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Abstract

The equation ∆u + λu + g(λ, u)u = 0 is considered in a bounded domain in R2 with

a Signorini condition on a straight part of the boundary and with mixed boundary con-

ditions on the rest of the boundary. It is assumed that g(λ, 0) = 0 for λ ∈ R, λ is

a bifurcation parameter. A given eigenvalue of the linearized equation with the same

boundary conditions is considered. A smooth local bifurcation branch of non-trivial solu-

tions emanating at λ0 from trivial solutions is studied. We show that to know a direction

of the bifurcating branch it is sufficient to determine the sign of a simple expression en-

volving the corresponding eigenfunction u0. In the case when λ0 is the first eigenvalue and

the branch goes to the right, we show that the bifurcating solutions are asymptotically

stable in W 1,2-norm. The stability of the trivial solution is also studied and an exchange

of stability is obtained.
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1 Introduction

This paper concerns the questions of a direction of bifurcation branches and of stability of

solutions to Signorini boundary value problems of the type

∆u + λu + g(λ, u)u = 0 in Ω, (1.1)

u = 0 on ΓD, ∂νu = 0 on ΓN , (1.2)

u ≤ 0, ∂νu ≤ 0, u∂νu = 0 on ΓU . (1.3)

Here Ω is a bounded domain in R2, ΓD, ΓN , ΓU are parts of its boundary, ΓU being a flat

segment (see Section 2) and ∂ν denotes the outer normal derivative. It will be always assumed

that g : R2 → R is a C1-smooth function such that

g(λ, 0) = 0 for all λ ∈ R. (1.4)

We suppose that there is given an eigenvalue λ0 > 0 and a corresponding eigenfunction u0 to

the eigenvalue problem

∆u + λu = 0 in Ω (1.5)

with the nonlinear boundary conditions (1.2), (1.3).

All solutions are understood in the weak sense as solutions of a variational inequality on

the cone K := {u ∈ W 1,2(Ω) : u ≤ 0 on ΓU , u = 0 on ΓD}. See Section 2, which summarizes

basic assumptions and notation used. Main results are given in Sections 3 and 4 (Theorems 3.1,

4.2 and 4.12).

In Section 3 we suppose that there is a smooth branch λ = λ̂(s), u = û(s) (parametrized

by s ∈ [0, s0) with s0 > 0) of solutions to (1.1), (1.2), (1.3) with λ̂(0) = λ0, û(0) = 0 and

û′(0) = u0, see Assumption (ESB). In [6] we have proved the existence of such smooth branches

for a particular case when Ω is a rectangle and under certain “activity conditions” on the

eigenfunction u0. Such smooth branches exist also in more general situations, but it is compli-

cated to formulate and verify sufficient conditions for their existence. However, we do not need

such assumptions for our study of bifurcation direction, and therefore we simply assume that a

smooth branch exists. Roughly speaking, we show that it is sufficient to verify the inequalities

(3.12) or (3.13) in order to know if λ̂′(0) > 0 or λ̂′(0) < 0 (Theorem 3.1).

Section 4 concerns the question of stability of solutions to (1.1), (1.2), (1.3) as stationary

solutions to the corresponding evolution problem

∂tu = ∆u + λu + g(λ, u)u (1.6)

with the Signorini boundary conditions (1.2), (1.3) (where ∂t denotes the partial derivative with

respect to time t). We consider only the smallest eigenvalue λ0 of (1.5), (1.2), (1.3). In this

2



case u0 < 0 on ΓU , therefore λ0 is simultaneously the smallest eigenvalue of the problem (1.5)

with the classical boundary conditions

u = 0 on ΓD, ∂νu = 0 on ΓN ∪ ΓU . (1.7)

Due to Crandall-Rabinowitz bifurcation theorem there exists a smooth local branch of non-

trivial solutions to (1.1), (1.7) emanating at λ0 from trivial solutions. It consists of two half-

branches bifurcating in the direction u0 and −u0. The half-branch bifurcating in the direction

u0 is simultaneously a branch of solutions to the Signorini boundary value problem (1.1), (1.2),

(1.3). The well-known principle of exchange of stability (see, e.g. [3, Theorem 1.16], [13,

Section II.8] and [15, Section I.7]) yields that if this half-branch goes to the right from λ0

then it consists of solutions which are stable as stationary solutions to (1.6) with the classical

boundary conditions (1.7). In general, stability in W 1,2(Ω) of a stationary solution u∗ to the

classical problem (1.6), (1.7) does not imply stability in W 1,2(Ω) of u∗ as a stationary solution

of the unilateral problem to (1.6), (1.2), (1.3). Indeed, if u(t) is a time-dependent solution of

the problem (1.6), (1.7) with the initial condition u(0) ∈ K (in particular u(0) ∈ K arbitrarily

close to u∗) then it can happen, in general, that u(t) /∈ K for arbitrarily small times t > 0.

Therefore the solution of the unilateral problem (1.6), (1.2), (1.3) with the same initial condition

(which must satisfy u(t) ∈ K for all t) can differ from that of the classical problem (1.6), (1.7)

(even for initial conditions close to u∗). However, we show by using the stability criterion for

variational inequalities [20] that in our particular situation, the W 1,2(Ω)-stability of û(s) as a

stationary solution to (1.6), (1.7) implies W 1,2(Ω)-stability of û(s) as a stationary solution to

(1.6), (1.2), (1.3). In particular, we obtain an exchange of stability for Signorini problem. To

our best knowledge, up to now no analoga of the principle of exchange of stability for variational

inequalities are known, with the exception of some special cases (for example obstacle problems

with finitely many obstacles, see [4, 5]).

We do not know any example of a W 1,2(Ω)-stable stationary solution u to the evolutionary

Signorini problem (1.6), (1.2), (1.3) which does not simultaneously satisfy the classical boundary

conditions u = 0 on ΓU or ∂νu = 0 on ΓU . In particular, we do not know any result of the

type of exchange of stability in the case when a bifurcation branch of nontrivial solutions to

the Signorini problem (1.1), (1.2), (1.3) is not simultaneously a branch of solutions to the

corresponding classical boundary value problem (1.1), (1.7). Let us remark that in [4] we have

shown an example of a supercritical bifurcation for a variational inequality when the bifurcating

non-trivial solutions are stable although they are bifurcating not from the first eigenvalue but

from a higher eigenvalue – a certain surprising non-standard case of exchange of stability.
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2 Basic Assumptions and Notation

We will consider a bounded domain Ω in R2 with a boundary ∂Ω = ΓD ∪ ΓN ∪ ΓU , where ΓD,

ΓN , ΓU are pairwise disjoint relatively open subsets of ∂Ω, ΓD 6= ∅, ΓD ∩ ΓN is finite,

ΓU = {(x, 0) : x ∈ (γ1, γ2)}

with some γ1 < γ2. We will assume that

there is µ0 > 0 such that ΓN,µ0 := {(x, 0) : x ∈ (γ1 − µ0, γ1) ∪ (γ2, γ2 + µ0)} ⊂ ΓN . (2.1)

In particular, ΓU and its µ0-neighbourhood in ∂Ω are supposed to be flat. We introduce a real

Hilbert space H with the scalar product 〈·, ·〉, defined by

H := {u ∈ W 1,2(Ω) : u = 0 on ΓD}, 〈u, ϕ〉 :=
∫

Ω

∇u · ∇ϕ dx dy for u, ϕ ∈ H,

and with the corresponding norm ‖ · ‖ which is equivalent on our space H to the usual Sobolev

norm.

We will assume that the function g is such that

the map (λ, u) 7→ g(λ, u) is C1-smooth from R×W 1,2(Ω) into Lr(Ω) for some r > 1. (2.2)

For example, the assumption (2.2) is satisfied with any r > 1 if g is λ-independent and C1-

smooth and if there exist positive constants c, p and q such that

|g′(u)− g′(v)| ≤ c|u− v|p(1 + |u|q + |v|q)

for all u, v ∈ R (cf. [1, Proposition I.1.4]). In particular, (2.2) is true if g is a polynomial in u.

Let us consider the closed convex cone

K := {u ∈ H : u ≤ 0 on ΓU}

and introduce the weak formulation of (1.1)–(1.3) and (1.5), (1.2), (1.3) in terms of the varia-

tional inequalities

u ∈ K :

∫
Ω

(∇u · ∇(ϕ− u)− (λu + g(λ, u)u)(ϕ− u)) dx dy ≥ 0 for all ϕ ∈ K (2.3)

and

u ∈ K :

∫
Ω

(∇u · ∇(ϕ− u)− λu(ϕ− u)) dx dy ≥ 0 for all ϕ ∈ K, (2.4)

respectively.
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3 Direction of the bifurcation branch

Let us define the parts of ΓU

Iα,β := {(x, 0) ∈ ΓU : α < x < β} = (α, β)× {0},
Eα,β := {(x, 0) ∈ ΓU : γ1 < x < α or β < x < γ2} = ΓU \ Iα,β,

where α and β are parameters with γ1 < α < β < γ2. For a continuous function u ∈ H we will

denote by

A(u) := {x ∈ (γ1, γ2) : u(x, 0) = 0}

the contact set of the function u. We assume that there is a given solution (λ0, u0) to (2.4).

Moreover, we assume that the contact set of u0 is a closed subinterval of (γ1, γ2), i.e.

A(u0) = [α0, β0] with γ1 < α0 < β0 < γ2. (3.1)

This implies

u0 ∈ H0 :

∫
Ω

(∇u0 · ∇ϕ− λ0u0ϕ) dx dy = 0 for all ϕ ∈ H0, (3.2)

where the subspace H0 is defined by

H0 := {u ∈ H : u = 0 on Iα0,β0}.

Let us remark that (3.2) is a weak form of (1.5), (1.2),

u = 0 on Iα,β, ∂νu = 0 on Eα,β, (3.3)

with (α, β) = (α0, β0). An essential part of our considerations will be related to mixed boundary

value problems of this type.

Let us introduce coordinate transformations in Ω which map Iα,β onto Iα0,β0 and Eα,β

onto Eα0,β0 . They will be used to transform the mixed boundary value problem (1.1), (1.2),

(3.3), which has (α, β)-independent coefficients in the equation but (α, β)-dependent boundary

conditions, into a mixed boundary value problem with (α, β)-dependent coefficients in the

equation but (α, β)-independent boundary conditions. Let γ1 < α0 < β0 < γ2 be the parameters

from the assumption (3.1) and set

δ :=
1

3
min{α0 − γ1, β0 − α0, γ2 − β0}, D := {(α, β) : |α− α0| < δ, |β − β0| < δ}.

For any (α, β) ∈ D let ξα,β =
(
ξ

(1)
α,β, ξ

(2)
α,β

)
: Ω → Ω be a function such that

the map (α, β, x, y) ∈ D × Ω 7→ ξα,β(x, y) ∈ Ω is C1-smooth,

ξα,β is a diffeomorphism of Ω onto Ω,

}
(3.4)
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ξα,β = id on a neighbourhood U of ΓN ∪ ΓD, (3.5)

ξα0,β0 = id on Ω, (3.6)

ξ
(2)
α,β(x, y) = y in [α0 − δ, β0 + δ]× [0, δ], (3.7)

ξα,β(ΓU) = ΓU , ξα,β(ΓD) = ΓD, (3.8)

ξα,β(x, y) = (x + α0 − α, y) for |x− α0| ≤ δ, |y| ≤ δ,

ξα,β(x, y) = (x + β0 − β, y) for |x− β0| ≤ δ, |y| ≤ δ.

}
(3.9)

For (α, β) ∈ D let us define the linear bounded operator Φα,β : L2(Ω) → L2(Ω) by

(Φα,βf)(x, y) := f(ξα,β(x, y)) for any f ∈ L2(Ω). (3.10)

Now we are ready to formulate our basic Assumption (ESB) about existence of a smooth

branch of non-trivial solutions to (2.3) bifurcating in λ0 from the trivial solution. For a par-

ticular case when Ω is a rectangle, the existence of a branch with properties described in

Assumption (ESB) is proved in [6, Theorem 2.3] under certain assumptions concerning u0 (cer-

tain “activity conditions”). It is not hard to see that this result can be shown for more general

cases but a formulation of the assumptions and their verification in concrete examples is then

even more complicated than in [6].

Assumption (ESB): There exist s0 > 0 and C1-smooth mappings λ̂, α̂, β̂ : [0, s0) → R and

v̂ : [0, s0) → H0 with λ̂(0) = λ0, v̂(0) = 0, α̂(0) = α0 and β̂(0) = β0 such that for all s ∈ (0, s0)

û(s) := sΦα̂(s),β̂(s) (u0 + v̂(s)) (3.11)

is a solution to (2.3) with λ = λ̂(s), û is continuous from [0, s0) into H and C1-smooth from

[0, s0) into ∈ L2(Ω) and û(s) ∈ W 2,p(Ω\U) for some p > 2, where U is from the assumption (3.5).

In this section we will show that the conditions∫
Ω

∂ug(λ0, 0)u3
0 dx dy < 0 (3.12)

or ∫
Ω

∂ug(λ0, 0)u3
0 dx dy > 0 (3.13)

determine the direction of the branch of non-trivial bifurcating solutions introduced in Assump-

tion (ESB).

Theorem 3.1 Let (λ0, u0) satisfy (2.4), (3.1). Let g be C1-smooth and satisfy (1.4), (2.2).

Let us assume (ESB). Then

d

ds
λ̂(s)

∣∣∣∣
s=0

= −
(∫

Ω

u2
0 dx dy

)−1 ∫
Ω

∂ug(λ0, 0)u3
0 dx dy. (3.14)

In particular, if s0 is chosen sufficiently small then under the assumption (3.12) or (3.13) we

have λ̂(s) > λ0 or λ̂(s) < λ0, respectively, for all s ∈ (0, s0).
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Proof. Let us denote Φs := Φα̂(s),β̂(s), ξs(x, y) := ξα̂(s),β̂(s)(x, y), λs := λ̂(s) and vs := v̂(s).

Since (λs, û(s)) satisfies (2.3), it follows (by the choice ϕ = 2û(s) and ϕ = 0) that∫
Ω

(
|∇û(s)|2 − λsû(s)2 − g(λs, û(s))û(s)2

)
dx dy = 0.

Realizing (3.11) and dividing by s2 we get∫
Ω

(
|∇Φs(u0 + vs)|2 − λs(Φs(u0 + vs))

2 − g(λs, sΦs(u0 + vs))(Φs(u0 + vs))
2
)

dx dy = 0.

(3.15)

Let us denote
λ̇s := d

ds
λ̂(s), v̇s := d

ds
v̂(s), ξ̇s(x, y) := d

ds
ξs(x, y),

w0(x, y) := ∇u0(x, y) · ξ̇0(x, y).
(3.16)

Formal calculation using the commutativity of integration and differentiation and the chain

rule gives

d
ds

[∫
Ω

(
|∇Φs(u0 + vs)|2 − λsΦs(u0 + vs)

2 − g(λs, sΦs(u0 + vs))Φs(u0 + vs)
2
)

dx dy
]
s=0

=
∫

Ω
2 (∇u0 · ∇(w0 + v̇0)− λ0u0(w0 + v̇0))− λ̇0|u0|2 − ∂ug(λ0, 0)u3

0 dx dy,
(3.17)

but the integrand is not smooth enough to enable us to use these considerations. We will prove

(3.17) in details later.

First, let us assume that (3.17) is true. Then we obtain by using (3.15) that

2

∫
Ω

(∇u0 · ∇(w0 + v̇0)− λ0u0(w0 + v̇0)) dx dy =

∫
Ω

(
λ̇0|u0|2 + ∂ug(λ0, 0)u3

0

)
dx dy. (3.18)

Because of (3.5) and Assumption (ESB) we have

ξ̇0(x, y) = (0, 0) for all (x, y) ∈ U and u0 ∈ W 2,2(Ω \ U), (3.19)

where U is the neighbourhood of ΓN ∪ ΓD from (3.5). Hence, ∇u0 · ξ̇0 ∈ H. We have even

∇u0 · ξ̇0 ∈ H0 because the second component of ξ̇0(x, 0) vanishes for all x ∈ [α0, β0] by (3.7),

and the first component of ∇u0(x, 0) vanishes for all x ∈ [α0, β0] because u0 ∈ H0∩W 2,2(Ω\U).

Hence, in terms of the notation (3.16) we have

w0 ∈ H0. (3.20)

Moreover, since vs ∈ H0 for any s ∈ (0, s0), we have v̇0 ∈ H0. It follows that the choice

ϕ = w0 + v̇0 ∈ H0 in (3.2) implies that the left-hand side in (3.18) vanishes. Hence, the

right-hand side vanishes as well, and (3.14) follows.

It remains to prove (3.17). Let us focus on the leading term, which can be rewritten as

d
ds

[∫
Ω
|∇Φs(u0)|2 dx dy

]
s=0

+ 2 d
ds

[∫
Ω
∇Φs(u0) · ∇Φs(vs) dx dy

]
s=0

+

+ d
ds

[∫
Ω
|∇Φs(vs)|2 dx dy

]
s=0

.
(3.21)
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Let ηs : Ω → Ω be the inverse of the differemorphism ξs. Then clearly

ξs(ηs(x, y)) = (x, y) for all (s, x, y) ∈ [0, s0)× Ω. (3.22)

Denoting ξ′s and η′s the Jacobian matrix to ξs and ηs, respectively, we get from (3.22) that

ξ′s(ηs(x, y))η′s(x, y) = I for all (s, x, y) ∈ [0, s0)× Ω. (3.23)

Moreover, (3.6) implies that

ξ′0(x, y) = η′0(x, y) = I for all (x, y) ∈ Ω. (3.24)

Furthermore, because of the chain rule we have

(∇Φsu) (x, y) = ∇(u ◦ ξs)(x, y) = ξ′s(x, y)(∇u)(ξs(x, y)) for all u ∈ H. (3.25)

Therefore the change of integration variables (x, y) = ηs(x̃, ỹ) in the first and the second integral

of (3.21) yields∫
Ω
|∇Φsu0|2 dx dy =

∫
Ω
|ξ′s(ηs(x̃, ỹ))∇u0(x̃, ỹ)|2 det η′s(x̃, ỹ) dx̃ dỹ

=
∫

Ω
(ξ′s(ηs(x̃, ỹ))∇u0(x̃, ỹ) · ξ′s(ηs(x̃, ỹ))∇u0(x̃, ỹ)) det η′s(x̃, ỹ) dx̃ dỹ

=
∫

Ω

(
ξ′s(ηs(x̃, ỹ))T ξ′s(ηs(x̃, ỹ))∇u0(x̃, ỹ) · ∇u0(x̃, ỹ)

)
det η′s(x̃, ỹ) dx̃ dỹ

(3.26)

and ∫
Ω
∇Φsu0 · ∇Φsvs dx dy

=
∫

Ω
ξ′s(ηs(x̃, ỹ))∇u0(x̃, ỹ) · ξ′s(ηs(x̃, ỹ))∇vs(x̃, ỹ) det η′s(x̃, ỹ) dx̃ dỹ

=
∫

Ω
ξ′s(ηs(x̃, ỹ))T ξ′s(ηs(x̃, ỹ))∇u0(x̃, ỹ) · ∇vs(x̃, ỹ) det η′s(x̃, ỹ) dx̃ dỹ.

(3.27)

Denote by ws(x, y) the integrand in (3.27). Due to Assumptions (ESB) and (3.4) the map

s ∈ [0, s0) 7→ ws ∈ L2(Ω) is C1-smooth. It follows that the derivative d
ds

(ws(x, y)) exists for

all s ∈ (0, s0) and a.a. (x, y) ∈ Ω, and as a function of s, x, y it is in L1((0, s0) × Ω). Due

to known results concerning differentiation of an integral with respect to a parameter (see e.g.

[21, Theorem 8.4]) we have

d
ds

[∫
Ω
∇Φsu0 · ∇Φsvs dx dy

]
s=0

=
∫

Ω

[
d
ds

(ws(x̃, ỹ))
]
s=0

=
∫

Ω
d
ds

[
ξ′s(ηs(x̃, ỹ))T ξ′s(ηs(x̃, ỹ))∇u0(x̃, ỹ) · ∇vs(x̃, ỹ) det η′s(x̃, ỹ)

]
s=0

dx̃ dỹ.
(3.28)

Similarly one shows that

d
ds

[∫
Ω
|∇Φsu0|2 dx dy

]
s=0

=
∫

Ω
d
ds

[(
ξ′s(ηs(x̃, ỹ))T ξ′s(ηs(x̃, ỹ))∇u0(x̃, ỹ) · ∇u0(x̃, ỹ)

)
det η′s(x̃, ỹ)

]
s=0

dx̃ dỹ.
(3.29)

Now, we will prove that

d

ds

[∫
Ω

|∇Φsu0|2 dx dy

]
s=0

= 2

∫
Ω

∇u0 · ∇w0 dx dy. (3.30)
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Denoting η̇s := d
ds

ηs and differentiating (3.22) by s we obtain

ξ̇s(ηs(x, y)) + ξ′s(ηs(x, y))η̇s(x, y) = (0, 0) for all (s, x, y) ∈ [0, s0)× Ω. (3.31)

Expressing (3.31) at s = 0 and realizing (3.6) and (3.24) gives

ξ̇0(x, y) + η̇0(x, y) = (0, 0) for all (x, y) ∈ Ω. (3.32)

We obtain for the Jacobian matrices corresponding to ξ̇0(x, y) and η̇0(x, y) that

ξ̇′0(x, y) = −η̇′0(x, y) for all (x, y) ∈ Ω. (3.33)

Differentiating (3.23) by s we get

d

ds
[ξ′s(ηs(x, y))] η′s(x, y) + ξ′s(ηs(x, y))

d

ds
[η′s(x, y)] = 0.

Expressing this at s = 0 and realizing (3.6), (3.24) and (3.33) we obtain

d

ds
[ξ′s(ηs(x, y))]s=0 = − ξ′s(ηs(x, y))|s=0

d

ds
[η′s(x, y)]s=0 = −η̇′0(x, y) = ξ̇′0(x, y).

Moreover, a simple calculation yields

d

ds
[det η′s(x, y)]s=0 =

d

ds

[
(det ξ′s(x, y))

−1
]

s=0
= −tr ξ̇′0(x, y),

where tr B stays for the trace of the matrix B. Summarizing, we get by the product rule

d

ds

[
ξ′s(ηs(x, y))T ξ′s(ηs(x, y)) det η′s(x, y)

]
s=0

= ξ̇′0(x, y)T + ξ̇′0(x, y)−
(
tr ξ̇′0(x, y)

)
I. (3.34)

For any h ∈ R2 we have h · ξ̇′0(x, y)T h = ξ̇′0(x, y)T h ·h = h · ξ̇′0(x, y)h and we obtain by the choice

h = ∇u0 from (3.34) and (3.29) that

d
ds

∫
Ω
|∇Φsu0|2 dx dy

∣∣
s=0

=
∫

Ω
∇u0(x̃, ỹ) ·

(
2ξ̇′0(x̃, ỹ)−

(
tr ξ̇′0(x̃, ỹ)

)
I
)
∇u0(x̃, ỹ) dx̃ dỹ.

(3.35)

Integration by parts gives∫
Ω

|∇u0|2tr ξ̇′0 dx dy = −
∫

Ω

∇|∇u0|2 · ξ̇0 dx dy +

∫
∂Ω

|∇u0|2ξ̇0 · ν dΓ

where the last boundary integral vanishes because the vector ξ̇0 is zero on the domain U due to

(3.5) and tangential to ∂Ω on ΓU due to (3.8), and consequently ξ̇0 ·ν = 0 on ∂Ω. We obtain by

using the notation (3.16), direct calculation and the integration by parts discussed above that∫
Ω
∇u0 · ∇w0 dx dy =

∫
Ω
∇u0 · ∇

(
∇u0 · ξ̇0

)
dx dy

=
∫

Ω

(
1
2
∇|∇u0|2 · ξ̇0 +∇u0 · ξ̇′0∇u0

)
dx dy

=
∫

Ω

(
−1

2
|∇u0|2tr ξ̇′0 +∇u0 · ξ̇′0∇u0

)
dx dy,
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and (3.30) follows from (3.35).

Differentiating the integrand in (3.28), using (3.19), (3.24) and realizing in addition that

v0 = 0 we obtain that

d

ds

[∫
Ω

∇Φsu0 · ∇Φsvs dx dy

]
s=0

=

∫
Ω

∇u0 · ∇v̇0 dx dy. (3.36)

It remains to express the last integral in (3.21). The map s ∈ [0, s0) 7→ vs ∈ H is C1-smooth

by Assumption (ESB), hence v0 = 0 yields that ‖vs‖2 = o(s) for s → 0. Therefore, we get

d

ds

[∫
Ω

|∇Φsvs|2 dx dy

]
s=0

= lim
s→0

‖Φsvs‖2

s
≤ lim

s→0

‖Φs‖2 ‖vs‖2

s
= 0. (3.37)

The lower order terms in (3.17) are such that we can directly exchange differentiation and

integration and we get by using (1.4), the form (3.11) and (3.24) that

d
ds

[∫
Ω

(λsΦs(u0 + vs)
2 + g(λs, sΦs(u0 + vs))Φs(u0 + vs)

2) dx dy
]
s=0

=
∫

Ω

(
λ̇0|u0|2 + 2λ0u0(w0 + v̇0) + ∂ug(λ0, 0)u3

0

)
dx dy.

Hence, (3.30), (3.35) and (3.37) yield that (3.17) is true. This finishes the proof.

Example 3.2 We will consider the same situation as in [6, Example 2.7]. Let Ω := (0, 1) ×
(0, `), ΓD := ({0} × (0, `)) ∪ ({1} × (0, `)), ΓU := ((γ1, γ2) × {0}) with 0 < γ1 < γ2 < 1 and

ΓN := ∂Ω \
(
ΓD ∪ ΓU

)
. First, let us consider the eigenvalue problem (1.5) with the boundary

conditions (1.7). The eigenvalues and eigenfunctions of this problem are

λm,n = (mπ)2 +
(nπ

`

)2

, um,n(x, y) = sin mπx · cos
nπ

`
y, m = 1, 2, . . . , n = 0, 1, 2, . . . ,

respectively. If 1/
√

15 < ` < 1/
√

8 then the first four eigenvalues are λ1,0 < λ2,0 < λ3,0 < λ1,1.

Let us assume that 1/3 < γ1 < γ2 < 2/3. Then

u3,0 < 0, −u1,1 < 0 on ΓU .

The method developed in [16] shows that there is at least one eigenvalue λ0 ∈ (λ3,0, λ1,1) of

the variational inequality (2.4). This eigenvalue and the corresponding eigenfunction can be

calculated numerically and (3.1) is seen as well as the activity condition (2.19) from [6], see

Fig. 1. (Everything coincides with ideas coming from the method [16] mentioned). It follows

also that λ0 is simple as an eigenvalue of the problem (1.5), (3.3) (with α = α0, β = β0) because

standard numerical approaches usually fail in the case of multiple eigenvalues. The condition

(2.21) from [6], which is fulfilled generically, can be also verified numerically for a given `.

It follows from [6, Theorem 2.3] that a branch from our assumption (ESB) exists. Now, our

Theorem 3.1 guarantees that this branch bifurcates to the right or to the left from λ0 under the

assumption (3.12) or (3.13), respectively.
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x y

Figure 1: The eigenfunction u0 from Example 3.2 with ` = 0.27, λ0 = 99.8, α0 = 0.38 and

β0 = 0.62.

4 Stability of bifurcating solutions, exchange of stability

In this section we will study the stability of the trivial solution and of the nontrivial solutions

bifurcating from the first eigenvalue to (2.4) (i.e. to (1.5), (1.2), (1.3)) as of stationary solutions

of the corresponding evolution variational inequality

u(t) ∈ K = {u ∈ H : u ≤ 0 on ΓU} :∫
Ω

(
du
dt

(ϕ− u) +∇u · ∇(ϕ− u)− (λu + g(λ, u)u)(ϕ− u)
)

dx dy ≥ 0

for all ϕ ∈ K, a.a. t ∈ (0, T ).

(4.1)

Instead of the assumption (2.2) we will need the stronger condition

the map (λ, u) 7→ g(λ, u) is C2-smooth from R×W 1,2(Ω) into Lr(Ω) for some r > 2. (4.2)

Let us remark that (4.2) is true if, for example, g(λ, ·) is a polynom in u.

By a strong solution we mean u ∈ C([0, T ], K) such that u : (0, T ) → L2(Ω) is differentiable

a.e. on (0, T ) and satisfies (4.1). By stability of a stationary solution us in W 1,2 we mean that

for any ε > 0 there exists δ > 0 such that if uic ∈ K, ‖uic − us‖ < δ then there is a unique

strong solution u of (4.1) on [0,∞) satisfying the initial condition u(0) = uic and we have

‖u(t) − us‖ < ε for all t ≥ 0. By asymptotical stability of a stationary solution us we mean

that us is stable and limt→∞ ‖u(t)− us‖ = 0.
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Simultaneously, we will discuss the problem (1.1), (1.7) having the weak formulation

u ∈ H :

∫
Ω

(∇u∇ϕ− λuϕ− g(λ, u)uϕ) dx dy = 0 for all ϕ ∈ H, (4.3)

and the eigenvalue problem (1.5) with (1.7) having the weak formulation

u ∈ H :

∫
Ω

(∇u · ∇ϕ− λuϕ) dx dy = 0 for all ϕ ∈ H. (4.4)

We will introduce operators A : H → H and G : R×H → H by

〈Au, ϕ〉 :=
∫

Ω
uϕ dx dy,

〈G(λ, u), ϕ〉 :=
∫

Ω
g(λ, u)uϕ dx dy for all ϕ ∈ H.

(4.5)

Under the assumption (4.2), these operators are well-defined, A is linear, symmmetric, positive

and compact,

G is C2-smooth, G(λ, 0) = ∂uG(λ, 0) = 0 for all λ. (4.6)

For fixed λ, u, the linear map ∂uG(λ, u) : H → H is symmetric and compact. An abstract form

of (2.3) is

λ ∈ R, u ∈ K : 〈u− λAu−G(λ, u), ϕ− u〉 ≥ 0 for all ϕ ∈ K. (4.7)

Lemma 4.1 The smallest eigenvalue λ0 of the variational inequality (2.4) is simultaneously

the smallest and simple eigenvalue of the problem (4.4). There is only one normalized eigen-

function u0 of (2.4) corresponding to λ0 and it coincides with the negative eigenfunction of (4.4)

corresponding to λ0. We have

u0 < 0 on [γ1, γ2]× {0} = ΓU . (4.8)

Proof. It is known that the smallest eigenvalue λI
min of the variational inequality (2.4) is char-

acterized by

1/λI
min = max

u∈K,‖u‖=1

∫
Ω

u2 dx dy (4.9)

(see e.g. [22]), and the smallest eigenvalue λmin of the problem (4.4) is characterized by

1/λmin = max
u∈H,‖u‖=1

∫
Ω

u2 dx dy. (4.10)

The eigenfunctions of (2.4) or (4.4) correponding to λI
min or λmin are exactly all maximizers of

(4.9) or (4.10), respectively. It is well-known that the smallest eigenvalue λmin of (4.4) is simple

and there is a corresponding eigenfunction uE
1 of (4.4) with uE

1 < 0 in Ω∪ΓN∪ΓU . In particular,

uE
1 ∈ K. It follows from the variational characterization above that λ0 = λI

min = λmin and that

uE
1 is simultaneously the corresponding eigenfunction of (2.4). If u0 is an arbitrary normalized

eigenfunction of (2.4) then it is a maximizer of (4.9) and also of (4.10). That means u0 is

simultaneously an eigenfunction of (4.4), i.e. u0 = uE
1 because of −uE

1 /∈ K.

In the sequel we will assume that (λ0, u0) is the couple from Lemma 4.1.
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Theorem 4.2 Let λ0 be the smallest eigenvalue of the variational inequality (2.4) and let

(1.4), (2.1), (4.2) be fulfilled. Then there exist s0 > 0 and C1-smooth maps λ̂ : (−s0, s0) → R,

v̂ : (−s0, s0) → (u0)
⊥ (the orthogonal complement in H) such that λ̂(0) = λ0, v̂(0) = 0 and the

couple (λ̂(s), û(s)) with û(s) := s(u0 + v̂(s)) for any s ∈ (−s0, s0) satisfies (4.3), and for any

s ∈ (0, s0) it satisfies simultaneously the variational inequality (2.3). Moreover, there exists

η > 0 such that for any solution (λ, u) ∈ R× (H \ {0}) to (2.3) with

|λ− λ0|+ ‖u‖ < η (4.11)

there is s ∈ (0, s0) with u = û(s) and λ = λ̂(s).

In addition, let the condition (3.12) be fulfilled. Then

λ̂(s) > λ0 for all s ∈ (0, s0), λ̂(s) < λ0 for all s ∈ (−s0, 0). (4.12)

For s ∈ (0, s0), the solution û(s) is asymptotically stable in W 1,2 as the stationary solution of

the evolution equation corresponding to (4.3) as well as the stationary solution of the evolution

variational inequality (4.1). For s ∈ (−s0, 0), the solution û(s) is unstable as the stationary

solution of the evolution equation corresponding to (4.3) (and it is no solution of the variational

inequality).

With a knowledge of Lemma 4.1, Theorem 4.2 is very natural. The only non-easy prob-

lem in the proof is to show that any solution of the variational inequality (2.3) near (λ0, 0)

is simultaneously a solution of the equation (4.3). The following series of Lemmas 4.4–4.9,

Remarks 4.3, 4.6 and Observation 4.8 will be used just for this part of the proof. They are

similar to the corresponding assertions in [6], nevertheless, the situation now is different.

Remark 4.3 Let (λ, u) satisfy (2.3) (i.e. (1.1), (1.2), (1.3) in the weak sense). Since u is

continuous on ΓU (see e.g. the first part of Lemma 4.4 below), it follows that ΓU consists of

two maximally countable sets SN , SD of unknown open subintervals such that u < 0 on Γ for

all Γ ∈ SN and

u = 0 on Γ (4.13)

for for all Γ ∈ SD, and some isolated points (x, 0) with u(x, 0) = 0. For Γ ∈ SN we have∫
Ω

∇u · ∇ϕ− (λu + g(λ, u)u)ϕ dx dy = 0 for all ϕ ∈ H satisfying ϕ = 0 on ∂Ω \ Γ, (4.14)

i.e. (λ, u) satisfies in a weak sense (1.1)–(1.3) and, in addition, ∂νu = 0 on Γ. If (x0, 0) is

an isolated point of the set {(x, 0) ∈ ΓU : u(x, 0) = 0} then (4.14) is fulfilled with an open

neighbourhood Γ of (x0, 0) in ∂Ω.
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Lemma 4.4 Let Ω′ ⊂ Ω be a sub-domain with a smooth boundary such that Ω′ ⊂ Ω ∪ (ΓU ∪
ΓN,µ0), ΓN,µ0 being from (2.1). Then we have u ∈ W 2,2(Ω′) for any (λ, u) ∈ R ×H satisfying

(2.3). Moreover, for any η0 > 0 small enough there is C > 0 such that∥∥∥∥ u

‖u‖

∥∥∥∥
W 2,2(Ω′)

≤ C for all (λ, u) ∈ R× (H \ {0}) satisfying (2.3), |λ− λ0|+ ‖u‖ < η0. (4.15)

If Ω′ ⊂ Ω, Ω′ ⊂ Ω∪Γ with some Γ ⊂ (γ1−µ0, γ2 +µ0)×{0} ((γj, 0) are now included), then the

same assertion holds for all (λ, u) ∈ R× (H \ {0}) satisfying also (4.14) in addition to (2.3).

Proof. First, let Ω′ be such that Ω′ ⊂ Ω∪ΓU . Then there is C > 0 such that for any f ∈ L2(Ω),

the solution of the variational inequality

w ∈ K :

∫
Ω

(∇w · ∇(ϕ− w)− f(ϕ− w)) dx dy ≥ 0 for all ϕ ∈ K (4.16)

satisfies w ∈ W 2,2(Ω′) and

‖w‖W 2,2(Ω′) ≤ C(1 + ‖w‖W 1,2(Ω) + ‖f‖L2(Ω)) (4.17)

(see e.g. [18]). If u satisfies (2.3) then w := u
‖u‖ satisfies (4.16) with

f = λw + g(λ, ‖u‖w)w.

We have ‖g(λ, ‖u‖w)‖Lr(Ω) ≤ C for all λ, u, w such that |λ − λ0| + ‖u‖ < η0, ‖w‖ = 1 (see

the assumption (4.2)) and therefore we get ‖g(λ, ‖u‖w)w‖L2(Ω) ≤ ‖g(λ, ‖u‖w)‖Lr(Ω)‖w‖Lq(Ω) ≤
C‖w‖ ≤ C (with 1/r + 1/q = 1) by using Hölder inequality and embedding theorems. Substi-

tuting f from the formula above we get (4.15).

Now, let Ω′ be such that Ω′ ⊂ (Ω ∪ ΓN,µ0). For the Neumann problem for the equation

−∆w = f on a bounded convex smooth domain Ω′′, the estimate ‖w‖W 2,2(Ω′′) ≤ C(‖w‖W 1,2(Ω′′)+

‖f‖L2(Ω′′)) is known (see e.g. [11, Theorem 3.1.2.3]). It is easy to find a suitable Ω′′ ⊂ Ω with

Ω′′ ⊂ (Ω∪ΓN,µ0), Ω′ ⊂ (Ω′′ ∪ int (Ω′′ ∩ ∂Ω)) where int denotes the interior in ∂Ω, and a cut-off

function χ = 1 in Ω′, χ = 0 in Ω \ Ω′′ such that w := χ u
‖u‖ is a solution of the homogeneous

Neumann problem for the equation −∆w = f in Ω′′ with

f = λχ
u

‖u‖
+ g

(
λ, ‖u‖ u

‖u‖

)
χ

u

‖u‖
− 2∇ u

‖u‖
· ∇χ− u

‖u‖
∆χ (4.18)

if u is a solution of (2.3). By similar estimates of f as above we obtain the estimate for w, and

since w = u
‖u‖ in Ω′ we get also (4.15).

Combining both situations considered we obtain (4.15) for any Ω′ from the assumptions of

the first part of our Lemma. The case Ω′ ⊂ Ω ∪ Γ, Γ ⊂ (γ1 − µ0, γ2 + µ0) × {0} is in fact the

same as Ω′ ⊂ (Ω ∪ ΓN,µ0) because it was essential only that the solutions under consideration

satisfy Neumann condition in the weak sense on a straight part of Ω′ ∩ ∂Ω.
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Remark 4.5 If Γ ⊂ (ΓU ∪ ΓN,µ0) is an open (in ΓU ∪ ΓN,µ0) set and Ω′ ⊂ Ω is a sub-domain,

Ω′ ⊂ (Ω ∪ Γ), then for any (λ, u) satisfying (2.3) and in addition (4.13) we have u ∈ C1,γ(Ω′)

with some γ ∈ (0, 1). In particular, the classical normal derivative ∂νu exists on Γ. Indeed, it

follows from Lemma 4.4 and the embedding theorems that u ∈ C0(Ω′) for any (λ, u) satisfying

(2.3). We can prolong it anti-symmetrically by u(x, y) = −u(x,−y) onto the domain Ω′
M :=

int {(x, y) : either (x, y) ∈ Ω′ or (x,−y) ∈ Ω′ or (x, 0) ∈ Ω′}. Under the assumption (4.13),

the prolonged function is a weak solution of ∆u = f in Ω′
M with f = λu + g(λ, u)u ∈ C0(Ω′

M).

Well-known regularity results (e.g. [14, Th. 11.1.2] imply that u ∈ C1,γ(Ω′
M).

If Γ ⊂ (ΓU ∪ ΓN,µ0) (the points (γj, 0) can be now included) then we can use analogous

considerations for (λ, u) satisfying (2.3) and (4.14) (instead of (4.13)) to get u ∈ C1,γ(Ω′). We

must only use the symmetrical prolongation u(x, y) = u(x,−y) under the assumption (4.14).

Remark 4.6 Let Ω′ be as in Lemma 4.4. The estimate (4.15) guarantees that if (λ, u) ∈ R×H

is a solution of (2.3) with ‖u‖ small enough, λ close to λ0 then ‖u‖C(Ω′) is small. Due to (1.4)

and (4.15), for all (λ, u) ∈ R×H satisfying (2.3) with ‖u‖ small enough and λ close to λ0 we

have |g(λ, u(x, y))u(x, y)| < λ|u(x, y)|, and consequently sign (λu(x, y) + g(λ, u(x, y))u(x, y)) =

sign u(x, y) for all (x, y) ∈ Ω′ with u(x, y) 6= 0.

Lemma 4.7 Let Ω′ be a sub-domain of Ω, Ω′ ⊂ Ω. Then there is C > 0 such that if (λ, u) ∈
R× (H \ {0}) satisfies (2.3) then u ∈ W 2,2(Ω′) and∥∥∥∥ u

‖u‖
− u0

∥∥∥∥
W 2,2(Ω′)

≤ C

(
|λ− λ0|+

∥∥∥∥ u

‖u‖
− u0

∥∥∥∥ + ‖g(λ, u)‖Lr(Ω)

)
, (4.19)

where r is from the assumption (4.2).

Proof If (λ, u) ∈ R× (H \ {0}) satisfies (2.3) then w := u
‖u‖ − u0 satisfies ∆w = f with

f = (λ− λ0)
u

‖u‖
− λ0(

u

‖u‖
− u0)− g(λ, u)

u

‖u‖
.

It is well-known that for such equation, the estimate

‖w‖W 2,2(Ω′) ≤ C(‖w‖+ ‖f‖L2(Ω))

holds (see e.g. [10, Theorem 8.8]). Due to the assumption (4.2) and the embedding theorems

we have ∥∥∥∥g(λ, u)
u

‖u‖

∥∥∥∥
L2(Ω)

≤ ‖g(λ, u)‖Lr(Ω)

∥∥∥∥ u

‖u‖

∥∥∥∥
Lq(Ω)

≤ C‖g(λ, u)‖Lr(Ω),

where 1/r + 1/q = 1. It follows that ‖f‖L2(Ω) ≤ C
(
|λ− λ0|+ λ0

∥∥∥ u
‖u‖ − u0

∥∥∥ + ‖g(λ, u)‖Lr(Ω)

)
,

and our assertion follows.

Additional Notation. For ε > 0 and a < b we will denote

Ωε
a,b = (a, b)× (0, ε), Γε

a,b = (a, b)× {ε}.

15



Observation 4.8 ([6, Observation 3.11]) Let ε > 0, a < b. The smallest eigenvalue of the

problem

∆w + λw = 0 in Ωε
a,b, w = 0 on Γε

a,b, ∂νw = 0 on ∂Ωε
a,b \ Γε

a,b

is λε
min =

(
π
2ε

)2
. (The corresponding eigenfunction is w0(x, y) = sin π(y−ε)

2ε
.) It is well known

that λε
min = min

w∈W0

‖∇w‖L2(Ωε
a,b)

‖w‖L2(Ωε
a,b)

, W0 =
{
w ∈ W 1,2(Ωε

a,b) : w = 0 on Γε
a,b

}
. Hence,

‖w‖L2(Ωε
a,b)

≤
(

2ε

π

)2

‖∇w‖L2(Ωε
a,b)

for all w ∈ W 1,2
(
Ωε

a,b

)
, w = 0 on Γε

a,b. (4.20)

Lemma 4.9 There are η > 0 and µ ∈ (0, µ0/2) such that if (λ, u) satisfies (2.3) and

‖u‖ 6= 0, ‖u‖+

∥∥∥∥ u

‖u‖
− u0

∥∥∥∥ + |λ− λ0| < η (4.21)

then for any subdomain Ω′ ⊂ Ω, Ω′ ⊂ (Ω ∪ ΓU ∪ ΓN,µ0) we have u ∈ C1,γ(Ω′) with some γ > 0

and

u(x, 0) < 0 for all x ∈ (γ1 − µ, γ2 + µ). (4.22)

Proof. Due to (4.8) and the continuity of u0, there exist µ ∈ (0, µ0/2), ε0 > 0 and ζ > 0 such

that

u0 < −ζ in Ωε0
γ1−2µ,γ2+2µ. (4.23)

Let us set

Ω′ := Ωε0
γ1−2µ,γ2+2µ \

(
Ωε0

γ1−µ,γ1+µ ∪ Ωε0
γ2−µ,γ2+µ

)
= ((γ1 − 2µ, γ1 − µ)× (0, ε0)) ∪ ((γ1 + µ, γ2 − µ)× (0, ε0)) ∪ ((γ2 + µ, γ2 + 2µ)× (0, ε0)).

Let us fix a certain η0 > 0. We have Ω′ ⊂ (Ω ∪ ΓN,µ0 ∪ ΓU) and it follows by using Lemma 4.4

that there is C > 0 such that for all (λ, u) satisfying (2.3) and (4.21) with η = η0 we have

‖u‖W 2,2(Ω′) ≤ C‖u‖. Due to the continuous embedding W 2,2(Ω′) ⊂ C0,γ(Ω′) with some γ > 0

we have also

‖u‖C0,γ(Ω′) ≤ C‖u‖ for all (λ, u) satisfying (2.3), (4.21) with η = η0. (4.24)

There exists ρ > 0 such that if u ∈ C0,γ(Ω′), ‖u‖ 6= 0, u(x0, y0) ≥ 0 for some (x0, y0) ∈ Ω′

then u(x,y)
‖u‖

C0,γ (Ω′)
> −ζ/2C for all (x, y) ∈ Bρ(x0, y0) ∩ Ω′, where Bρ(x0, y0) is the open disc

with the radius ρ centered at (x0, y0). Due to (4.24), we have also u(x,y)
‖u‖ > −ζ/2 for all

(x, y) ∈ Bρ(x0, y0) ∩ Ω′ if (2.3), (4.21) with η = η0 are fulfilled. Hence, we get meas {(x, y) ∈
Ω′ : u(x, y) ≥ −ζ‖u‖/2} ≥ θ := meas

(
Bρ(x0, y0) ∩ Ω′

)
. In particular, we have proved the

existence of θ > 0 such that

if (λ, u) ∈ R×H satisfies (2.3), (4.21) with η = η0

and meas
{

(x, y) ∈ Ω′ : u(x,y)
‖u‖ ≥ − ζ

2

}
< θ, then u < 0 in Ω′.

(4.25)
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Furthermore, let us prove that there is η ∈ (0, η0) such that

meas

{
(x, y) ∈ Ω′ :

u(x, y)

‖u‖
≥ −ζ

2

}
< θ for all (λ, u) satisfying (2.3), (4.21). (4.26)

Indeed, in the opposite case we would have a sequence un such that
∥∥∥ un

‖un‖ − u0

∥∥∥ → 0 and

meas
{
(x, y) ∈ Ω′ : un(x, y) ≥ −ζ‖un‖/2

}
≥ θ. However, due to Jegorov Theorem there should

be a measurable M ⊂ Ω′ such that meas M < θ and un

‖un‖ → u0 uniformly in Ω′ \ M . This

would contradict (4.23).

Now, it follows from (4.25) and (4.26) that u < 0 in Ω′ for all solutions (λ, u) to (2.3)

satisfying (4.21). Due to (4.23) and Lemma 4.7 (with Ω′ = Ωε0
γ1−2µ,γ2+2µ \Ωε

γ1−2µ,γ2+2µ), for any

ε we can choose η ∈ (0, η0) simultaneously so small that also u < 0 in Ωε0
γ1−2µ,γ2+2µ \Ωε

γ1−2µ,γ2+2µ

for (λ, u) considered. Summarizing, for any ε ∈ (0, ε0) there is η > 0 such that

u < 0 in Ωε0
γ1−2µ,γ2+2µ \ (Ωε

γ1−µ,γ1+µ ∪ Ωε
γ2−µ,γ2+µ) for all (λ, u) satisfying (2.3), (4.21). (4.27)

Let u+ denote the positive part of u. Due to (4.27), we have in particular

u+ = 0 in Γε
γ1−µ,γ2+µ for all (λ, u) satisfying (2.3), (4.21). (4.28)

We will prove below that there is C > 0 independent of ε ∈ (0, ε0) such that

‖∇u+‖L2(Ωε
γ1−µ,γ2+µ)

≤ C‖u+‖L2(Ωε
γ1−µ,γ2+µ)

for all ε ∈ (0, ε0) and (λ, u) ∈ R×H

satisfying (2.3), (4.21) with η such that (4.27) holds.
(4.29)

First, let us assume that (4.29) is true, choose a fixed ε ∈
(
0, min

{
π

2C1/2 , ε0

})
and the corre-

sponding η such that (4.27) holds and let us show that then

u ≤ 0 in Ωε
γ1−µ,γ2+µ for all (λ, u) satisfying (2.3), (4.21). (4.30)

(In fact, only the inequality in Ωε
γj−µ,γj+µ is essential, Ωε

γ1+µ,γ2−µ is included already in (4.27).)

Let us consider an arbitrary (λ, u) ∈ R×H satisfying (2.3), (4.21) with η such that (4.27) holds.

Therefore the inequality in (4.29) is true. On the other hand, due to (4.28) and Observation 4.8,

also the inequality in (4.20) holds with a = γ1 − µ, b = γ2 + µ, w = u+. However, both

inequalities with ε < π
2C1/2 can be simultaneously fulfilled only if u+ = 0. Hence, (4.30) follows.

Now, let us prove (4.22) for all (λ, u) satisfying (2.3), (4.21) if η is small enough, where µ is

such that (4.23) holds. (We know that u is continuous on ΓU ∪ ΓN,µ0 , e.g. Lemma 4.4.) First,

we will show that

u(x, 0) < 0 for all x ∈ (γ1 − µ, γ1) ∪ (γ1, γ2) ∪ (γ2, γ2 + µ) (4.31)

for all (λ, u) satisfying (2.3), (4.21) if η is small enough. Let us assume by way of contradiction

that there is (λ, u) satisfying (2.3), (4.21) and u(x0, 0) = 0 for some x0 ∈ I := (γ1 − µ, γ1) ∪
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(γ1, γ2)∪(γ2, γ2 +µ). Since the set {x ∈ I; u(x, 0) = 0} is closed in I, it consists of a maximally

countable set of closed (in I) intervals and isolated points. It follows easily that either it contains

a closure of some open interval I0 or it contains an isolated point x0. In the former case, the

classical normal derivative ∂νu(x, 0) exists for any x ∈ I0 by Remark 4.5 (with Γ = I0 × {0}).
In the latter case we have (4.14) with Γ = I0×{0}, I0 being an open interval containing x0 (see

Remark 4.3). Hence, the normal derivative exists in the classical sense on Γ by the second part

of Remark 4.5. Consider a sub-domain Ω′ ⊂ Ωε
γ1−µ,γ2+µ with Ω′ ⊂ (Ωε

γ1−µ,γ2+µ ∪ ΓU ∪ ΓN,µ0),

(x0, 0) ∈ Ω′. We have u ≤ 0 in Ω′ by (4.30). Hence, it follows from (1.1) and Remark 4.6 that

∆u ≥ 0 on Ω′ if η is small enough, u attains its maximum over Ω′ at (x0, 0) and the strong

maximum principle implies ∂νu(x0, 0) > 0, which contradicts (1.2) or (1.3). Hence, (4.31) for

all (λ, u) satisfying (2.3), (4.21) is proved.

It follows from (4.31) that (4.14) holds for all solutions under consideration with Γ =

(γ1 − µ, γ2 + µ), that means in particular ∂νu = 0 on Γ in the weak sense (cf. Remark 4.3).

Now, Remark 4.5 (with Γ = (γ1−µ0, γ2+µ0)×{0}) implies that ∂νu(γj, 0) exists in the classical

sense. If it were u(γj, 0) = 0 then it would be ∂νu(γj, 0) > 0 by the maximum principle as

above, which would contradict (1.2) or (1.3) again. Hence, (4.22) for all (λ, u) satisfying (2.3),

(4.21) is proved. It follows from Remark 4.5 that u ∈ C1,γ(Ω′) for any Ω′ considered in the

formulation of Lemma 4.9.

It remains to prove (4.29). First, we need to show that∫
Ωε

γ1−µ,γ2+µ

|∇(w+)|2 dx dy =

∫
Ωε

γ1−µ,γ2+µ

∇w · ∇(w+) dx dy for all w ∈ H. (4.32)

If w ∈ H is smooth then the set {(x, y) ∈ Ωε
γ1−µ,γ2+µ : w(x, y) > 0} is open and w+ coincides

with w on a neighbourhood of any its point, i.e. also derivatives of w+ coincide with those of

w. Both integrands are zero on {(x, y) ∈ Ωε
γ1−µ,γ2+µ : w(x, y) < 0}. Further, ∇(w+) = 0 in the

points where w = 0, ∇w = 0. Finally, the set {(x, y) ∈ Ωε
γ1−µ,γ2+µ : w(x, y) = 0, ∇w(x, y) 6= 0}

is of measure zero because in a neighbourhood of any its point it forms a smooth curve due to

the implicit function theorem. Hence, (4.32) holds for w smooth. For general w ∈ H we get

(4.32) via approximation by smooth functions.

Now, let us consider (λ, u) satisfying (2.3), (4.21) with η such that (4.27) holds. Let us

define ū = u+ in Ωε
γ1−µ,γ2+µ and ū = 0 in Ω \Ωε

γ1−µ,γ2+µ. We have ū ∈ W 1,2(Ω) by (4.27). Since

ū = u+ = 0 on ΓU because of u ∈ K, we have ±ū ∈ K and we get by using (4.32), (2.3) with

ϕ = u± ū that∫
Ωε

γ1−µ,γ2+µ
|∇u+|2 dx dy =

∫
Ωε

γ1−µ,γ2+µ
∇u · ∇u+ dx dy =

∫
Ω
∇u · ∇ū dx dy

=
∫

Ω
(λu + g(λ, u)u)ū dx dy =

∫
Ωε

γ1−µ,γ2+µ
(λ(u+)2 + g(λ, u)(u+)2) dx dy.

(4.33)

There is C > 0 such that ‖g(λ, u)‖Lr(Ω) ≤ C for all (λ, u), |λ− λ0|+ ‖u‖ ≤ η0 with r > 2 from

the assumption (4.2). Let us set q := 2r
r−2

> 2, i.e. 1/r + 1/q + 1/2 = 1. Since we have u+ = 0
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in Ωε0
γ1−µ,γ2+µ \ Ωε

γ1−µ,γ2+µ by (4.27), we obtain by using the embedding W 1,2(Ωε0
γ1−µ,γ2+µ) ⊂

Lq(Ωε0
γ1−µ,γ2+µ) that

‖u+‖Lq(Ωε
γ1−µ,γ1+µ)

=
(∫

Ωε
γ1−µ,γ2+µ

(u+)
q

dx dy
)1/q

=
(∫

Ω
ε0
γ1−µ,γ2+µ

(u+)
q

dx dy
)1/q

≤ C
(∫

Ω
ε0
γ1−µ,γ2+µ

|∇u+|2 dx dy
)1/2

= C
(∫

Ωε
γ1−µ,γ2+µ

|∇u+|2 dx dy
)1/2

= C‖∇u+‖L2(Ωε
γ1−µ,γ1+µ)

with C independent of the choice of ε. These estimates together with Hölder inequality and

(4.20) (with a = γ1 − µ, b = γ2 + µ) imply that the last integral in (4.33) can be estimated by

(λ0 + η)‖u+‖2
L2(Ωε

γ1−µ,γ1+µ)
+ ‖g(λ, u)‖Lr(Ω) · ‖u+‖Lq(Ωε

γ1−µ,γ1+µ)
· ‖u+‖L2(Ωε

γ1−µ,γ1+µ)

≤ C‖∇u+‖L2(Ωε
γ1−µ,γ1+µ)

· ‖u+‖L2(Ωε
γ1−µ,γ1+µ)

with C independent of ε ∈ (0, ε0). Hence, we obtain from (4.33) that

‖∇u+‖2
L2(Ωε

γ1−µ,γ2+µ)
≤ C‖∇u+‖L2(Ωε

γ1−µ,γ2+µ)
· ‖u+‖L2(Ωε

γ1−µ,γ2+µ)
,

which means (4.29).

Remark 4.10 For the proof of the last assertion of Theorem 4.2 we will use the stability

criterion for variational inequalities [20, Theorem 1]. Formulating it for our concrete problem,

we get the following assertion. If us is a stationary solution of (4.1) and

Λ(s) := lim sup
w+us∈K, ‖w‖→0

1∫
Ω

w2 dx dy
〈−w+λsAw+∂uG(λs, us)w−us+λsAus+G(λs, us), w〉 (4.34)

is negative then us is asymptotically stable in the W 1,2(Ω) norm. Let us note that in [20,

Theorem 1], the opposite signs of all expressions are considered and therefore also lim inf instead

of lim sup appears. We consider our notation more natural in our situation.

Remark 4.11 It follows from Lemma 4.1 (see in particular (4.10)) that 1/λ0 > 0 is the largest

and simple eigenvalue of the operator A, that means µ0 = 1 is the largest and simple eigenvalue

of the operator λ0A. Let us denote the largest eigenvalue of the operator λsA + Gu(λs, us)

by µs (s ∈ [0, s0)). It follows from the well-known variational characterization of the largest

eigenvalue of a symmetric compact operator that

µs = max
ϕ∈H,ϕ 6=0

〈λsAϕ + Gu(λs, us)ϕ, ϕ〉
‖ϕ‖2

, (4.35)

µ0 = 1 = max
ϕ∈H,ϕ 6=0

λ0〈Aϕ, ϕ〉
‖ϕ‖2

, i.e. λ0 = min
ϕ∈H,ϕ 6=0

‖ϕ‖2

〈Aϕ, ϕ〉
. (4.36)

We have µs → µ0 = 1 for s → 0.
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Proof of Theorem 4.2. The operator A is linear, symmetric, the operator G satisfies (4.6)

under our assumptions and 1/λ0 is a simple eigenvalue of the operator A (see Remark 4.11).

It follows from Crandall-Rabinowitz type theorem (see e.g. [2, Theorem 1.7] or [15, Theo-

rem I.5.1]) that there exists a smooth branch of nontrivial solutions of the problem (4.3) ema-

nating from the trivial solutions at λ0. More precisely, there exist s0 > 0, η > 0 and C1 maps

λ̂ : (−s0, s0) → R, v̂ : (−s0, s0) → (u0)
⊥ such that λ̂(0) = λ0, v̂(0) = 0 and the couple (λ, u)

satisfies (4.3), (4.11) if and only if (λ, u) = (λ̂(s), û(s)) =: (λs, us) with û(s) := s(u0 + v̂(s)) for

some s ∈ (−s0, s0). We have
∥∥∥ us

‖us‖ − u0

∥∥∥ → 0 for s → 0+. Since us are solutions of (4.3), which

is a weak formulation of a mixed boundary value problem, it follows from [12, Theorem 1] (cf.

also [6, Remark 3.8]) that
∥∥∥ us

‖us‖ − u0

∥∥∥
C(Ω)

→ 0 for s → 0+. Hence, it follows from (4.8) that

us < 0 on ΓU and therefore us ∈ K for any s ∈ (0, s0), s0 small enough. It immediately follows

that (λs, us) satisfies (2.3) for any such s.

Let us show that there is no solution (λ, u) ∈ R × (H \ {0}) to (2.3) in a neighbourhood

of (λ0, 0) except of those (λs, us) lying on the smooth branch mentioned. By contradiction, let

us have (λn, un) ∈ R × (H \ {0}) satisfying (2.3), (λn, un) → (λ0, 0), (λn, un) 6= (λs, us) for all

s ∈ (0, s0), wn := un

‖un‖ ⇀ w. Since A is compact and G satisfies (4.6), standard considerations

of the bifurcation theory for variational inequalities give wn → w ∈ K and (λ0, w) satisfies

(2.4) (see e.g. [17] or [19]). Due to the simplicity of λ0 we obtain w = u0, see Lemma 4.1.

It follows that (λ, u) = (λn, un) for n large satisfy (4.21) (with η from Lemma 4.9). Hence,

Lemma 4.9 implies that un(x, 0) < 0 on (γ1 − µ, γ2 + µ) for n large enough, and such (λn, un)

satisfy also (4.3). The properties of the bifurcation branch for the problem (4.3) mentioned

at the beginning of the proof gives that for any n large enough there is s ∈ (0, s0) such that

(λn, un) = (λs, us) (negative s are excluded by the fact that u0 /∈ (−K)). This contradiction

proves our assertion.

Since us − λsAus −G(λs, us) = 0 for all s ∈ (0, s0), we get for the value Λ(s) introduced in

(4.34) (see Remark 4.10)

Λ(s) = lim supw+us∈K, ‖w‖→0
1R

Ω w2 dx dy
〈−w + λsAw + ∂uG(λs, us)w,w〉

≤ supϕ∈H,ϕ 6=0
1R

Ω ϕ2 dx dy
〈−ϕ + λsAϕ + ∂uG(λs, us)ϕ, ϕ〉

= supϕ∈H,ϕ 6=0
1

〈Aϕ,ϕ〉〈−ϕ + λsAϕ + ∂uG(λs, us)ϕ, ϕ〉
= supϕ∈H,ϕ 6=0

〈−ϕ+λsAϕ+∂uG(λs,us)ϕ,ϕ〉
‖ϕ‖2 · ‖ϕ‖2

〈Aϕ,ϕ〉 .

(4.37)

It follows from well-known bifurcation formulas (see, e.g. [15, Sections I.6, I.7]) that the

first eigenvalue −1 + µs of the operator −I + λsA + ∂uG(λs, us) is negative for all small s > 0

if and only if λs > λ0 for all small s > 0. In particular, we have

−1 + µs < 0 (4.38)
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under the assumption (3.12) (cf. Theorem 3.1). It follows from (4.35), (4.38), (4.36) that the

last term in (4.37) can be estimated by

sup
ϕ∈H,ϕ 6=0

(−1 + µs) ·
‖ϕ‖2

〈Aϕ, ϕ〉
= (−1 + µs) inf

ϕ∈H,ϕ 6=0

‖ϕ‖2

〈Aϕ, ϕ〉
= (−1 + µs)λ0 < 0.

Hence, Λ(s) < 0 for all small s > 0, and the asymptotical stability of us as a solution of our

variational inequality (4.1) follows from Remark 4.10.

Theorem 4.12 Let λ0 be the smallest eigenvalue of the variational inequality (2.4). Then the

trivial solution of (4.1) is asymptotically stable in the norm of the space W 1,2(Ω) for λ < λ0

and unstable for λ > λ0.

Remark 4.13 We will use again the stability criterion for variational inequalities [20, Theo-

rem 1], which gives for our situation the following assertion (cf. also Remark 4.10). If

Λ̃(λ) := sup
u∈K

1∫
Ω

u2 dx dy
〈−u + λAu, u〉 = sup

u∈K

(
−

∫
Ω
|∇u|2 − λu2 dx dy∫

Ω
u2 dx dy

)
< 0 (4.39)

then the trivial solution of (4.1) is asymptotically stable in the W 1,2(Ω) norm.

On the other hand, [20, Theorem 2] implies for our situation that if Λ̃(λ) > 0 then the trivial

solution of (4.1) is unstable. Let us emphasize that in this second assertion it is important that

K is the cone with its vertex at the origin, and therefore cannot be used for the proof of instability

of us, because the corresponding set K − us is not a cone with its vertex at the origin.

Proof of Theorem 4.12. Due to the variational characterization of the smallest eigenvalue

λ0 of (2.4) (see (4.9) in the proof of Lemma 4.1) we have

Λ̃(λ) = sup
u∈K,u6=0

−‖u‖2

〈Au, u〉
+ λ = −λ0 + λ.

Our assertion follows by using Remark 4.13.
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