means

d2βe = PK0

((
b21α + (b22 + d2)β + h2

)
e
)
,

and by Lemma 3.1 the expression after PK0
is in K0 and therefore PK0

can be removed
which means that (4.2) holds. For the second claim, we observe that the couple

u =
b12h2 − b22h1

|B| e, v =
b21h1 − b11h2

|B| e (4.4)

satisfies (4.2) if and only if v ∈ K0; since e ∈ K0 \ (−K0), the latter is the case if and only
if (4.3) holds. If (d1, d2) /∈ ⋃∞

n=1 Cn, then the solution of (4.2) (without the requirement
v ∈ K0) is unique by Proposition 3.3, and so there cannot be other solutions of (4.2)
besides (4.4). �

4.2. The Shadow System. In order to calculate the degree for large d1, we study first
what happens for solutions of (4.1) when d1 → ∞. It will be more convenient to consider
sequences of solutions and to consider the quantity ci = hi/di instead of hi. This leads us
to the study of the system which occurs in the following lemma.

Lemma 4.2. Suppose that (un, vn) ∈ H is a bounded sequence of solutions of

un =
b11 + d1,n

d1,n

A0un +
b12

d1,n

A0vn + c1,ne, (4.5)

vn = PK0

( b21

d2,n

A0un +
b22 + d2,n

d2,n

A0vn + c2,ne
)
, (4.6)

d1,n → ∞, d2,n → d∞ ∈ (0,∞], and c1,n, c2,n ∈ R. Then c1,n → 0 and the sequence c2,n

is bounded from above. If additionally c2,n is bounded, the sequence (c2,n, un, vn) contains a
convergent subsequence.

Proof. Solving (4.5) for c1,ne, we see that c1,n is bounded. Hence, there is a subsequence
such that c1,nk

→ ĉ1. However, passing to a further subsequence if necessary, we can assume
that A0unk

converges in norm. Hence, (4.5) implies that also unk
→ u for some u ∈ H0.

Passing to the limit in (4.5), we find u = A0u + ĉ1e and thus

〈u, e〉 = 〈A0u + ĉ1e, e〉 = 〈u, A0e〉 + ĉ1 〈e, e〉 = 〈u, e〉 + ĉ1 ‖e‖2 .

This implies ĉ1 = 0. Since this holds for every convergent subsequence, it follows that
c1,n → 0.

The equality (4.6) means

vn ∈ K0, 〈vn −
( b21

d2,n

A0un +
b22 + d2,n

d2,n

A0vn + c2,ne
)
, ϕ − vn〉 ≥ 0 for all ϕ ∈ K0.

Choosing ϕ := vn + e ∈ K0 + K0 ⊆ K0, we obtain

c2,n ‖e‖2 ≤ 〈vn −
( b21

d2,n

A0un +
b22 + d2,n

d2,n

A0vn

)
, e〉 .

Hence, the sequence c2,n is automatically bounded from above. If it is also bounded from
below, we find a subsequence such that c2,nk

→ c2 ∈ R and that A0unk
and A0vnk

converge
in norm. It follows from (4.5) and (4.6) that also unk

and vnk
converge in norm. �
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Lemma 4.3 (Shadow system). Suppose that (un, vn) ∈ H is a sequence of solutions of (4.5)
and (4.6) where d1,n → ∞, d2,n → d∞ ∈ (0,∞], and (c2,n, un, vn) → (c2, u, v). Then there
is some C ∈ R with

u =
−b12

b11
Ce, (4.7)

v = PK0

((
c2 −

b12b21

b11d∞
C

)
e +

b22 + d∞

d∞
A0v

)
, (4.8)

the first and the second fraction being understood as 0 and 1, respectively, if d∞ = ∞.
Moreover, d1,nc1,n → c1 with

C =
〈v, e〉
‖e‖2 +

c1

b12
. (4.9)

Equation (4.7) means that u is constant. However, in view of (4.9) it is more convenient
for us to write the constant in the form (4.7).

For later calculation, we point out a slight unsymmetry in the notation which however
will be convenient: We have c2,n → c2 but d1,nc1,n → c1.

Actually, we can even rewrite (4.7)–(4.9) equivalently as the single equation

v = PK0

((b22 + d∞

d∞
A0 −

b12b21

b11d∞
P0

)
v +

(
c2 −

b21

b11d∞
c1

)
e

)
(4.10)

in the sense that if (u, v, C) is a solution of (4.7)–(4.9), then v satisfies (4.10), and conversely
if v satisfies (4.10) and we calculate u and C by (4.7) and (4.9), then (u, v, C) satisfy (4.7)–
(4.9).

The notion “shadow system” was used for a similar situation (in dimension N = 1 for
the corresponding Neumann problem) as d2 → ∞ in [22] (see also [12]), and in [2] for the
particular case c1 = c2 = 0 (if the nonlinearities in [2] vanish).

Proof of Lemma 4.3. Since c1,n → 0, passing to the limit in (4.5), we obtain that u = A0u.
Hence, u is an eigenvector of A0 to the eigenvalue 1 and thus (4.7) holds with some C ∈ R.
Moreover, applying P0 on both sides of (4.5), we find by (3.7) that

d1,nP0un = (b11 + d1,n)P0un + b12P0vn + d1,nc1,ne.

Hence, using (4.7),

−d1,nc1,ne = b11P0un + b12P0vn → b11P0u + b12P0v = b11u + b12P0v.

This shows that d1,nc1,n → c1 for some c1, and moreover −c1e = b11u + b12P0v which by the
definition of P0v and (4.7) means (4.9). Finally, (4.8) is obtained by passing to the limit
in (4.6) and inserting (4.7). �

Lemma 4.4 (Properties of the shadow system). Assume (3.6), and that (u, v) ∈ H0 × H0

are solutions of (4.7), (4.8) with some d∞ ∈ (0,∞], c1, c2 ∈ R and C ∈ R from (4.9).

(1) If v = αe, α ∈ R, then α = C − b−1
12 c1 ≥ 0 and

|B|
b11d∞

C + c2 −
b22

b12d∞
c1 = 0. (4.11)

In case d∞ = ∞, we understand (4.11) as c2 = 0. In case d∞ < ∞, we have

c2 ≤
b21

b11d∞

c1, (4.12)

the inequality (4.12) being strict if and only if α > 0.
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(2) If v 6= αe for all α ∈ R and d∞ = ∞ then

c2 〈v, e〉 > 0. (4.13)

Proof. Let v = αe, α ∈ R. By (4.9), we have then α = C − b−1
12 c1, and (4.8) means

αe = PK0

((
c2 −

b12b21

b11d∞

C
)
e +

b22 + d∞

d∞

αe

)
.

By Lemma 3.1 and the form of α this is equivalent to α ≥ 0 and (4.11). Inserting the
inequality α ≥ 0 into (4.11), we obtain (4.12) with equality if and only if α = 0.

Assume now that v 6= αe for all α ∈ R and d∞ = ∞. Then the equation (4.8) is equivalent
to the variational inequality

v ∈ K0, 〈v − (c2e + A0v), ϕ − v〉 ≥ 0 for all ϕ ∈ K0.

For the choice ϕ = 0 ∈ K0, this implies

‖v‖2 ≤ c2 〈v, e〉 + 〈A0v, v〉 .

Since A0 is selfadjoint and compact with the largest eigenvalue 1 and corresponding eigen-
function e, and since v 6= αe for all α ∈ R, we have 〈A0v, v〉 < ‖v‖2. Hence, (4.13) must
hold. �

4.3. Solutions of (4.1). In the previous section we have shown that the solutions of (4.1)
converge (as d1 → ∞) in a sense to solutions of the shadow system. Now we want to make
some observations about these solutions for large d1 without referring to the shadow system.
Later, we will combine both observations.

To study (4.1) for large d1, we will frequently use that we are able to reduce the sys-
tem (4.1) to a single operator equation if d1 > b11/κ1 by the following result.

Lemma 4.5. Let d = (d1, d2) ∈ R
2
+ lie on no vertical asymptote of the hyperbolas C1, C2, . . . ,

i.e.

d1 /∈
{b11

κ1

,
b11

κ2

, . . .
}
. (4.14)

Then for any map P : H0 → H0 and any h1, h2 ∈ R the system

d1u = (b11 + d1)A0u + b12A0v + h1e, (4.15)

v = P
(b21

d2
A0u +

b22 + d2

d2
A0v +

h2

d2
e
)
, (4.16)

is equivalent to the system

u =
(
d1 − (b11 + d1)A0

)−1
(b12A0v + h1e) (4.17)

v = P
(
fd(A0)v + he

)
, (4.18)

where fd(A0) is understood in the sense of symmetric operator calculus with the function

fd(λ) :=
b12b21

d2
· λ2

d1 − (b11 + d1)λ
+

b22 + d2

d2
λ,

and

h :=
h2

d2

− b21h1

b11d2

. (4.19)

In particular, since P = PK0
and P = id are positively homogeneous, it follows under the

hypothesis (4.14) that the system (4.1) is equivalent to (4.17), (4.18) with P = PK0
, and

that the system (4.2) is for v ∈ K0 equivalent to (4.17), (4.18) with P = id .
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Proof. The inverse in (4.17) exists if and only if d1/(b11 + d1) /∈ {λ0, λ1, . . . } which in view
of d1/(b11 + d1) < 1 = λ0 and (3.2) means (4.14). Now (4.17) is just (4.15), solved for u;
inserting this into (4.16) and observing that e is an eigenvector of A0 to the eigenvalue 1 and
thus an eigenvector of b21A0(d1 − (b11 + d1)A0)

−1 to the eigenvalue b21(d1 − (b11 + d1))
−1 =

−b21/b11, we obtain (4.18). �

Corollary 4.1. Let d = (d1, d2) ∈ R
2
+ satisfy (4.14), and (u, v) ∈ H be a solution of (4.1).

If v = αe, α ∈ R, then also u = βe with some β ∈ R. Moreover, if additionally (3.6) holds,
then (u, v) is a solution of (4.2).

Proof. Apply Lemma 4.5 with P = PK0
. Since v = αe is an eigenvector of A0 (to the

eigenvalue λ0) and thus also an eigenvector of (d1 − (b11 + d1)A0)
−1 (to the eigenvalue

(d1 − (b11 + d1)λ0)
−1), we conclude from (4.17) that u = βe with some β ∈ R. For the

second claim, we observe that A0u = βe and A0v = αe, i.e. we know that v and the
argument of PK0

in (4.1) are both multiples of e. Hence, it follows by using Lemma 3.1 that
the second equation in (4.1) is equivalent to the second equation in (4.2). �

Lemma 4.6. The function fd of Lemma 4.5 satisfies for any v ∈ H0

〈
(
id − fd(A0)

)
v, e〉 =

− |B|
b11d2

〈v, e〉 , (4.20)

〈
(
id − fd(A0)

)
v, v − P0v〉 ≥ 0 if d1 >

b11

κ1
(4.21)

with strict inequality in (4.21) if v is not a multiple of e.

Proof. Since A0e = e, we have e − fd(A0)e =
(
1 − fd(1))e. Hence,

〈
(
id − fd(A0)

)
v, e〉 = 〈v,

(
id − fd(A0)

)
e〉 =

(
1 − fd(1)

)
〈v, e〉 ,

which is (4.20). Note that P 0 := id − P0 is the spectral projection of A0 corresponding to
the complement of {λ0} = {1}. An elementary calculation shows that 1 − fd is positive on
this set if d1κ1 > b11. Hence, the symmetric operator id − fd(A0) is positive on the range
of P 0. Since the spectral projection P 0 is symmetric and commutes with A0 and thus with
id − fd(A0), we obtain

〈
(
id − fd(A0)

)
v, P 0v〉 = 〈

(
id − fd(A0)

)
v, P

2

0v〉 = 〈
(
id − fd(A0)

)
P 0v, P 0v〉 ≥ 0.

Moreover, the inequality is strict unless P 0v = 0, which means v = αe for some α ∈ R. �

Lemma 4.7. Suppose e ∈ K0. Let d = (d1, d2) ∈ R
2
+ satisfy d1 > b11

κ1

, and (u, v) ∈ H be a

solution of (4.1). Then

b21h1 − b11h2 ≥
〈v, e〉
‖e‖2 |B| . (4.22)

Moreover, unless v = αe, α ∈ R, the inequality in (4.22) is strict, and we have

〈v, e〉 < 0. (4.23)

Proof. With the notation of Lemma 4.5, we have (4.18) with P = PK0
. Writing out the

inequality characterizing this projection, we see that (4.18) is equivalent to

v ∈ K0, 〈v −
(
fd(A0)v + he

)
, ϕ − v〉 ≥ 0 for all ϕ ∈ K0. (4.24)

Using the test function ϕ := v + e ∈ K0 + K0 ⊆ K0, we thus obtain by (4.20) that

0 ≤ 〈
(
id − fd(A0)

)
v − he, e〉 =

− |B|
b11d2

〈v, e〉 − h ‖e‖2 . (4.25)
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Inserting the definition (4.19), we obtain (4.22). Moreover, using the test function ϕ = 0 ∈
K0 in (4.24), we obtain by (4.21), (4.20), and the definition of P0, that

0 ≤ 〈(id − fd(A0))v,−(v − P0v) − P0v〉 + h 〈e, v〉

≤ 〈(id − fd(A0))v,−P0v〉 + h 〈e, v〉 =
− |B|
b11d2

〈v,−P0v〉 + h 〈e, v〉

=
− |B|
b11d2

〈v, e〉 〈−v, e〉
‖e‖2 + h 〈v, e〉 =

1

‖e‖2

( |B|
b11d2

〈v, e〉 + h ‖e‖2
)
〈v, e〉 ,

where the first inequality is strict unless v is a multiple of e. Note now that the first factor
is non-positive by (4.25). Hence, if v is not a multiple of e, both factors must be strictly
negative which means that the inequality in (4.22) is strict and (4.23) holds. �

Proposition 4.1. Suppose (3.6) holds. Let (un, vn) satisfy (4.5), (4.6) where d1,n → ∞,
d2,n → d∞ = ∞. If the norm of (un, vn) is bounded and lim infn→∞ c2,n ≥ 0, then c1,n → 0,
c2,n → c2 = 0, and a subsequence of (d1,nc1,n, un, vn) converges to some (c1, u, v) satisfy-
ing (4.7)–(4.9). Moreover, v = αe with α = C − b−1

12 c1 ≥ 0 with C from (4.9).

Proof. By Lemma 4.2 we have c1,n → 0 and can assume, passing to a subsequence if
necessary, that c2,n → c2 ≥ 0, and (un, vn) → (u, v). By Lemma 4.3, we have d1,nc1,n →
c1 ∈ R, and (4.7)–(4.9) holds. If v 6= αe for all α ∈ R, then Lemma 4.4 implies (4.13), and
so c2 > 0 and 〈v, e〉 > 0. This implies 〈vn, e〉 > 0 for large n which by Lemma 4.7 means
that vn = αne for some αn ∈ R. Hence, vn → v implies that v = αe for some α ∈ R,
contradicting our assumption. Thus, v = αe for some α ∈ R, and Lemma 4.4(1) implies in
view of d∞ = ∞ that c2 = 0 and α = C − b−1

12 c1 ≥ 0. Since the whole argument can be
repeated with any subsequence, we find that actually c2,n → 0. �

The following result will be our crucial tool to prove that the degree of a related map
vanishes if d1 and d2 are large.

Theorem 4.1. Assume (3.6). Then for every C0 ≥ 0 there are ω1, ω2 > 0 such that for all
h1, h2 ∈ R and all (d1, d2) ∈ R

2
+ satisfying d1 ≥ ω1, d2 ≥ ω2, and

h2 ≥ 0, |d2h1| ≤ C0h2, (4.26)

the problems (4.1) and (4.2) have exactly the same solutions.

Proof. Assume by contradiction that there are sequences h1,n, h2,n ∈ R and d1,n, d2,n ∈ R
2
+

with d1,n, d2,n ≥ n and (4.26) such that for each n there are solutions Un = (ũn, ṽn) ∈ H of
the corresponding problem (4.1) which are not simultaneously solutions of the corresponding
problem (4.2). By Lemma 4.1(1), we have Un 6= 0. Hence, (un, vn) := Un/ ‖Un‖ are solutions
of (4.5), (4.6) with

ci,n :=
hi,n

di,n ‖Un‖
(i = 1, 2).

Note that c2,n ≥ 0 by (4.26). Passing to a subsequence, we can assume by Proposition 4.1
that c1,n → 0, c2,n → c2 = 0, (un, vn) → (u, v), and d1,nc1,n → c1 such that (4.7)–(4.9) holds
with d∞ = ∞, and v = αe with α = C − b−1

12 c1 ≥ 0. Since (4.26) shows that

|d1,nc1,n| ≤ C0 |c2,n| ,
and since c2,n → 0, we have d1,nc1,n → 0 and thus c1 = 0 which implies C = α, hence
v = Ce. By (4.7), we thus have either u = v = 0 or v = Ce with C > 0. The former
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cannot happen, since (un, vn) are normed by construction and converge to (u, v). Hence,

〈vn, e〉 → C ‖e‖2 > 0. We conclude from (4.22) that there is some ε > 0 such that

b21d1,nc1,n − b11d2,nc2,n ≥ ε

for n large. This is a contradiction, because d1,nc1,n → c1 = 0 and b11d2,nc2,n ≥ 0. �

5. Degree Nonzero

Our approach for a result about nonzero degree consists of two steps. In the first step, we
calculate the degree of a map with a right-hand side in a neighborhood of a certain zero of
that map. The other step consists in showing (using the homotopy invariance and excision
property of the degree) that these degrees coincide. The first step can be shown even for
rather general operators, but for the second step we need a hypothesis which is surprisingly
hard to verify and which we discuss later on.

This type of approach and also parts of the proof of the first step are inspired by the
proof of [24, Theorem 5]. However, even for the first step (which corresponds to [24, (β)
on p. 293]) we have a serious technical difficulty: The proof in [24] requires essentially the
symmetry of the considered operator which we do not have in our case. As a substitute,
we will use the symmetric operator fd(A0) of Lemma 4.5. For this technical reason, we will
assume that the hypothesis (4.14) of Lemma 4.5 is satisfied.

Theorem 5.1. Assume (3.6) and (2.6). Suppose that h1, h2 ∈ R and d = (d1, d2) ∈
R

2
+ \ ⋃∞

n=1 Cn satisfy (4.14) and

b21h1 > b11h2. (5.1)

Then (4.2) has a unique solution U0, and for each t0 ≥ 0 there is r > 0 such that for all
t ∈ [0, t0] the problem

d1u = (b11 + d1)A0u + b12A0v + h1e

d2v =
(
tPK0

+ (1 − t)id
)(

b21A0u + (b22 + d2)A0v + h2e
) (5.2)

has at most the solution U0 in Br(U0).

Proof. The uniqueness and existence of the solution U0 = (u0, v0) of (4.2) is contained in
Lemma 4.1(2). Moreover, Lemma 4.1 also implies in view of (5.1) that v0 = αe, α 6= 0. We
have e ∈ K0 \ (−K0) and v0 ∈ K0, and therefore α > 0. In particular, (2.6) implies that

for every n = 1, 2, . . . there is δn > 0 with {v0 − δnen, v0 + δnen} ⊆ K0. (5.3)

If for some t0 ≥ 0 there is no r > 0 with the required properties, we find a sequence
tn ∈ [0, t0] and a sequence (un, vn) ∈ H with (un, vn) 6= U0, ‖(un, vn) − U0‖ → 0, such that
(un, vn) satisfies (5.2) with t = tn. Applying Lemma 4.5 with P = tnPK0

+ (1 − tn)id , we
find

un =
(
d1 − (b11 + d1)A0

)−1
(b12A0vn + h1e), (5.4)

vn =
(
tnPK0

+ (1 − tn)id
)(

fd(A0)vn + he
)

(5.5)

with h from (4.19). Since U0 = (u0, v0) satisfies (4.2), we apply Lemma 4.5 also with P = id
and find

u0 =
(
d1 − (b11 + d1)A0

)−1(
b12A0v0 + h1e

)
, (5.6)

v0 = fd(A0)v0 + he. (5.7)
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We must have vn 6= v0 for all n, since otherwise (5.4) and (5.6) would imply (un, vn) =
(u0, v0) = U0, contradicting our choice of the sequence (un, vn). Using vn 6= v0, (5.5)
and (5.7), we calculate

vn − v0

‖vn − v0‖
= fd(A0)

vn − v0

‖vn − v0‖
+ tn

PK0
wn − wn

‖vn − v0‖
, (5.8)

where

wn := fd(A0)vn + he = v0 + fd(A0)(vn − v0). (5.9)

We will now show that the last term in (5.8) tends to 0 as n → ∞. To this end, recall that
the eigenvectors e0, e1, . . . to the eigenvalues λk = 1

1+κk
of A0 form an orthonormal base of

H0. Defining µn,k := 〈vn − v0, ek〉, i.e.

vn − v0 =
∞∑

k=0

µn,kek, (5.10)

we have then due to (5.9)

wn − v0 = fd(A0)(vn − v0) =
∞∑

k=0

fd(λk)µn,kek. (5.11)

Since λk → 0, the definition of fd implies fd(λk) → 0. Hence, for each ε > 0, we find some
kε such that |fd(λk)| ≤ ε for all k ≥ kε.

Now we use (5.3). We thus find some δ > 0 such that v0 +µek = αe+µek ∈ K0 whenever
|µ| < δ and k < kε. By Bessel’s inequality, we have |µn,k|2 ≤ ‖vn − v0‖2 for all k, and since
‖vn − v0‖ → 0, we conclude that there is some nε such that |kεfd(λk)µn,k| < δ for all n ≥ nε

and all k. In particular, for n ≥ nε the vector

sn,kε
:= v0 +

kε−1∑

k=0

fd(λk)µn,kek =
1

kε

kε−1∑

k=0

(v0 + kεfd(λk)µn,kek)

is a convex combination of elements from K0 and thus belongs to K0. Since PK0
wn is that

element of K0 with the closest distance to wn, we conclude for n ≥ nε, using (5.10), (5.11),
and Parseval’s identity, that

‖wn − PK0
wn‖2 ≤ ‖wn − sn,kε

‖2 =
∥∥∥

∞∑

k=kε

fd(λk)µn,kek

∥∥∥
2

=

∞∑

k=kε

|fd(λk)µn,k|2

≤ ε2
∞∑

k=0

|µn,k|2 = ε2
∥∥∥

∞∑

k=0

µn,kek

∥∥∥
2

= ε2 ‖vn − v0‖2 .

Thus, we have seen that the last term in (5.8) tends to 0 as n → ∞. Hence, it follows
from (5.8) that 1 belongs to the spectrum of fd(A0). By the spectral mapping theorem, we
thus find some λ ∈ {λ0, λ1, . . . } with fd(λ) = 1. Hence, we have fd(1/(1 + κn)) = 1 for

some n ∈ {0, 1, . . .}. However, elementary calculation shows that fd(1) = 1+ |B|
b11d2

6= 1, and

fd(1/(1+κn)) = 1 for n ≥ 1 if and only if (d1, d2) ∈ Cn which contradicts our hypothesis. �

Corollary 5.1. Assume (3.6) and (2.6). Suppose that d = (d1, d2) ∈ R
2
+ \ ⋃∞

n=1 Cn sat-
isfy (4.14), and h1, h2 ∈ R satisfy (5.1). Then (4.2) has a unique solution U0, and there is
some r > 0 with

deg
(
id − PK

(
A(d) +

(
h1e
h2e

))
, Br(U0), 0

)
= deg

(
id − A(d), Br(0), 0

)
∈ {±1} .
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Proof. From Theorem 5.1, we obtain that there is some r > 0 such that the homotopy

H(t, U) := U − (tPK + (1 − t)id)
(
A(d)U −

(
h1e
h2e

))

satisfies H(t, U) = 0 for (t, U) ∈ [0, 1] × Br(U0) only if U = U0. Hence, the homotopy
invariance and topological invariance of the degree imply

deg
(
H(1, · ), Br(U0), 0

)
= deg

(
H(0, · ), Br(U0), 0

)
=

deg
(
H(0, · + U0), Br(0), 0

)
= deg

(
id − A(d), Br(0), 0

)
.

Since id−A(d) is linear (and the degree is defined, hence id−A(d) is even an isomorphism),
it follows that the degree is 1 or −1. �

Corollary 5.1 is the announced first step in the calculation of the degree. The second
step is easily carried out if one makes an assumption about the nonexistence of nontrivial
solutions of an auxiliary problem:

Theorem 5.2. Assume (3.6) and (2.6). Let d = (d1, d2) ∈ R
2
+ \ ⋃∞

n=1 Cn satisfy (4.14),
and let α, β ∈ R satisfy

b21α > b11β. (5.12)

Suppose that there is some ε > 0 such that for all t ∈ [0, ε] and h1 := tα, h2 := tβ, all
solutions of the problem (4.1) satisfy (4.2). Then for each r > 0 we have

deg
(
id − PKA(d), Br(0), 0

)
= deg

(
id − A(d), Br(0), 0

)
∈ {±1} .

Proof. Problem (4.2) with h1 := tα, h2 := tβ has for each t ∈ [0, ε] a unique solution U0(t)
by Corollary 5.1. Since by hypothesis there are no further solutions of (4.1), the homotopy
invariance and excision property of the degree implies that

deg
(
id − PK

(
A(d) +

(
tαe
tβe

))
, Br(U0(t)), 0

)

is independent of t ∈ [0, ε] and of r > 0. Hence, the claim follows by applying Corollary 5.1
with h1 = εα and h2 = εβ. �

We discuss in the next section how the hypothesis of Theorem 5.2 can be verified. That
discussion will also give a new method to prove that the degree is 0 for certain d ∈ R

2
+.

6. Degree Calculations based on the Shadow System

Note that (4.10) can be written as

v = PK0

((b22 + d∞

d∞

A0 −
b12b21

b11d∞

P0

)
v + λe

)
(6.1)

with

λ = c2 −
b21

b11d∞

c1. (6.2)

One may ask whether this problem has a solution v which is not a multiple of e. Since PK0
,

A0, and P0 are positively homogeneous, the answer to this question depends only on the
sign of λ, i.e. we have only to distinguish the three cases λ > 0, λ < 0, and λ = 0.

In fact, only the cases λ = 0 and λ < 0 and the corresponding sets E0 and E− introduced
below are really used in the proof of Theorems 2.1 and 2.2. If one is interested only in these
proofs, then everything related to E+ can be skipped. Therefore, the case E+ will always
occur on the last place. The set E+ is discussed only because the corresponding assertions
are of independent interest. For example, in the forthcoming paper [11], we will use the
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cases containing E+ in the subsequent Theorem 6.1 to obtain an explicit formula for the
best possible constant ω2 of Theorem 1.1 in space dimension N = 1. We define

E0 := {d∞ ∈ (0,∞) : for λ = 0 all solutions of (6.1) are multiples of e} ,

E− := {d∞ ∈ (0,∞) : for all λ < 0 all solutions of (6.1) are multiples of e} ,

E+ := {d∞ ∈ (0,∞) : for all λ > 0 all solutions of (6.1) are multiples of e} .

We point out that e.g. d∞ ∈ E+ does not imply that (6.1) has a solution. In fact, using
Lemma 3.1, one can show that if (3.6) holds and λ > 0 then (6.1) has no solution v = αe.

We will discuss later in this section how to verify that d∞ ∈ (0,∞) belongs to some of
these sets. For the moment, we just make some trivial observations.

Remark 6.1. By the above observations, one could in the definition of E− equivalently
replace “for all λ < 0” by “for some λ < 0”; analogously for E+. Moreover, d∞ ∈ E− is
by (6.2) equivalent to the fact that v is a multiple of e for any (u, v, C) satisfying (4.7)–(4.9)
with c1 = 0 and c2 < 0. Another equivalent characterization is that v is a multiple of e for
any (u, v, C) satisfying (4.7)–(4.9) with c2 = 0 and b12c1 < 0 (recall that b12b21 < 0 by (1.5)).
Analogous equivalent characterizations hold for E+ and E0 (with opposite inequalities and
with c1 = c2 = 0, respectively).

We use the following notation for a set U ⊆ R
2
+:

U(∞) := {d∞ ∈ [0,∞] : There are (d1,n, d2,n) ∈ U with d1,n → ∞, d2,n → d∞} . (6.3)

Theorem 6.1. Suppose that (3.6) holds. Let U ⊆ R
2
+ be fixed.

(1) If U(∞) \ {∞} ⊆ E0 then there is some ω > 0 such that for each d = (d1, d2) ∈ U
with d1 ≥ ω the systems (4.1) and (4.2) have the same solutions if h1 = h2 = 0.

(2) If U(∞) ⊆ E0 ∩ E− or U(∞) ⊆ E0 ∩ E+, then for each C0 ≥ 0 there is some ω > 0
such that for each d = (d1, d2) ∈ U with d1 ≥ ω the systems (4.1) and (4.2) have
the same solutions if

b12h1 ≤ 0, d1 |h2| ≤ C0d2 |h1| , (6.4)

or
b12h1 ≥ 0, d1 |h2| ≤ C0d2 |h1| , (6.5)

respectively.
(3) If U(∞) \ {∞} ⊆ E0 ∩ E+ then for each function g : (0,∞) → R satisfying

lim
d1→∞

g(d1) = 0 (6.6)

there is some ω > 0 such that for each d = (d1, d2) ∈ U with d1 ≥ ω the systems (4.1)
and (4.2) have the same solutions if

h2 ≥ 0, |d2h1| ≤ |g(d1)h2| . (6.7)

Proof. Assume by contradiction that for each n there are h1,n, h2,n ∈ R (d1,n, d2,n) ∈ U
with d1,n ≥ n, without loss of generality d1,n > b11

κ1

, such that one of the three addi-

tional hypotheses hold and the corresponding problem (4.1) (with (d1, d2, h1, h2) replaced
by (d1,n, d2,n, h1,n, h2,n)) has a solution Un := (ũn, ṽn) which does not satisfy (4.2) (with
(d1, d2, h1, h2) replaced by (d1,n, d2,n, h1,n, h2,n)). Lemma 4.1(1) implies Un 6= 0.

Passing to a subsequence if necessary, we can assume that d2,n → d∞ ∈ (0,∞], because
d∞ = 0 is excluded by U(∞) \ {∞} ⊆ E0. Theorem 4.1 excludes d∞ = ∞ in the cases (1)
and (3), because (4.26) is satisfied if h1 = h2 = 0 or if (6.6), (6.7) holds. In case (2),
d∞ = ∞ is excluded, because U(∞) ⊆ E0 implies ∞ /∈ U(∞). Hence, in all cases, we only
need to discuss d∞ ∈ (0,∞).
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Using that A0 and PK0
are positively homogeneous, we have that (un, vn) := Un/ ‖Un‖

are solutions of (4.5) and (4.6), where

ci,n :=
hi,n

di,n ‖Un‖
(i = 1, 2).

Since ‖(un, vn)‖ = 1 by construction, Lemma 4.2 implies that c1,n → 0. The relations (6.4)
or (6.5) (with hi replaced by hi,n) both imply

|c2,n| ≤ C0 |c1,n| ,
and so c1,n → 0 implies c2,n → 0 in case (2). In case (6.7), we have by hypothesis c2,n ≥ 0.
Hence, in all cases c2,n is bounded from below. By Lemma 4.2 we conclude, passing to a
subsequence if necessary, that c2,n → c2 ∈ [0,∞) and that (un, vn) → (u, v), in particular
‖(u, v)‖ = 1. Moreover, c2 = 0 in the cases (1) or (2). In case (3), we have

|d1,nc1,n| ≤ g(d1,n)c2,n,

which implies by the boundedness of c2,n and (6.6) that d1,nc1,n → 0 = c1 in the notation
of Lemma 4.3.

Summarizing, the hypotheses of Lemma 4.3 are satisfied, and in the case (1), we have
c1 = c2 = 0, in the two cases of (2), we have c2 = 0 and b12c1 ≤ 0 or b12c1 ≥ 0, respectively,
and in the case (3), we have c1 = 0 ≤ c2. In particular, it follows from Lemma 4.3 that
(u, v, C) satisfy (4.7)–(4.9). Since d∞ ∈ U(∞), our hypothesis on U(∞) thus implies in
view of Remark 6.1 in all cases that v is a multiple of e.

By Lemma 4.4(1), we have v = (C−b−1
12 c1)e. Moreover, if we had c1 = c2 = 0, then (4.11)

would imply C = 0, and by using (4.7), we would get u = v = 0, contradicting ‖(u, v)‖ = 1.
In particular, (c1, c2) 6= (0, 0), and the case (1) leads to a contradiction.

In case (3), we must have c2 > 0 = c1 which contradicts (4.12). In the remaining case (2),
we have c2 = 0. Since the inequality (4.12) gives a contradiction for b12c1 > 0, the only
case which remains to be considered is b12c1 < 0 and d∞ ∈ E−. In this case, we have
strict inequality in (4.12), and so also Lemma 4.4 implies v 6= 0, i.e. v = αe, α > 0, and
so 〈v, e〉 > 0. Since vn → v, we find 〈vn, e〉 > 0 for all large n. Lemma 4.7 thus implies
that vn is a multiple of e for all large n, and so Corollary 4.1 implies that (un, vn) satisfy
the corresponding system (4.2) (with (d1, d2, h1, h2) replaced by (d1,n, d2,n, h1,n, h2,n)). This
contradicts our choice of (un, vn). �

Theorem 6.2. Suppose that (3.6) holds. Let U ⊆ R
2
+ be fixed such that with the no-

tation (6.3) we have U(∞) \ {∞} ⊆ E0. Then there is some ω > 0 such that for any
d = (d1, d2) ∈ U with d1 ≥ ω we have V 6= PKA(d)V for all V 6= 0, and moreover

deg
(
id − PKA(d), Br(0), 0

)
=

{
−1 if U(∞) ⊆ E0 ∩ E− and (2.6),

0 if U(∞) \ {∞} ⊆ E0 ∩ E+.

Proof. Theorem 6.1(1) guarantees the existence of ω > 0 such that for all d = (d1, d2) ∈ U
with d1 ≥ ω and for h1 = h2 = 0, the problem (4.1) has the same solutions as (4.2). We
can assume ω > b11/κ1, and then d /∈ ⋃∞

n=1 Cn if d1 ≥ ω. Hence, Proposition 3.3 implies
that (4.2), and consequently also (4.1), has only the trivial solution for h1 = h2 = 0. This
means V 6= PKA(d)V for all V 6= 0.

In case U(∞) ⊆ E0∩E−, we have in particular ∞ /∈ U(∞), and it follows in view of (6.3)
that U(∞) is bounded. Hence, there is ω > b11/κ1 such that −d1b12b21 > d2b11 for all
d = (d1, d2) ∈ U with d1 > ω, i.e. (5.12) holds with α = −d1b12, β = d2 for such d. The
assumption (6.4) is fulfilled with h1 = αt, h2 = βt, t ≥ 0, C0 = b−1

12 .. Hence, Theorem 6.1(2)
implies that ω could be chosen such that (4.1) has the same solutions as (4.2) for all such
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for all such h1, h2, d ∈ U , d1 > ω. where t ≥ 0 and α = −d1b12, β = d2. Hence, if (2.6)
holds, the first formula for the degree follows from Theorem 5.2 and Corollary 3.1.

To prove the second formula for the degree, we can assume U(∞) \ {∞} ⊆ E0 ∩ E+.
Hence, Theorem 6.1(3) implies that there is ω > b11/κ1 such that (4.1) has the same
solutions as (4.2) for all d = (d1, d2) ∈ U with d1 > ω when h1 = 0 and h2 = t ≥ 0.
Lemma 4.1 implies that these problems are only solvable if t = 0 and u = v = 0, and so

deg
(
id − PKA(d), Br(0), 0

)
= deg

(
id − PK

(
A(d) +

(
e
0

))
, Br(0), 0

)
= 0

by the homotopy invariance and existence property of the degree. �

For our main result, the last case of Theorem 6.2 will be only used with U(∞) = {∞}.
Note that for this special case, one could replace Theorem 6.1(3) by Theorem 4.1 in the
proof, so that the consideration of E+ is actually not necessary to show this special case of
Theorem 6.2.

For the rest of this section we aim to give easy sufficient criteria to verify that a point
d∞ ∈ (0,∞) belongs to the set E0, E−, or E+.

Proposition 6.1. For every d∞ ∈ (0,∞) and µ ∈ R the problem

v = PK0

(b22 + d∞

d∞

A0v + µe
)

(6.8)

has exactly one solution v. If e ∈ K0 and µ ≥ 0, then v = αe for some α ∈ R. If µ < 0
and (3.6) holds, then v 6= αe for all α ∈ R.

Proof. The problem (6.8) is equivalent to the variational inequality

v ∈ K0, 〈Bv − µe, ϕ − v〉 ≥ 0 for all ϕ ∈ K0,

where

B := id − b22 + d∞

d∞
A0.

For the proof of the existence and unicity of the solution for any µ ∈ R, it is sufficient
to show that 〈Bu, u〉 ≥ δ ‖u‖2 for all u ∈ H0 with some δ > 0 (see e.g. [19, Theorem 8.2
and 8.3]). Let us write u ∈ H0 in the form u = u0 + u1 with u0 = P0u and u1 = u − u0.

Then u1 ∈ {e}⊥ (the orthogonal complement of the span of e). The restriction of A0 to

{e}⊥ has the spectrum {λ1, λ2, . . . }, and so 〈A0u1, u1〉 ≤ λ1 ‖u1‖2. Since A0 is positive, we
obtain

〈Bu1, u1〉 = ‖u1‖2 +
−b22

d∞
〈A0u1, u1〉 − 〈A0u1, u1〉 ≥

(
1 − λ1) ‖u1‖2 .

Moreover, by A0u0 = u0, we calculate

〈Bu0, u0〉 =
−b22

d∞
‖u0‖2 .

Hence, putting δ := min {1 − λ1,−b22/d∞} > 0, we obtain, since by (3.7) the selfadjoint
projections P0 and P 0 := id − P0 commute with B, that

〈Bu, u〉 = 〈Bu, P 2
0 u〉 + 〈Bu, P

2

0u〉 = 〈P0Bu, u0〉 + 〈P 0Bu, u1〉
= 〈Bu0, u0〉 + 〈Bu1, u1〉 ≥ δ(‖u0‖2 + ‖u1‖2) = δ ‖u‖2 .

For the second claim, note that v = αe satisfies (6.8) if and only if

αe = PK0

(b22 + d∞

d∞
αe + µe

)
.
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It follows that if e ∈ K0 then v = αe with α = b−1
22 µ ≥ 0 is the unique solution. If (3.6)

holds then it follows from Lemma 3.1 that any solution v = αe must satisfy α = b−1
22 µ ≥ 0,

which is not true for µ < 0. �

Proposition 6.2. Let e ∈ K0 and d∞ ∈ (0,∞). For µ < 0, the problem (6.8) has a unique
solution v = vµ, and with this notation we have

(
µ +

b12b21

b11d∞

〈vµ, e〉
‖e‖2 6= 0 for some µ < 0

)
=⇒ d∞ ∈ E0, (6.9)

(
µ +

b12b21

b11d∞

〈vµ, e〉
‖e‖2 ≥ 0 for some µ < 0

)
=⇒ d∞ ∈ E−, (6.10)

(
µ +

b12b21

b11d∞

〈vµ, e〉
‖e‖2 ≤ 0 for some µ < 0

)
=⇒ d∞ ∈ E+. (6.11)

Equivalently, one can replace “some” by “all” in (6.9)–(6.11). If (3.6) holds, then vµ is not
a multiple of e, and the implications in (6.9)–(6.11) are even equivalences.

Proof. The existence and unicity of vµ are contained in Proposition 6.1. Moreover, since A0

and PK0
are positively homogeneous, also vµ depends positively homogeneous on µ. Hence,

if some of the inequalities (6.9)–(6.11) holds for some µ < 0, then it holds for all µ < 0.
Assume that d∞ /∈ E−. Then there is some λ < 0 and a solution v of (6.1) which is not

a multiple of e. Then v satisfies (6.8) with

µ = λ − b12b21

b11d∞

〈v, e〉
‖e‖2 , (6.12)

i.e. v = vµ. We must have µ < 0, since otherwise Proposition 6.1 would imply vµ = αe with
α ∈ R. Since λ < 0, we obtain from (6.12) that the inequality in (6.10) is not satisfied for
the particular µ given by (6.12), and consequently for no µ < 0, as we proved above.

The proof of the implications in (6.9) and (6.11) is analogous, only with “λ < 0” replaced
by “λ > 0” or “λ = 0”, respectively.

Assume now that (3.6) holds. Recall that for fixed µ < 0 the function v = vµ satis-
fies (6.8). Hence, Proposition 6.1 implies that v = vµ is not a multiple of e, and moreover,
defining λ by (6.12), we obtain that v satisfies (6.1). Hence, if d∞ ∈ E−, we cannot have
λ < 0 which by (6.12) implies that the inequality in (6.10) must hold for every µ < 0.
Similarly, if d∞ ∈ E0 or d∞ ∈ E+, we must have the inequality in (6.9) and (6.11) for every
µ < 0. �

Choosing µ = b22/d∞ and multiplying (6.8) by d∞, we obtain as a special case of Propo-
sition 6.2 the following criterion.

Corollary 6.1. Suppose that (3.6) holds, and let d∞ ∈ (0,∞). Then the problem

d∞v = PK0

(
(b22 + d∞)A0v + b22e

)
(6.13)

has a unique solution v. This solution v is not a multiple of e, and we have

−〈v, e〉
‖e‖2 6= b11b22

b12b21

⇐⇒ d∞ ∈ E0,

−〈v, e〉
‖e‖2 >

b11b22

b12b21
⇐⇒ d∞ ∈ E0 ∩ E−,

−〈v, e〉
‖e‖2 <

b11b22

b12b21
⇐⇒ d∞ ∈ E0 ∩ E+.
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Note that (6.13) is equivalent to the variational inequality

v ∈ K0, 〈d∞v − d∞A0v − b22A0v − b22e, ϕ − v〉 ≥ 0 for all ϕ ∈ K0. (6.14)

Theorem 6.3. Suppose that e ∈ K0\(−K0). If d0 ∈ (0,∞) is such that there is u0 ∈ e+K0

with 〈u0, e〉 = 0 and

〈d0u0 − d0A0u0 − b22A0u0, u0〉 ≤ −b22

( |B|
b12b21

)2

‖e‖2 , (6.15)

then (0, d0] ⊆ E0 ∩ E−.

Proof. Let d∞ ∈ (0, d0]. We will apply Corollary 6.1. Note that (3.6) follows with u− :=
u0 − e. Thus, let v be a solution of (6.13). Choosing ϕ := (u0 − e) + v ∈ K0 + K0 ⊆ K0

in (6.14), we obtain by using 〈u0, e〉 = 0, the symmetry of A0, and A0e = e that

S := 〈d∞v − d∞A0v − b22A0v, u0〉
satisfies

S ≥ 〈d∞v − d∞A0v − b22A0v − b22e, e〉 = −b22 〈v + e, e〉 .

Hence,

〈v, e〉 ≤ 1

−b22

S − ‖e‖2 .

Since A0 has its spectrum in (0, 1], we have 0 < d∞ 〈A0u, u〉 ≤ d∞ 〈u, u〉 for u 6= 0, and so

〈d∞u − d∞A0u − b22A0u, u〉 ≥ −b22 〈A0u, u〉 > 0 for all u 6= 0.

Hence, the symmetry of A0 implies that we can define a scalar product in H0 by

〈u, ϕ〉∗ := 〈d∞u − d∞A0u − b22A0u, ϕ〉 for all u, ϕ ∈ H0.

Using the Cauchy-Schwarz inequality for this scalar product and the corresponding norm
‖ · ‖∗, we obtain

S = 〈v, u0〉∗ ≤ ‖v‖∗ ‖u0‖∗ .

Choosing ϕ = 0 in (6.14), we obtain, since v is not a multiple of e by Corollary 6.1, that

‖v‖2
∗ ≤ b22 〈e, v〉 = −〈e, v〉∗ < ‖e‖∗ ‖v‖∗ =

√
−b22 ‖e‖ ‖v‖∗ ,

and so 0 < ‖v‖∗ <
√
−b22 ‖e‖. Furthermore, we get by using 〈A0u0, u0〉 ≤ 〈u0, u0〉, d∞ ≤ d0,

and (6.15) that

‖u0‖2
∗ = 〈d0u0 − d0A0u0 − b22A0u0, u0〉 + (d∞ − d0) 〈u0 − A0u0, u0〉 ≤ −b22

( |B|
b12b21

)2

‖e‖2 .

Summarizing, we obtain

−〈v, e〉
‖e‖2 ≥ S

b22 ‖e‖2 + 1 > 1 − ‖u0‖∗
−
√
−b22 ‖e‖

≥ 1 +
|B|

b12b21

=
b11b22

b12b21

.

Hence, Corollary 6.1 implies d∞ ∈ E0 ∩ E−. �

Remark 6.2. All results, starting from Remark 3.1 up to now, hold also in the more general
setting described in Remark 3.1. However, for the following application of Theorem 6.3 we
make use of the particular definition of A0 and H0. In this case (6.15) means

d0

∫

Ω

|∇u0|2 dx − b22

∫

Ω

|u0|2 dx ≤ −b22

( |B|
b12b21

)2

mes Ω,

which follows from the inequality in the assumption (2.7).



BIFURCATION WITH UNILATERAL AND NEUMANN CONDITIONS 26

Theorem 6.4. Assume e ∈ K0 \ (−K0). Suppose that there is u0 satisfying (2.7), and let
d0 > 0 be correspondingly given by (2.8). Then (0, d0] ⊆ E0 ∩ E−.

Proof. The claim follows from Theorem 6.3 by using the second part of Remark 6.2. �

Combining Theorem 6.4 with Theorem 6.2 where we choose U = {dn : n = 1, 2, . . .}, we
obtain the following consequence.

Corollary 6.2. Assume (2.6) and −e /∈ K0. Suppose that there is u0 satisfying (2.7), and
let d0 > 0 be correspondingly given by (2.8). Then for any d∞ ∈ (0, d0] and any sequence
dn = (d1,n, d2,n) ∈ R

2
+ with d1,n → ∞ and d2,n → d∞ there is some n0 such that for all

n ≥ n0 we have U 6= PKA(dn)U for all U 6= 0, and

deg
(
id − PKA(dn), Br(0), 0

)
= −1 for all r > 0.

Remark 6.3. In the previous corollary the natural bound for d∞ is thus the supremum of
the numbers d0 when u0 varies over all functions u0 satisfying (2.7). This supremum might
be considered as a nonlinear analogon to the variational characterization of the second
eigenvalue of a linear operator (when e is the unique eigenfunction to the first eigenvalue). In
this sense the previous results might be considered as an extension of this linear variational
theory to cones. It is unknown to the authors whether such a characterization generalizes
to more general settings: As observed in Remark 6.2, it is unclear whether such a result
holds in the more general setting described in Remark 3.1. Indeed, the above described
supremum was only obtained using the particular definition of A0 and of H0 and not by
means of more general abstract considerations.

7. Proof of Theorems 2.1 and 2.2

Recall that a point d ∈ R
2
+ is a critical point of (2.4) if the equation U = PKA(d)U has

a solution U 6= 0.

Proposition 7.1. If any neighborhood of (d0, 0) ∈ R
2
+ × H contains some (d, U) satisfying

U 6= 0 and

U = PK

(
A(d)U + tF (d, U)

)
(7.1)

with some t ∈ [0, 1] then d0 is a critical point of (2.4). If any neighborhood mentioned
contains even (d, U) satisfying (7.1) with U 6= 0 being constant then there is a constant
solution V 6= 0 of V = PKA(d0)V .

Proof. By hypothesis, there is a sequence (dn, Un, tn) ∈ R
2
+ × H × [0, 1] satisfying (7.1),

(dn, Un) → (d0, 0), and Un 6= 0. Putting Vn := Un/ ‖Un‖, we thus have

Vn = PK

(
A(dn)Vn + tn

F (dn, Un)

‖Un‖
)
. (7.2)

By (3.1), the compactness of A and the continuity of PK , we conclude that the right-hand
side of (7.2) has a convergent subsequence. Hence, without loss of generality, we can assume
Vn → V . In view of ‖Vn‖ = 1, we have ‖V ‖ = 1, and passing to the limit in (7.2), we
obtain by (3.1) and the continuity of A and PK that V = PKA(d0)V . Hence, d0 is a critical
point of (2.4). Moreover, if the functions Un can be chosen to be constant, then also V is
constant. �

For the proof of Theorem 2.2 we will use the following Rabinowitz type result.
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Theorem 7.1. Let I be a closed interval and ϕ : I × H → H be continuous and compact,

S := {(t, U) ∈ I × H : U = ϕ(t, U)} .

Let t−, t+ ∈ I, t− < t+, be such that there are r > 0 and ε > 0 satisfying

S ∩
((

[t− − ε, t−] ∪ [t+, t+ + ε]
)
×

(
Br(0) \ {0}

))
= ∅ (7.3)

and

deg
(
id − ϕ(t−, · ), Br(0), 0

)
6= deg

(
id − ϕ(t+, · ), Br(0), 0

)
.

Then S \ (I × {0}) contains a connected set C0 such that C0 ∩ ([t−, t+] × {0}) 6= ∅ and at
least one of the following holds:

(1) C0 is unbounded or contains a point from (∂I)×H (the boundary understood in R).
(2) C0 contains a point from (I \ [t− − ε, t+ + ε]) × {0}.

This theorem is a special case of a general abstract bifurcation result from [27]; see also [9]
for details how to derive Theorem 7.1 as a special case.

Proof of Theorems 2.1 and 2.2. Let C0 ⊆ R
2
+ denote the critical points of (2.4). Let u0

be from the assumption (2.7) and d0 the corresponding number from (2.8). It follows
from the assumptions of Theorem 2.1 that the condition (3.6) is fulfilled (see the text
after Lemma 3.1), and the set U =

{
(d1, d2) ∈ R

2
+ : d2 ≥ d1

}
satisfies U(∞) \ {∞} = ∅.

Applying Theorem 6.2 to this U we obtain the existence of ω1, ω2 > 0 such that U+ :=
[ω1,∞) × [ω2,∞) ⊆ R

2
+ \ C0. Applying Corollary 6.2 we see that for any ε > 0 there is

ωε > 0 such that U− := [ωε,∞)× [ε, d0] ⊆ R
2
+ \C0. Hence, claim (1) of Theorem 2.1 holds.

Moreover, claim (2) of Theorem 2.1 follows from Corollary 6.2. Furthermore, it follows from
Theorem 6.2 and Corollary 6.2 that for each d± ∈ U± we have

deg
(
id − PKA(d+), Br(0), 0

)
= 0 6= −1 = deg

(
id − PKA(d−), Br(0), 0

)
(7.4)

for all r > 0. Since C0 is closed (e.g. by Proposition 7.1 with F = 0), the components of
R

2
+ \C0 are open and thus actually path-connected. The degree deg

(
id −PKA(d), Br(0), 0

)

is constant on paths in R
2
+ \ C0 by the homotopy invariance property, and thus constant

on the components of R
2
+ \ C0. Hence, (7.4) holds even for d± ∈ Ũ± if Ũ± denotes the

components of R
2
+ \ C0 containing U±.

Fixing d± ∈ Ũ± and applying the homotopy invariance of the degree with H(t, U) :=
U − PK(A(d±)U + tF (d±, U)), we find by Proposition 7.1 that there is some r > 0 with

deg
(
id − PK

(
A(d+) + F (d+, · )

)
, Br(0), 0

)
= 0 6=

−1 = deg
(
id − PK

(
A(d−) + F (d−, · )

)
, Br(0), 0

)
.

Now if γ is a path as in Theorem 2.2, it follows that the hypotheses of Theorem 7.1 are
satisfied with

ϕ(t, U) := PK

(
A(γ(t))U + F (γ(t), U)

)
.

In particular, the assumption (7.3) follows from Proposition 7.1. The set C0 of Theorem 7.1
has exactly the properties stated in Theorem 2.2, and so Theorem 2.2 is proved.

Proposition 3.3 implies that (4.2) with h1 = h2 = 0 has only the trivial solution for
d = R

2
+ \⋃∞

n=1 Cn. It follows by using Lemma 4.1(1) that the problem (4.1) has no nonzero
constant solution. Hence, Proposition 7.1 implies that for any bifurcation point d0 of (2.4)
in R

2
+ \ ⋃∞

n=1 Cn all solutions (d, U) of (2.4) with d sufficiently close to d0 and U 6= 0
sufficiently close to 0 are automatically nonconstant, i.e. the last assertion of Theorem 2.1
is proved, and it remains to prove the assertion (3) of Theorem 2.1.
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We consider DS as a subset of the compact space X := [0,∞]× [0,∞]. It follows from the
already proved statements (1) and (2) of Theorem 2.1 (and using Proposition 7.1) that the
set S0 of bifurcation points of (2.4) lying in DS satisfies S0∩(U+∪U−) = ∅ and S0∩A∞ = ∅,
where S0 denotes the closure of S0 (in X),

A∞ := {(∞, d∞) : 0 < d∞ ≤ d0} .

Now we identify (by means of a homeomorphism) the set Q := DS\U with the disc-interior
{x ∈ R

2 : ‖x‖ < 1}, and the boundary of Q (in X) with the boundary of that disc. We put
A2 := ∂Q∪U+ and A4 := ∂Q∪U−. Then ∂Q\(A2∪A4) consists of two components which we
denote by A1 and A3. Theorem 2.2 already proved implies in particular that any continuous
path in DS connecting a point from U+ with a point from U− contains a bifurcation point
of (2.4), i.e. a point from S0. Since the definition of bifurcation points implies that S0 is
closed in DS, we thus verified the hypotheses of the subsequent Theorem 7.2. This result
implies the claim, since for any subset C ⊆ S0 we have automatically C ∩ A∞ = ∅, because
S ∩ A∞ = ∅. �

Theorem 7.2 (Disc-Cutting). Let X and Q be as in the previous proof. Suppose that the
boundary of Q in X is divided into four connected sets A1, . . . , A4 with A2 and A4 consisting
of at least two points and A1 ∩ A3 = ∅. Let S0 ⊆ Q be closed in Q such that each compact
continuous path P in Q ∪ A2 ∪ A4 with P ∩ Ai 6= ∅ (i = 2, 4) contains some point from S0.
Then there is a connected subset C ⊆ S0 such that C ∩ Ai 6= ∅ for i = 1, 3.

Proof. This is a special case of [28, Theorem 3.1]. �

Remark 7.1. Our proof shows that Theorems 2.1 and 2.2 hold for every nonlinearity F for
which the conclusion of Proposition 3.1 is true. For instance, one can also formulate similar
results when fk in (1.1) depends also on d1, d2,∇u(x),∇v(x), and x. Moreover, (3.1) is even

only required for d̃ = γ(t±) for Theorem 2.2 resp. for all d̃ ∈ U+ ∪ U− for Theorem 2.1. In

particular, it is even admissible that F (d̃, 0) 6= 0 for other values of d̃.

Remark 7.2. Actually Theorems 2.1 and Theorem 2.2 (and even the second part of Re-
mark 7.1) hold with the obvious modifications in the claims and proofs for the abstract
setting considered in Remark 3.1 if one replaces the hypothesis (2.6) by (3.5), and the hy-
pothesis about u0 by the assumption that there is u0 ∈ K with 〈u0, e〉 = 0 and (6.15)
for some d0 ∈ (0,∞). It is then this d0 which occurs in the general form of Theo-
rem 2.1. Alternatively, the hypothesis about u0 and d0 can be replaced by the more general
assumption (3.6) and (0, d0] ⊆ E0 ∩ E−. Moreover, the latter can even be relaxed to
d0 ∈ M ⊆ E0 ∩ E− for any set M ⊆ (0,∞) if one replaces U− in the claims of Theorem 2.1
and 2.2 by [ωε,∞) × (M ∩ [ε,∞)).
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