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Motto

Johann von
Neumann
[1903-1957]

In mathematics you don’t
understand things. You
just get used to them.
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Possible stumbling blocks of a model

A complicated
mathematical
theory [Is it really
worth it?]

model does not reflect
the real situation

model is not
well-posed

numerical method
does not give us the
right solutions

computer
implementation does
not yield the
“expected” results
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Fluids in motion

honey beer tornado

Sun

plane



Fluids in the real world

wheather prediction

ships, planes, cars,
trains

astrophysics, gaseous
stars

rivers, floods, oceans,
tsunami waves

human body, blood
motion

Mathematical issues

Modeling

Analysis of models, well-posedness, stability, determinism (?)

Numerical analysis and implementations, computations
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Do we need mathematics?

Luc Tartar
[Compensation
effects in partial
differential
equations]

What puzzles me more
is the behaviour of
people who have failed
to become good
mathematicians and
advocate using the
language of engineers ...
as if they were not aware
of the efficiency of the
engineering approach
that one can control
processes that one does
not understand at all
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Good models?

Stephen William
Hawking [*1942]

A model is a good model if
it:

Is elegant

Contains few arbitrary
or adjustable elements

Agrees with and
explains all existing
observation

Makes detailed
predictions about
future observations
that disprove or falsify
the model if they are
not borne out
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Mathematical modeling of fluids in motion

Molecular dynamics

Fluids understood as huge families of individual particles (atoms,
molecules)

Kinetic models

Large ensembles of particles in random motion, description in terms of
averages

Continuum fluid mechanics

Phenomenological theory based on observable quantities - mass
density, temperature, velocity field

Models of turbulence

Essentially based on classical continuum mechanics but description in
terms of averaged quantities



Conservation/balance laws

total amount at time t2∫
B

D(t2, x) dx

minus

−
total amount at time t1∫

B
D(t1, x) dx

conservation/balance
=

boundary flux

-
∫ t2
t1

∫
∂B

F · n dSx dt

plus

+

sources∫ t2
t1

∫
B

s dx dt



Conservation laws as PDE’s

Limit processes

t2 → t1, B = Bx → x

Field equation

∂

∂t
D + divxF = s

Constitutive relations

F = F(D), s = s(D)

Conclusion

The resulting equations are partial differential equations with
nonlinear dependence of fields



Millennium problems (?)

Clay Mathematics Institute, Providence, RI

Birch and Swinnerton-Dyer Conjecture

Hodge Conjecture

Navier-Stokes Equation

P vs NP Problem

Poincaré Conjecture

Riemann Hypothesis

Yang-Mills and Mass Gap
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Navier-Stokes system - Millenium Problem

u = u(t, x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . fluid velocity
Π = Π(t, x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . pressure

Claude Louis Marie
Henri Navier [1785-1836]

“Incompressibility”

divxu = 0

Balance of momentum

∂tu + divx(u⊗ u) +∇xΠ = ∆xu

George Gabriel Stokes
[1819-1903]



Linear vs. nonlinear models

Linear equations

Solutions built up from elementary functions - modes

Solvability by means of the symbolic calculus - Laplace and
Fourier transform

Limited applicability

Nonlinear equations

Explicit solutions known only exceptionally: solitons, simple
shock waves

Possible singularities created by nonlinearity - blow up and/or
shocks

Almost all genuine models are nonlinear
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Solvability - classical sense

Jacques
Hadamard, [1865 -
1963]

Existence. Given problem is
solvable for any choice of
(admissible) data

Uniqueness. Solutions are uniquely
determined by the data

Stability. Solutions depend
continuously on the data
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Solvability - modern way

Jacques-Louis
Lions, [1928 - 2001]

Approximations. Given problem
admits an approximation scheme
that is solvable analytically and,
possibly, numerically

Uniform bounds. Approximate
solutions possesses uniform bounds
depending solely on the data

Stability. The family of
approximate solutions admits a limit
representing a (generalized) solution
of the given problem
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State of the art

Jean Leray [1906-1998]
Global existence of the
so-called weak solutions
for the incompressible
Navier-Stokes system (3D)

Olga Aleksandrovna
Ladyzhenskaya
[1922-2004] Global
existence of classical
solutions for the
incompressible 2D
Navier-Stokes system

Pierre-Louis Lions[*1956] Global existence of weak
solutions for the compressible barotropic Navier-Stokes
system (2,3D)

and many, many others...
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Things may go wrong

Blow-up singularities - concentrations

Solutions become large (infinite) in a finite time.
There is too much energy pumped in the system

Shock waves - oscillations

Shocks are singularities in “derivatives”.
Originally smooth solutions become discontinuous in a
finite time

“Bad” nonlinearities

∂tU = U2 , ∂tU + U∂xU = 0
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Euler system (compressible inviscid)

u = u(t, x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . fluid velocity

% = %(t, x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . density

Leonhard Paul Euler
[1707-1783]

Mass conservation

∂t%+ divx(%u) = 0

Balance of momentum

∂t(%u) + divx(%u⊗ u) +∇xp(%) = 0
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Back to integral averages

Pointwise (ideal) values of functions are replaced by their integral
averages. This idea is close to the physical concept of measurement

u ≈
[
ϕ 7→

∫
uϕ

]
Derivatives in the equations replaced by integrals:

∂u

∂x
≈
[
ϕ 7→ −

∫
u∂xϕ

]
, ϕ a smooth test function

Example

Dirac distribution: δ0 : ϕ 7→ ϕ(0)
Paul Adrien Maurice
Dirac [1902-1984]

Eduard Feireisl Fluids in motion



Oscillations vs. nonlinearity

Oscillatory solutions - velocity

U(x) ≈ sin(nx), U → 0 in the sense of avarages (weakly)

Oscillatory solutions - kinetic energy

1

2
|U|2(x) ≈ 1

2
sin2(nx) → 1

4
6= 1

2
02 in the sense of avarages (weakly)
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Do some solutions lose/produce energy?

Rudolph Clausius,
[1822–1888]

First and Second law of thermodynamics

Die Energie der Welt ist constant; Die Entropie der
Welt strebt einem Maximum zu

Mechanical energy balance for compressible fluid

classical:
d
dt

∫
1

2
%|u|2 + P(%) dx = 0, P(%) = %

∫ %

1

p(z)

z2
dz

weak:
d
dt

∫
1

2
%|u|2 + P(%) dx ≤ 0
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Compressible Euler system - the state-of-art

Existence

Global-in-time solutions (in general) do not exist. Weak solutions
may exist but may not be uniquely determined by the initial data.

Mechanical energy

E =
1

2
%|u|2 + P(%)

Admissibility criteria - mechanical energy dissipation

∂tE + divx(Eu + p(%)u) ≤ 0
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Wild solutions?

Charles Hermite
[1822-1901]

In a letter to Stieltjes

I turn with terror and horror from this lamentable
scourge of continuous functions with no
derivatives

Past: What is not allowed is forbidden

Present: What is not forbidden is allowed
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Bad or good news for compressible Euler?

Camillo DeLellis [*1976]

Existence

Good news: There exists a global-in-time weak
solution of compressible Euler system for “any” initial
data
Bad news: There are infinitely many...

Admissible solutions?

Good news: Most of the “wild” solutions produce
energy.
Bad news: There is a vast class of data for which
there exist infinitely many admissible solutions László Székelyhidi

[*1977]

Viscosity solutions or maximal dissipation?

The “correct” solutions “should be” identified as limits of the
viscous system



Basic ideas of De Lellis and Székelyhidi

Incompressible Euler system

∂tU + divx(U⊗U) +∇xΠ = 0, divxU = 0,N = 2, 3

Equivalent formulation

∂tU + divxV = 0, divxU = 0, U⊗U− 1

N
|U|2I = V

Subsolutions

1

2
|U|2 ≤ N

2
λmax [U⊗U− V] ≡ G (U,V) < e, V ∈ RN×N

0,sym

Solutions

1

2
|U|2 = e ⇒ V = U⊗U− 1

N
|U|2I

Eduard Feireisl Fluids in motion



Oscillatory lemma

Subsolution

∂tU + divxV = 0, |U|2 ≤ G (U,V) < e

Oscillatory perturbation

∂tuε + divxVε = 0, uε,Vε compactly supported

G (U + uε,V + Vε) < e, uε ⇀ 0

lim inf
ε→0

∫
B

|uε|2 ≥
∫

B

Λ (e − G (U,V)) , Λ(Z ) > 0 for Z > 0

⇒

lim inf
ε→0

∫
B

|U + uε|2 ≥
∫

B

|U|2 +

∫
B

Λ (e − G (U,V))
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Typical results

Good news

The set of subsolutions nonempty ⇒ the problem possesses a
global-in-time solution for any initial data

Bad news

The problem possesses infinitely many solutions for any initial data

What’s wrong? ... more bad news

“Many” solutions violate the energy conservation but there is a
“large” set of initial data for which the problem admits infinitely
many energy conserving (dissipating) solutions



Oscillatory lemma with continuous coefficients

E. Chiodaroli, EF et al.

Hypotheses:

U ⊂ R × RN , N = 2, 3 bounded open set

h̃ ∈ C (U;RN), H̃ ∈ C (U;RN×N
sym,0), ẽ, r̃ ∈ C (U), r̃ > 0, ẽ ≤ e in U

N

2
λmax

[
h̃⊗ h̃

r̃
− H̃

]
< ẽ in U.



Conclusion:

wn ∈ C∞c (U;RN), Gn ∈ C∞c (U;RN×N
sym,0), n = 0, 1, . . .

∂twn + divxGn = 0, divxwn = 0 in R × RN ,

N

2
λmax

[
(h̃ + wn)⊗ (h̃ + wn)

r̃
− (H̃ + Gn)

]
< ẽ in U,

wn → 0 weakly in L2(U;RN)

lim inf
n→∞

∫
U

|wn|2

r̃
dxdt ≥ Λ(e)

∫
U

(
ẽ − 1

2

|h̃|2

r̃

)2

dxdt
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Basic ideas of proof

Localization

Localizing the result of DeLellis and Széhelyhidi to “small” cubes by
means of scaling arguments

Linearization

Replacing all continuous functions by their means on any of the
“small” cubes

Eliminating singular sets

Applying Whitney’s decomposition lemma to the non-singular sets
(e.g. out of the vacuum {h = 0})

Energy and other coefficients depending on solutions

Applying compactness of the abstract operators in C



Abstract formulation

Variable coefficients “Euler system”

∂tv + divx

(
(v + H[v])� (v + H[v])

h[v]
+ M[v]

)
= 0

divxv = 0,

v �w = v ⊗w − 1

2
v ·wI

Kinetic energy

1

2

|v + H[v]|2

h[v]
= E [v]

Data

v(0, ·) = v0, v(T , ·) = vT



Abstract operators

Boundedness

b maps bounded sets in L∞((0,T )× Ω; RN) on bounded sets in
Cb(Q,R

M)

Continuity

b[vn] → b[v] in Cb(Q;RM) (uniformly for (t, x) ∈ Q )

whenever

vn → v in Cweak([0,T ]; L2(Ω; RN))

Causality

v(t, ·) = w(t, ·) for 0 ≤ t ≤ τ ≤ T implies b[v] = b[w] in [(0, τ ]× Ω]



Results

Result (A)

The set of subsolutions is non-empty ⇒ there exists infinitely many
weak solutions of the problem with the same initial data

Initial energy jump

1

2

|v0 + H[v0]|2

h[v0]
< lim inf

t→0

1

2

|v + H[v]|2

h[v]

Result (B)

The set of subsolutions is non-empty ⇒ there exists a dense set of
times such that the values v(t) give rise to non-empty subsolution
set with

1

2

|v0 + H[v0]|2

h[v0]
= lim inf

t→0

1

2

|v + H[v]|2

h[v]
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Example I: Savage-Hutter model for avalanches

Unknowns

flow height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . h = h(t, x)
depth-averaged velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . u = u(t, x)

∂th + divx(hu) = 0

∂t(hu) + divx(hu⊗ u) +∇x(ah
2) = h

(
−γ u

|u|
+ f

)

Periodic boundary conditions

Ω =
(
[0, 1]|{0,1}

)2



Results Savage-Hutter model

Theorem (with P.Gwiazda and A.Swierczewska-Gwiazda
[2015])

(i) Let the initial data

h0 ∈ C 2(Ω), u0 ∈ C 2(Ω;R2), h0 > 0 in Ω

be given, and let f and a be smooth.
Then the Savage-Hutter system admits infinitely many weak
solutions in (0,T )× Ω.

(ii) Let T > 0 and
h0 ∈ C 2(Ω), h0 > 0

be given.
Then there exists

u0 ∈ L∞(Ω; R2)

such that the Savage-Hutter system admits infinitely many weak
solutions in (0,T )× Ω satisfying the energy inequality.



Example II, Euler-Fourier system

(joint work with E.Chiodaroli and O.Kreml [2014])

Mass conservation

∂t%+ divx(%u) = 0

Momentum balance

∂t(%u) + divx(%u⊗ u) +∇x(%ϑ) = 0

Internal energy balance

3

2

[
∂t(%ϑ) + divx(%ϑu)

]
−∆ϑ = −%ϑdivxu



Example III, Euler-Korteweg-Poisson system

(joint work with D.Donatelli and P.Marcati [2014])

Mass conservation - equation of continuity

∂t%+ divx(%u) = 0

Momentum equations - Newton’s second law

∂t(%u) + divx(%u⊗ u) +∇xp(%)

= %∇x

(
K (%)∆x%+

1

2
K ′(%)|∇x%|2

)
− %u + %∇xV

Poisson equation

∆xV = %− %



Example IV, Euler-Cahn-Hilliard system

Model by Lowengrub and Truskinovsky

Mass conservation

∂t%+ divx(%u) = 0

Momentum balance

∂t(%u)+divx(%u⊗u)+∇xp0(%, c) = divx

(
%∇xc ⊗∇xc −

%

2
|∇xc |2I

)
Cahn-Hilliard equation

∂t(%c) + divx(%cu) = ∆

(
µ0(%, c)− 1

%
divx (%∇xc)

)



Example V, models of collective behavior

(joint work with J.A. Carrillo, P.Gwiazda, A.Swierczewska–Gwiazda)

Mass conservation

∂t%+ divx(%u) = 0

Momentum balance

∂t(%u) + divx(%u⊗ u)

= −∇xp(%) +
(
1− H

(
|u|2
))
%u

−%∇xK ∗ %+ %ψ ∗
[
%
(
u− u(x)

)]



Measure-valued solutions

Young measures

U(t, x) ≈ νt,x [U]

ν(B),B ⊂ R3 probability that U belongs
to the set B Laurence Chisholm

Young [1905-2000]

Siddhartha Mishra

Numerical results

Certain numerical solutions of “inviscid”
problems exhibit scheme independent
oscillatory behavior



What to do?

However beautiful the
strategy, you should
occasionally look at the
results...
Sir Winston Churchill
[1874-1965]
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Some good news to finish...

Navier-Stokes system

Wild oscillatory solutions are (sofar) not known for problems
with viscosity, in particular, the Navier-Stokes system
(compressible/incompresible)

Most of the used numerical schemes is based on viscous
approximation, at least implicitly

What we compute is mostly the correct solution (??)

Synergy analysis-numerics

Certain numerical schemes converge to weak solutions

Convergence is unconditional and even error estimates are
available if the limit solution is smooth

Bounded weak solutions are smooth

Bounded solutions of the numerical scheme converge (with
error estimates) to the smooth solution


