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WEIGHTED ITERATED HARDY-TYPE INEQUALITIES

AMIRAN GOGATISHVILI AND RZA CH. MUSTAFAYEV

(Communicated by L. Pick)

Abstract. In this paper reduction and equivalence theorems for the boundedness of the compo-
sition of a quasilinear operator 7" with the Hardy and Copson operators in weighted Lebesgue
spaces are proved. New equivalence theorems are obtained for the operator 7' to be bounded in
weighted Lebesgue spaces restricted to the cones of monotone functions, which allow to change
the cone of non-decreasing functions to the cone of non-increasing functions and vice versa not
changing the operator 7'. New characterizations of the weighted Hardy-type inequalities on the
cones of monotone functions are given. The validity of so-called weighted iterated Hardy-type
inequalities are characterized.

1. Introduction

The well-known two-weight Hardy-type inequalities

(/000 (/(ff(ﬂdr) qW(x)dx> . < C</0mf”(x)v(x)dx) v (1.1)
(/000 (./xwf(r)dr> qw(x) dx) . < C(/wal’(x)v(x) dx) v (1.2)

for all non-negative measurable functions f on (0,e), where 0 < p, g < oo with ¢
being a constant independent of f, have a broad variety of applications and repre-
sents now a basic tool in many parts of mathematical analysis, namely in the study of
weighted function inequalities. For the results, history and applications of this problem,
see [34, 36, 33].

Throughout the paper we assume that I := (a,b) C (0,0). By (/) we denote
the set of all measurable functions on 7. The symbol 9 (I) stands for the collection
of all f € 9(I) which are non-negative on 1, while 9" (7;]) and 9" (I;7) are used
to denote the subset of those functions which are non-increasing and non-decreasing
on I, respectively. When I = (0,0), we write simply 9+, 9t} and M instead of
M (1), Mt (I;]) and M*(1;7), accordingly. The family of all weight functions (also
called just weights) on 1, that is, locally integrable non-negative functions on (0,), is
given by #/(I).

and
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For p € (0,00] and w € MM (I), we define the functional ||-||,,.; on () by

_ S If@Pw) )P i p <o
7 ”"*W”“{ esssupy /(9 lw(x) i p—os

If, in addition, w € #/(I), then the weighted Lebesgue space L”(w,I) is given by
LP(w,d) ={f € M) = |[fllpaws < oo},

and it is equipped with the quasi-norm || - || .z

When w =1 on I, we write simply L(I) and || - ||, instead of L”(w,I) and
I |l pw. > respectively.

Suppose f is a measurable a.e. finite function on R”. Then its non-increasing
rearrangement f* is given by

F@):=inf{A >0: [{xeR": |[f(x)] > A} <t}, 1€(0,00),

and let f** denotes the Hardy-Littlewood maximal function of f*,i.e.

1 t
f**(t)iz;/of*(r)dr, t>0.

Quite many familiar function spaces can be defined using the non-increasing rearrange-
ment of a function. One of the most important classes of such spaces are the so-called
classical Lorentz spaces.

Let p € (0,00) and w € # . Then the classical Lorentz spaces A”(w) and I'”(w)
consist of all functions f € 9 for which || || ap(,) < oo and || f]|rp () < oo, respectively.
Here it is

1F largwy == [1F7]

For more information about the Lorentz A and I" see e.g. [11] and the references
therein.

There has been a considerable progress in the circle of problems concerning char-
acterization of boundedness of classical operators acting in weighted Lorentz spaces
since the beginnig of the 1990s. The first results on the problem A”(v) — I'?(v),
1 < p < o0, which is equivalent to inequality (1.1) restricted to the cones of non-
increasing functions, were obtained by Boyd [5] and in an explicit form by Arifio and
Muckenhoupt [3]. The problem with w v and p # g, 1 < p,q < o was first suc-
cessfully solved by Sawyer [40]. Many articles on this topic followed, providing the
results for a wider range of parameters. In particular, much attention was paid to in-
equalities (1.1) and (1.2) restricted to the cones of monotone functions; see for instance
[3. 4, 12, 10, 15, 22, 23, 27, 26, 24, 25, 28, 29, 30, 31, 32, 35, 37, 40, 43, 45, 47, 46],
survey [1 1], the monographs [33, 34], for the latest development of this subject see [27],
and references given there. The restricted operator inequalities may often be handled
by the so-called “reduction theorems”. These, in general, reduce a restricted inequality
into certain non-restricted inequalities. For example, the restriction to non-increasing or

pw,(0,00) and ”fHFP(w) = Hf**”pw,(o,w)'
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quasi-concave functions may be handled in this way, see e.g. [42, 24, 25, 26, 27]. At the
initial stage the main tool was the Sawyer duality principle [40], which allowed one to
reduce an L? — LY inequality for monotone functions with 1 < p, g < e to a more man-
ageable inequality for arbitrary non-negative functions. This principle was extended by
Stepanov in [46] to the case 0 < p < 1 < g < e. In the same work, Stepanov applied
a different approach to this problem, so-called reduction theorems, which enabled to
extend the range of parametersto 1 < p < oo, 0 < g <oo. Thecase p<qg,0<p <1
was alternatively characterized in [46, 47, 12, 8, 35]. Later on some direct reduction
theorems were found in [23, 10, 27] involving supremum operators which work for the
case 0 <g<p<l1.
Given an operator T : M+ — 9MMT, for 0 < p < oo and u € MM ™, denote by

Tpulg) = (T(g"w))'/?,  gem™.

Hence Ty =T . When p =1, we write T, instead of 77 .
Denote by

1
Hg(t) r=/g(8)ds, geMm’,
0
and .
H*g(1) 1=/ g(s)ds,  geM",
Jt

the Hardy operator and Copson operator, respectively.

In the paper we prove reduction and equivalence theorems for the boundedness
of the composition operators T o H or T o H* of a quasiliear operator T : 9™ — 9"
with the operators H and H* in weighted Lebesgue spaces. To be more precise, we
consider inequalities

X
HT(/ h) H < cllhllsp00), heMT, (1.3)
J0 B.w,(0,00) o

and

HT</ h>H chhHs,\@(OpO)a hem". (L.4)
x ﬁ‘w‘(o‘oo>

Using these equivalence theorems, in particular, we completely characterize the validity
of the iterated Hardy-type inequalities

()
()

where 0 < p < oo, 0 < g< oo, | <s<oo, u, wand v are weight functions on (0,00).
It is worth to mentoin that the characterizations of “dual” inequalities

()

<clhllsom), heM" (1.5)
gw.(0.20)

and

sc ||h||s7v,(0,oo)v he m+7 (1.6)
q:w,(0,00)

< CHhHs,w(OpO)v hem* (1.7)
q:w,(0,)
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(1)

can be easily obtained from the solutions of inequalities (1.5)—(1.6), respectively, by
change of variables.

In the case when p = 1, using the Fubini Theorem, inequalities (1.5) and (1.6) can
be reduced to the weighted L* — L? boundedness problem of the Volterra operator

and

<cllh|
q:w,(0,%0)

s (00e)s  HEMT (1.8)

(k) () = [ Kxenh()dy, x>0,

with the kernel .
k(x,y) = / u(t)d, 0<y<x<oo,
y

and the Stieltjes operator

[ h(r)at
)= | G o

respectively, and consequently, can be easily solved. Indeed:
By the Fubini Theorem, we see that

/Ox </Olh(1:)d1:> u(t)dr = /Oxk(x, T)h(t)dt, heM".

On the other hand, it is easy to see that

/Ox (/tmh(S) ds) u(t)dt ~U(x)-S(hU)(x), heM*.

Note that the weighted L* — L? boundedness of Volterra operators K, that is, in-
equality
KA gi(0.00) < CllBll s (0,00, 7 EMT, (1.9)

is completely characterized for 1 < s < oo, 0 < g < oo (see [27] and references given
there).
The usual Stieltjes transform is obtained on putting U (x) = x. In the case U(x) =
xl, A > 0, the boundedness of the operator S between weighted L* and L7 spaces,
namely inequality
HSh”q,w,(O,M) < CHhHS,V,((),M)u he eru (1.10)

was investigated in [2] (when 1 <s < g < oo),in[41] (when 1 < g <s <o), in[13] (see
also [14]) (when 1 < s < oo, 0 < g < ), where the result is presented without proof.
This problem also was considered in [16] and [20, 21], where completely different
approach was used, based on the so called “gluing lemma” (see also [17]). It is proved
in [19] (when 1 < s < oo, 0 < g < o) that inequality (1.10) holds if and only if

(L)

L cl|hU ||y (0,00) hEMT, (1.11)
q.U™9w,(0,00)
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holds, and the solution of (1.10) is obtained using characterization of inequality (1.11).

Note that inequality (1.6) has been completely characterized in [18] and [19] in
the case 0 < p < oo, 0 < g < oo, 1 <5< oo by using difficult discretization and anti-
discretization methods. Another approach to get the characterization of inequalities
(1.5)—(1.6) and (1.7)—(1.8) was presented in [38] and [39]. Our approach is different,
we are reducing the unknown problem to the known one.

We pronounce that the characterizations of inequalities (1.5)—(1.6) and (1.7)—(1.8)
are important because many inequalities for classical operators can be reduced to them
(for illustrations of this important fact, see, for instance, [19]). These inequalities play
an important role in the theory of Morrey-type spaces and other topics (see [6, 7] and
[9]). It is worth to mention that using characterizations of weighted Hardy inequalities
we can show that the characterization of the boundedness of bilinear Hardy inequalities,
namely of the inequality

1711 128l g, 0.00) < €IS N pr v (0,00) 1811 oo (0.00) (1.12)

for all f € LP1(vy,(0,00)) and g € LP2(vy,(0,00)) with constant ¢ independent of f
and g, where T; = HorH"*, i =1, 2, are equivalent to inequalities (1.5)—(1.6) and (1.7)
- (1.8) (see, for instance, [1]).

It is well-known that when T is an integral operator then by substitution of vari-

ables it is possible to change the cone of non-decreasing functions to the cone of non-
increasing functions and vice versa, when considering inequalities

IT Fllg o (0.00) < lfllsmi0)s  f € ML, (1.13)

and

ITf]

B (00) <l f im0y fEM, (1.14)

but this procedure changes T also as usually to the “dual” operator. Theorems proved
in Section 4 allows to change the cones to each other not changing the operator 7. This
new observation enables to state that if we know solution of one inequality on any cone
of monotone functions, then we can characterize the inequality on the other cone of
monotone functions.

The paper is organized as follows. Section 2 contains some preliminaries along
with the standard ingredients used in the proofs. In Section 3 we prove the reduction and
equivalence theorems for the boundedness of the composition operators 7 o H or T o
H* in weighted Lebesgue spaces. In Section 4 the equivalence theorems which allow
to change the cones of monotone functions to each other not changing the operator
T are proved. In Section 5 we obtain new characterizations of the weighted Hardy-
type inequalities on the cones of monotone functions. In Section 6 we give complete
characterization of inequalities (1.5)—(1.6) and (1.7)—(1.8).
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2. Notations and preliminaries

Throughout the paper, we always denote by ¢ or C a positive constant, which is
independent of main parameters but it may vary from line to line. However a constant
with subscript or superscript such as ¢; does not change in different occurrences. By
a<Sb, (b2 a)wemean that @ < Ab, where A > 0 depends on inessential parameters.
If a <b and b < a, we write a ~ b and say that a and b are equivalent. We will denote
by 1 the function 1(x) = 1, x € (0,00). Unless a special remark is made, the differ-
ential element dx is omitted when the integrals under consideration are the Lebesgue
integrals. Everywhere in the paper, u, v and w are weights.

CONVENTION 2.1. We adopt the following conventions:

e Throughout the paper we put 0-c0 =0, co/co =0 and 0/0=0.
o If pe[l,+o0|, we define p’ by 1/p+1/p' =1.
e [f0<g< p<eo,wedefine rby 1/r=1/q—1/p.

e If ] =(a,b) CR and g is monotone function on I, then by g(a) and g(b) we
mean the limits lim, ., g(x) and lim,_;_ g(x), respectively.

To state the next statements we need the following notations:
U(t):= fqu, Udt):=["u,
V()= [§v,  Vilt) = [T,
W(t) = [dw,  Wilt):= ["w.

In this paper we consider operators T : 9T — 9™ satisfying the following con-
ditions:

(i) T(Af) =ATf forall AL >0 and f€9M";

(ii) Tf(x) < cTg(x) for almost all x € Ry if f(x) < g(x) for almost all x € Ry,
with constant ¢ > 0 independent of f and g;

(i) T(f+g) <c(Tf+Tg) forall f, g€ IM", with a constant ¢ > 0 independent
of fand g.

We recall some known results from [27]. Our formulations of the following theo-
rems, which are more convenient for our future applications, are not exactly the same
as in the mentioned paper. But by following the proofs of these theorems in [27], it is
not difficult to see that such formulations are also true.

THEOREM 2.2. Let 0 < B <ooand 1 <s<oo, andlet T : MT — M satisfies
conditions (1)-(iii). Then the inequality

ITf]

B (000) < I fllsm(00)y f €M (2.1)
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holds if and only if both the inequality

([ <iaonn pem a2
o B.w,(0,) ' o

and

”Tl”ﬁ,w,(o,oo) < CHle,v,(O,M) (2-3)
hold.

THEOREM 2.3. Let 0 < B < oo and 1 < s <0, and let T : M+ — IM™T satisfies
conditions (1)—(iii). Then inequality (2.1) holds if and only if the inequality
(e [ Il *
T-——/JNN <ellhllis g, hEM (2.4)
V2(x) Jo Bw(0,00) v 0)

holds.

THEOREM 2.4. Let 0 < B < oo and 1 < s <0, and let T : M — IM" satisfies
conditions (1)—(iii). Then the inequality

ITf]

Bw,(0,00) < CHsty,(O,oo)u f € {);)’IT (25)
holds if and only if both the inequality
X
([0 <ellasgn, nem 26)
70 Bw,(0,00) ' o
and (2.3) hold.

THEOREM 2.5. Let 0 < B <ooand 1 <s<oo, andlet T : MT — M satisfies
conditions (1)—(iii). Then inequality (2.5) holds if and only if the inequality

(e [ )

<cllhllg s (0u)y hEMT (2.7)
ﬁ,W,(O,m)

holds.

REMARK 2.6. If f(f’ v = oo, then condition (2.3) automatically holds, and in this
case this condition disappears in the statements of Theorems 2.2 and 2.4.

Note that Theorems 2.2, 2.3, 2.4 and 2.5 were proved in [27] under weaker as-
sumption than (iii): 7(f + A1) < ¢(Tf+AT1) forall f € M' and A >0, with a
constant ¢ > 0 independent of f and A .
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3. Reduction and equivalence theorems

In this section we prove some reduction and equivalence theorems for inequalities
(1.3) and (1.4).

3.1. Thecase 1 <s < oo

The following theorem allows to reduce the iterated inequality (1.3) to the inequal-
ity on the cone of non-increasing functions. We give the proofs in all theorems only in
the case when 0 < B < oo, for the case B = oo is treated similarly.

THEOREM 3.1. Let 0 < B < oo, 1 <5< oo, and let T : M — M" sarisfies
conditions (1)—(iii). Assume that u,w € #'(0,0) and v € #'(0,0) is such that

X !
/ VIS (1)dt < oo forall x> 0. (3.1
0
Then inequality (1.3) holds iff

I T2 116w, 0.00) < €l flls. (0.5 S € D (3.2)

holds, where

and 1

D(x) = P[v;s] (x) = /Oxgb(t)dt = </0xvlsl(t)dt) o

Proof. Note that ® ¢!~ ~ v. Inequality (1.3) is equivalent to the inequality

Obviously, (3.3) is equivalent to

By Theorem 2.3, inequality (3.4) is equivalent to

1 X
T. 2<—/ h)H <C hl|. —sh1—5 (). 0o ,h€m+. (33)
[} CI)Z()C) 0 Ban(000) ” ”s,d) ¢175,(0,00)

1 "X
Tz(—/ hd))H el o s h € IME. (3.4)
e CDZ(X).O Ban(00) ” ||s,(p ,(0,00)

T2 f 1| g an(0.00) < €Il ll5.6,(000)s S € M.

This completes the proof. [

We immediately get the following equivalence statements.



WEIGHTED ITERATED HARDY-TYPE INEQUALITIES 691
COROLLARY 3.2. Let 0< B <o, 1 <5<o0, 0< 8 <5, andlet T : Mt — I

satisfies conditions ()—(iii). Assume that u,w € #(0,0) and v € #'(0,00) is such that
(3.1) holds. Then inequality (1.3) holds iff both

- 1/8
w({ ) <blgsgsopem, a9
I Bow(0.20) ' o

and

| T2 (1)1 8 11 (0,00) < €L, (0,00 (3.6)

hold.

Proof. By Theorem 3.1, inequality (1.3) is equivalent to

|52 f1lg 0.0 < €l Flls.0. (0005 f € DR 3.7
Since (3.7) is equivalent to
IT Fllg /6 10.00) < 1Iflls/6.6.(0) f € T, (3.8

with s
T(f) = {Ta ()}
it remains to apply Theorem 2.2. [J
COROLLARY 3.3. Let 0<fB <o, 1 <5<o0, 0< 8 <5, andlet T : Mt — IN*

satisfies conditions (i)—(iii). Assume that u, w € # (0,) and v € #'(0,00) is such that
(3.1) holds. Then inequality (1.3) holds iff

x 1/6
w({[0))

Proof. By Theorem 3.1, inequality (1.3) is equivalent to

< ellhl grvs gy hEME (3.9)
ﬁ ’W’(O’m)

holds.

1 T2 11 g s (0,.00) < €Il fl5,0,(0,00)> S € M. (3.10)
We know that (3.10) is equivalent to
IT£1lg /600 < 11 flls/6.6,0.00)5 f € MM, (3.11)

with s
T(f) = {Tea (%)}
By Theorem 2.3, we see that (3.11) is equivalent to

- 1 x
T —/ h@)H SRy 5.01-575 0.0y B EIME. (3.12)
H <‘I’2(x) 0 B3 .,(0,00) [8:917%,(0)



692 A. GOGATISHVILI AND R. CH. MUSTAFAYEV

To complete the proof it suffices to note that (3.12) is equivalent to (3.9). [

The following “dual” version of the reduction and equivalence statements also
hold true and may be proved analogously.

THEOREM 3.4. Let 0 < B < oo, 1 <5< oo, and let T : M — M" sarisfies
conditions (1)-(iii). Assume that u,w € #(0,) and v € #(0,) is such that

/ W () dt <o forall x> 0. (3.13)
X
Then inequality (1.4) holds iff

T2 f11B.w(00) < €[]

sw (00, fEM! (3.14)

holds, where

'

v = wlislo = ([ war) T

and 1

sT+1

Y(x) = [vis] (x) := /: y(t)dt = (/:vl“'/(t)dt)

COROLLARY 3.5. Let 0< B <o, 1 <5<o0, 0< 8 <s,andlet T : Mt — IN*
satisfies conditions (i)—(iii). Assume that u,w € #(0,0) and v € #'(0,00) is such that
(3.13) holds. Then inequality (1.4) holds iff both

o N1/8
T\Pz({ / hé} )H <C”hHs\{m/tsq,lﬂ/a (Om),hef)ﬁ+7 (3.15)
70 B,w,(0,00) ’ Y

and
(| Ty21|

B (00) < €[5y, (0.00) (3.16)

hold.

COROLLARY 3.6. Let 0 <3 < oo, I <s5<o0, 0< 8 <5, andlet T : M+ — IMT
satisfies conditions (i)-(iii). Assume that u, w € # (0,) and v € #'(0,00) is such that
(3.13) holds. Then inequality (1.4) holds iff

T,

- 1/8
el

Let us mention here that on using Corollaries 3.2 and 3.3, as well as Corollaries 3.5
and 3.6, the characterizations of inequalities (1.5)—(1.8) can be reduced to the weighted
L’ — L7 boundedness problem for the Stieltjes or the Volterra operator, when p <'s.

The following theorem allows to reduce the iterated inequality (1.3) to the inequal-
ity on the cone of non-decreasing functions.

S cllhlly yi-5/6 (g om)s 1 € om+ (3.17)
ﬁ,W,(O,m)

holds.
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THEOREM 3.7. Let 0 < B < oo, 1 <5< oo, and let T : M — M" sarisfies
conditions (i)—(iii). Assume that u,w € #(0,00) and v € #'(0,00) is such that (3.1)
holds. Then inequality (1.3) holds iff both

H D2 [v;5]-W2/ 8 [Dv;s]5/0 ¢[v3s]! /8 5/ ) f”ﬁ w,(0,00) \CHf”su/ [vis]/8 @ [vss] L=/ 5/ 8], ( ’fESﬁT
where 0 < 8 <,

(@[ Polvis]'/%s/6] (x)

s/ +(s/8) (s/8) sl (s/8)

o0 1 1+ T 1+ (s/8) X 1+s
~ {/ </ Vls/> le/(l‘)dt} (/ Vls/) Vlfs/ (x),
X 0 0

s+ (s/8)

*Tﬂwﬁm¢wﬂl”§VN09“{/m<Axly) H“vlwnm}ﬁww,

and (3.6) hold.

Proof. By Corollary 3.2, (1.3) holds iff both (3.5) and (3.6) hold. It is easy to see
that (3.5) is equivalent to

[l ()]

Since

W [Dlvis] o vss]=/%:5/6] (1)

< hllyy5@s/551-515 (00 B EMT. (3.18)
B/8,m,(0,5)

/8"
:(/x q)[v;s](s/é)'q)[v;s]) WS)Hcp[v;s]*(s/é)/(x)¢[v;s](x)

_ (/8
(s/8) +1

Q

D[v;s)' =0/ (x) - @[v;s]”s/ﬁ)’(oo)) ®[v;s] O (x)¢ v 5] (x)

/8Y 1-(s/8)' (s/8) s +(s/8)

1—(s
X / I+ o / I+ T (s/8) X N\ /

s +(s/8) (s/8) s +(s/8)

o 4 Y T T (s/8) X T
/ </0 Vls’> lel(l‘)dt} (/O vls’) Vlis,(x),
X

‘P[q)[v;s]s/aq)[v;s]lf‘y/ﬁ;s/ﬁ} (x)

(/ ofv:s] 619 o y; ]>(s/5

1
~ (cb[v;s]”s/ﬁ)’(x) - @[v;s]ws/ay(m)) 7

~
~

and
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1—(s/8) 1-(s/8)

1
X 1+ ° 1+ 1+(s/8)
AU -U0) T
0 0

. _ 4 (s/8) 1

bl - 1+ o 1+(s/8)
[ () oay™
X 0

by Theorem 3.4, we complete the proof. [

COROLLARY 3.8. Let 0 < B < oo, 1 <5< oo, andlet T : MT — IMM™T satisfies
conditions ()-(iii). Assume that u,w € #(0,0) and v € #(0,0) is such that (3.1)
holds. Then inequality (1.3) holds iff both

H D2 [v;s]- WA/5 [D[v;s)2 ¢ [vis] ! ZfHﬁ C|‘f||s7u/[<1>[v;s]2¢[v;s]*l;2],(0,oo)a fe DJTT,

where

w[@v;s)*9[vis] 2] (x)

and (3.6) hold.

Proof. The statement follows by Theorem 3.7 with § =s/2. [

The following “dual” statement also holds true and may be proved analogously.

THEOREM 3.9. Let 0 < B < oo, 1 <s < oo, and let T : MT — M satisfies
conditions (1)—(iil). Assume that u,w € #(0,) and v € # (0,%0) is such that (3.13)
holds. Then inequality (1.4) holds iff both

||T‘{’2vs D2/ 8 [P ;s)5/8 yrlvis]! Y/5s/3f||ﬁw(0 \CHf”s(D Wv;s]s/ S ylvis)1=5/8.5/6],(0 fei)ﬁi
where 0 < 8 <,

o[ Wvis]/Oylvis)' %55/ (x)

s+ (s/8) (s/8) s+ (s/8)

X el / T+ / "I+ (s/0) o0 , T+ /
~ {/O (/t vls) vlfs (l‘)dl‘} </ vls) Vlfs (x)7
X

s+ (s/8)

1
. X ° _ 1+ _ 1+(s/8)
[Wlv;s Oy (vss)! /6;s/5](x)z{/0 </t V! > V! (t)dt} :

and (3.6) hold.
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COROLLARY 3.10. Let 0 < B < oo, 1 <5< oo, and let T : M — IM" sarisfies
conditions (1)—(iil). Assume that u,w € #(0,) and v € # (0,0) is such that (3.13)
holds. Then inequality (1.4) holds iff both

HT\Pz[V;s]'¢4/S[\P[V;S]2W[V;S]7l;z]fHB’yv7(O7oo) < C|‘f||s7¢[‘{’[v;s]2u/[v;s]*l;2],(0,00)7 fe 9:)’{17

where

o [Whvisl wvis] 2] (x) ,
() o

0 ’ 1+ /
~ {/ </ vls) yl=s (t)dt}
0 \Jt
2

@ [Wv:sPylvis]~112] (x) ~ {/()(/tmvl) '”'v“'(z)dr}%,

and (3.6) hold.

PSS

3.2. The case s=1

In this case we have the following results.
THEOREM 3.11. Let 0 < B < o, and let T : M — M satisfies conditions

(i)-(iii). Assume that u,w € # (0,0) and v € # (0,) is such that V(x) < e for all
x > 0. Then inequality

X
HT(/ h)H <cllhllyy-1 (9 ey h €M (3.19)
70 Bow(0.00)

holds iff

”Tvzf”ﬁw,(o,w) < C”f' 1,v,(0,00) 5 f € mi' (320)

Proof. Inequality (3.19) is equivalent to the inequality
<c|lhl|1 (0.0), h € M. (3.21)

1 X
()
‘ A\ V2(x) Jo B (0.00)

By Theorem 2.3, inequality (3.21) is equivalent to (3.20). [

COROLLARY 3.12. Let 0 < B < oo, 0< 8 < 1, and let T : M — IMT sarisfies
conditions (1)-(iii). Assume that u,w € #(0,0) and v € # (0,00) is such that V (x) <
oo for all x > 0. Then inequality (3.19) holds iff both

w({)7)

(T2 (D), (0.00) < cl1]

< CHhH17v1/5v171/67(o7m)= hem’, (3.22)
Bow,(0,%)

and

1,1,(0,00) (3.23)
hold.
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Proof. By Theorem 3.11, inequality (3.19) is equivalent to (3.20). Since (3.20) is
equivalent to

d
[{eu)}| < lsnomy FEM, (24

w,(0,00)

it remains to apply Theorem 2.2. [

COROLLARY 3.13. Let 0 < B < oo, 0< 8 < 1, and let T : MT — M" satisfies
conditions (1)-(iii). Assume that u,w € #(0,0) and v € # (0,0) is such that V (x) <
oo for all x > 0. Then inequality (3.19) holds iff

. 1/8
o ({[74))

Proof. By Theorem 3.11, inequality (3.19) is equivalent to (3.24). By Theorem
2.3, we see that (3.24) is equivalent to
< 1 +
X C HhHl/E,vl’l/a,(O,m)’ h (S Wt . (326)

H {Tvz < {Vz;(x) /oxw} 1/6> }5 B/8.w(0.)

To complete the proof it suffices to note that (3.26) is equivalent to (3.25). [

elllly yi-1/8 (g omyy b € I (3.25)
ﬁ,W,(O,m)

holds.

The following theorem allows to reduce the iterated inequality (3.19) to the in-
equality on the cone of non-decreasing functions.

THEOREM 3.14. Let 0 < B < oo, and let T : MT — M satisfies conditions
(i)-(iii). Assume that u,w € # (0,0) and v € # (0,0) is such that V(x) < e for all
x > 0. Then inequality (3.19) holds iff both

T2 w2s6 17801515 | g a0 < €I N yiioni-176,116) (0 £ €M, (3.27)

where 0 < 8 < 1,

(1/8)

WV S5 18] () ~ (/mv(l/é)fv)1+<1/5>/V(1/5)f(x)v(x),

1
\P[Vl/ﬁvlf(l/é);l/ﬂ(x) ~ (/mv(l/é)'v) 1+(1/5) ,
and (3.23) hold.

Proof. By Corollary 3.12, inequality (3.19) holds iff both (3.22) and (3.23) hold.
It is easy to see that (3.22) is equivalent to

[l ({} )

<l 5 y18,-1/6 oy hEMME. (3.28)
B /8. (0.0%)
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By Theorem 3.4, inequality (3.28) is equivalent to

5
T s s (18 ] H Sl 1/8,1-1/5., ) feml,
H[ y2yp2/s [Vl/évl 1/5,1/5]( ) B/5 (00 ) 1/8,y[V 11/6],(0,00

which is evidently equivalent to (3.27).
It remains to note that

_ (1/5)’

w[VV/31/8. 18] (x (/“’V(l/ayv) (/8 v-(1/8) (X)v(x),

WY -(1/9). 1 /8] (x (/ v-(1/8) ) 7T

COROLLARY 3.15. Let 0 < 8 < oo, and let T : M — IM™ satisfies conditions
(D)-(iii). Assume that u,w € #'(0,00) and v € #(0,0) is such that V(x) < e for all
x > 0. Then inequality (3.19) holds iff both

Tvzw[vzvlgz]q)HBWm) gyt omy £ €T, (3:29)

where

and (3.23) hold.

Proof. The statement follows by Theorem 3.14 with § =1/2. O
The following statement immediately follows from Theorem 3.11.
COROLLARY 3.16. Let 0 < 8 < oo, and let T : M — IM™" satisfies conditions

(D)-(iil). Assume that u,w € #(0,00) and v € #(0,e0) is such that V,(x) < oo for all
x>0 and V,(0) = oo. Then inequality

()

HTV[2f||ﬁ7Wx(Ox°°) <

<cllhll 1y, (0.0, h € MT (3.30)

ﬁ‘rw3(03 )

holds iff
000 [ €M (3.31)

holds.
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-1
Xy
V*(X):(/O V_*Z) , x>0,

it remains to apply Theorem 3.11. [J

Proof. Since

COROLLARY 3.17. Let 0 < B < oo, 0< 8 < 1, and let T : M — IMT satisfies
conditions (i)-(iii). Assume that u,w € #(0,0) and v € # (0,0) is such that V. (x) <
oo for all x >0 and V,(0) = eo. Then inequality (3.30) holds iff

o 1/8
T, n <cllh _ hemt 3.32
Ve ’ ({ /x } ) Hﬁ,m(OP") c” ||1’V*l/6 2‘)171/6!(0!“’), € ( )

holds.
COROLLARY 3.18. Let 0 < < oo, 0< 8 < 1, and let T : MT — IMT satisfies

conditions (1)-(iii). Assume that u, w € # (0,e0) and v € # (0,0) is such that V.(x) <
oo for all x >0 and V,(0) = eo. Then inequality (3.30) holds iff

V176
_— 15 <l ) hemt (333
y20/ 1)({/o } )Hﬁ,m(om) cllilly ysrs-2,1-18 (0. 1 € G359

holds.

The following “dual” statements also hold true and may be proved analogously.
THEOREM 3.19. Let 0 < B < o, and let T : M — M satisfies conditions

(i)-(iii). Assume that u,w € # (0,0) and v € # (0,0) is such that V.(x) < oo for all
x> 0. Then inequality

HT(/ h)H Lellnll, -1 (Om),hefvﬁ (3.34)
x Bw,(0.) o

holds iff
1 Ty2 £ 1B (0,00) < € f 10,000 f € m!. (3.35)

COROLLARY 3.20. Let 0 < < oo, 0< 8 < 1, and let T : M — IMT satisfies

conditions (i)-(iii). Assume that u,w € #(0,0) and v € # (0,0) is such that V. (x) <
oo for all x > 0. Then inequality (3.34) holds iff both

x Y 1/8
d " Sl hem* 3.36
V2 ({/0 } )Hﬁ,m(om) |l H17V*l/5vl—l/5’(0’°°)7 € (3.36)

and

(T2 (D1 g (0.00) < €l 2] 1,11(0,00) (3.37)

hold.
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COROLLARY 3.21. Let 0 < B < oo, 0< 8 < 1, and let T : M — IMT sarisfies
conditions (i)-(iii). Assume that u, w € #(0,0) and v € # (0,0) is such that V. (x) <
oo for all x > 0. Then inequality (3.34) holds iff

- 1/8
‘ TVZ(I—I/S) ({ / hﬁv*} ) H < c”hHI,v'*'/‘s,(O,m)’ h S Dﬁ+ (338)
. o B.w,(0,)

THEOREM 3.22. Let 0 < B < oo, and let T : MT — M satisfies conditions
()-(ii). Assume that u,w € #(0,00) and v € #(0,e0) is such that V,(x) < oo for all
x > 0. Then inequality (3.34) holds iff both

"Tvz,q,z/é[V*l/5v171/5;1/5]f"ﬁ)m( o) CHf”l oV, 1/5 VI=1/8:1 /8] ( fE mtl (3.39)

holds.

where 0 < 8§ < 1,

(1/8)

OV 1131 /8](x) ~ (/XV*U/SY ) U= (),

o[V, VI8 1-(1/8). 1/8)(x (/ Ve —(1/8) )1+(1/6>7

and (3.37) hold.

COROLLARY 3.23. Let 0 < § < oo, and let T : M — IM™" satisfies conditions
(i)-(iii). Assume that u,w € # (0,0) and v € # (0,0) is such that V.(x) < oo for all
x > 0. Then inequality (3.34) holds iff both

C||f|‘1¢v2vflz fei)ﬁl

TV,?d)4 [V,?v*l ;2} (f) ‘

ﬁ ’W’(O’m)

where

and (3.37) hold.

COROLLARY 3.24. Let 0 < 8 < oo, and let T : M — IM™" satisfies conditions
(i)-(iii). Assume that u,w € # (0,0) and v € # (0,0) is such that V(x) < e for all
x>0 and V(o) = co. Then inequality

(/)

<cllhll v, 0.0), h € M* (3.40)
ﬁ’w‘r(o‘rm)
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holds iff
ITy-2 11w 0.) < €llF 12 000y | €M (3.41)
holds.

COROLLARY 3.25. Let 0 < B < oo, 0< 8 < 1, and let T : M — IM" sarisfies
conditions (1)—(iii). Assume that u,w € #(0,00) and v € #'(0,0) is such that V(x) <
oo for all x >0 and V(o) = oo. Then inequality (3.40) holds iff

({1}

COROLLARY 3.26. Let 0 < B < oo, 0< 8 < 1, and let T : M — IM" sarisfies
conditions (1)—(iii). Assume that u,w € #(0,00) and v € #'(0,0) is such that V(x) <
oo for all x >0 and V(o) = oo. Then inequality (3.40) holds iff

w N 1/8
(")

4. Equivalence theorems for the weighted inequalities
on the cones of monotone functions

<ellhllyyi/e-2,0-1/5 g oo)p B € IMT (3.42)
ﬁ,W,(O,m)

holds.

< c||h|| 1,V3/8-2,1=1/8 (0 00)> hem* (3.43)
ﬁ’w‘r(o‘rm)

holds.

As it is mentioned in the introduction, by substitution of variables it is possible to
change the cone of non-decreasing functions to the cone of non-increasing functions
and vice versa, when considering inequalities (2.1) and (2.5) for integral operators 7.
But this procedure changes 7" also as usually to the “dual” operator.

The following theorems allow to change the cones to each other not changing the
operator 7T .

THEOREM 4.1. Let 0 < B < oo, 0 < s < oo, and let T : MT — M satisfies
conditions (1)-(iii). Assume that u,w € #(0,) and v € # (0,0) is such that V (x) <
oo for all x > 0. Then inequality (2.1) holds iff both

HT{\P[Vx/évlfx/é;s/é]}Z/S (f)H < C|\f||s7w[vx/5v1ﬂ/s;s/é]’(O’w), fe m', 4.1)

Bw,(0,00)
where 0 < 8 < s and
/)
Wl Pss g1 [TV ) T e . - 0)

1

YVe/OI=9/8. /5] (x) ~ (/mV("/‘”/v) R (x>0)

and (2.3) hold.
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Proof. Inequality (2.1) is equivalent to

9
[{rw)| < oy £ €M @2
B/8,w,(0,00)
By Theorem 2.2, (4.2) holds if and only if
w \1/8)9
{T </ h> } < ca||h||s/5’vs/5v1,s/5’(o!m>, hemt, 4.3)
B/8,w,(0,00)

and (2.3) hold. By Theorem 3.4, (4.3) is equivalent to

)
T 1/8 < o SDIT
H{ {w[vs/on-s56] }* Y )} Hﬁ/a,m(o@) ‘ ”fH‘/&‘V[V’Y/évl’x/‘s”/‘s] 0y L €T
(4.4)
with
V,[VS/5V1*S/5;S/5] ~ (Vlf(S/5)’ — \/1*(8/5)/(00))*(S/(S)’/((S/ﬁ)“rl)V*(S/(WV7
\P[Vs/évlfs/ﬁ;s/g] ~ (Vlf(s/ﬁ)’ o Vlf(s/é)'(oo))l/((s/ﬁ)url).
It remains to note that the last inequality is equivalent to (4.1), and this completes the
proof. [
To state the next statements we need the following notation:
1/3

Vi(x) == (/:V%) , (x>0).

The following statement holds true.

COROLLARY 4.2. Let 0 < B < oo, 0 <5< oo, and let T : MT — M satisfies
conditions (1)-(iii). Assume that u,w € #(0,0) and v € # (0,00) is such that V (x) <
oo for all x > 0. Then inequality (2.1) holds iff both

HT{‘{’[VZV*I;Z]}“/S (f)HB‘w,(O,m) < llfllypqva-1.21, 00 f €M, 4.5)
where
w2 h2)(x) & (V- V2 ()v(x), (x> 0),
WV22)(x) & Vi (), (x> 0),
and (2.3) hold.

Proof. The statement follows by Theorem 4.1 with § =s/2. O

The following “dual” statement also holds true and can be proved analogously.
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THEOREM 4.3. Let 0 < B < o0, 0 < s < oo, and let T : M" — M" sarisfies
conditions (i)-(iii). Assume that u, w € #(0,0) and v € # (0,0) is such that V. (x) <
oo for all x > 0. Then inequality (2.5) holds iff both

1y (f)H Sl g sro 16476 (0.0 f € M, (4.6)

T
H {CDI:V;:/SVl*S/‘S;s/E B.,(0,0)

where 0 < 8 < s and

~ (s/8)
oVl (v ) TV ), e 0,
JO

I
VP58 5/8](x) ~ (/ V*(S/a)/v> Lo , (x>0),
0

and (2.3) hold.

To state the next statement we need the following notation:

Vi) = (/Oxv*%) " (x> 0).

COROLLARY 4.4. Let 0 < B < oo, 0 <5 <oo, andlet T : MT — M sarisfies
conditions (i)-(iil). Assume that u,w € #(0,) and v € #'(0,00) is such that V,(x) <
oo for all x > 0 holds. Then inequality (2.5) holds iff both

HT{GD[VSW:Z} p H o~ Wlhofravia) oy /€ mL @D
where
O[v2v12](x) = {Vi- Vi) 2 ()v(x), (x> 0),
®V2v12](x) ~ Vi (x), (x> 0),
and (2.3) hold.

5. The weighted Hardy-type inequalities on the cones of monotone functions

In this section we consider weighted Hardy inequalities on the cones of monotone
functions.
Note that inequality

1. (f))

q,w,(0,00) < CHf”py,(O,oo)u f € mi (51)

was considered by many authors and there exist several characterizations of this in-
equality (see, survey papers [11,4, 15, 10, 27]).
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Using change of variables x = 1/, we can easily obtain full characterization of
the weighted inequality

”H:(f)”q,w,(o,m) < CHf”p,v,(O.oo)u f € DﬁT. (5-2)
Our aim in this section is to give the characterization of the inequalities
”Hu(f)Hq,w,(O,oo) < CHf”p,v,(O,oo)u f € DﬁT (5-3)
and
L ()l g 0.0) < €N oo,y f € L. (5.4

Inequality (5.3) was considered in [31] in the case when 1 < p, g < oo, and re-
cently, completely characterized in [29, 30] and [27] in the case 0 < p,g < oo. It is
worth to mention that in the most difficult case when 0 < g < p < 1, the characteriza-
tion obtained in [27, Theorem 3.12] involves additional function @ (x) := W~ (4W (x)),
where W=!(¢) :=inf{s > 0: W(s) =1} is the generalized inverse function of W. The-
orem 5.3 gives us an another characterization of (5.3) and its proof does not use the
discretization technique.

Recall the following complete characterization of the weighted Hardy inequality
on the cone of non-increasing functions.

THEOREM 5.1. ([27], Theorems 2.5, 3.15, 3.16) Let 0 < g, p < o. Assume that
u,v,w € #(0,00). Then inequality (5.1) with the best constant ¢ holds if and only if

the following holds:
D) 1<p<g<oand Ag+ A < oo, where

AO::sup(/ Uit dr) V- ;()
>0
1

t U(T) P 7
Ajp: :supW* (/ (—> v(T d’L’) ,
>0 () 0 V(T) ( )
and in this case ¢ =~ Ag+Ay;
(ii) max{q, 1} < p < oo and By + B} < o, where

BO:_</O°°V di </ Ui(c d‘L’) U4(r)w ()dt>%,
so=([wio( ] (%) oz )dr)% <r>dr)%,

and in this case ¢ ~ By + By;
(i) ¢ < p <1 and By+ Cy < oo, where

e ([ (e ¥i3) W mna)

~
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and in this case ¢ =~ By+ Cp;
(iv) p < min{gq, 1} < o and Dy < oo, where

1

Dy := supVTlr(t) (/ U%min{*c,t})w(r)dr) q,
>0 0
and in this case ¢ = Dy;
(v) p< 1 and g = and Ey < o, where
Eo :=ess supVﬁTl’ (1) (ess sup U(min{r,t})w(’c)) ,

>0 >0

and in this case ¢ = Ey;
(vi) 1 < p <o and g = o0 and Fy < oo, where

roiesssupnto)( [ ([ uowv - 0ay) Plv(r)dr) "

and in this case ¢ = Fy;
(vil)) p=-o0 and 0 < g < o and Go < o, where

o= ([ (ﬂ%)quw)?

and in this case ¢ = Gy;
(viil) p =g =0 and Hy < oo, where

1
Hy := esssup </ M)w(f},
>0 0 ©€SSSUPzc(g.y) v(7)

and in this case ¢ = Hy.

The following theorem holds true.

THEOREM 5.2. Let 0 < g, p < oo. Assume that u,v,w € # (0,00). Then inequal-
ity (5.2) with the best constant ¢ holds if and only if the following holds:
() 1 <p<g<ooand Aj+A] < oo, where

Aj :=sup (/ﬁUj’(’c)w(T)dﬂc) évgi(t),

>0

i [ () o)

and in this case ¢ =~ Aj+AJ;
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(i) max{q,1} < p < e and B{+ B} < oo, where

=([vio( [ v df) Ut(e)w <>dr>%,
= ([ (59 serae) wirar)

and in this case ¢ ~ B+ Bj;
(iii) ¢ < p < 1 and Bjj+ Cj < oo, where

@ (/000 (i:ses(zsi? l\f((yy))) wr (t)W(t)d¢>lr,

and in this case ¢ = B+ Cj;
(iv) p <min{q, 1} < oo and Djj < e, where

oo
S *

B

—_—

Dy =supv. ) [ vrmax{wis)ae)

t>0

and in this case ¢ = D{;
(v) p< 1 and g = and Ej < o, where
_1
Ej :=esssupV, " (1) (esssup U, (max{’c,t})w(r)),
t>0 >0

and in this case ¢ = Eg;
(vi) 1 < p < oo and g = o and Fy < oo, where

megp [ (e )

and in this case ¢ = Fy';
(vii) p =00 and 0 < g < o and G < oo, where

o= ([ ([ st o)

and in this case ¢ = G;
(viii) p = q = o0 and Hy < o0, where

Hp :=esssup (/ %)w(t),
>0 Jt esssupre(y’m)v(f)

and in this case ¢ = Hy.
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Proof. By change of variables x = 1/1, it is easy to see that inequality (5.2) holds
iff
1Ha ()l g 000) < €N psoee), [ €M

holds, where

i(t) _u<;>t12, w(t) _w<%)tlz, (1) —v<%> <t12), t>0,

when 0 < p < oo, 0 < g < oo;and

i(t) _u<;)tiz, w(t) —w<;>, V(1) —v<;> (%2), t>0,

when 0 < p < oo, g =c0; and

when p =00, 0 < g < oo;and

i(t) _u<;)tiz, w(t) —w<%>, V(1) _v<;), >0,

when p =g = oo.

Using Theorem 5.1, and then applying substitution of variables mentioned above
three times, we get the statement.

The following theorem is true.

THEOREM 5.3. Let 0 < g < o0 and 0 < p < oo, Assume that u,w € # (0,00) and
v € W (0,00) is such that V. (x) < e for all x > 0. Recall that
1/3

Vi) = </OXV*ZV) . (x>0).

Denote by

U (x) = /Oxu(t)[vl*]% (D)dt, (x>0).

Then inequality (5.3) with the best constant ¢ holds if and only if the following holds:
(i) 1 <p<g<ooand Ao+ Ay +[|Hu(1) g, 0.00)/ 1l pv,(0.00) < o0, where

Ao = sup (/0 ’ [Urw(r)w(r)dr) "W).

>0

~ =

At = supW (1) < [wire [vl*l<2+P’><r>v*2<r>v<r>dr) ,

t>0
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and in this case

c~ A~() +A1 + ||Hu(1)| qw,(0,00)

(i) max{q, 1} < p<eoand EO +El + ”Hu(l)”q,m 0,00 /HIHP v(

By:— ( JRGEL ( | t[UﬂQ(r)w(r)dr) f’[vﬂ%r)w(r)dr) "

= ([wio( [ @@y ermar)” ' oa)

and in this case

) < oo, where

~I—

¢~ Bo+B1 + [Hu(D) | g0,/ 1111 v, (0.)

(iii) g <p < 1 and By+Co+ ”Hu(l)”q,w,(O,M)/”l”p,v,(O,oo) < oo, where

~ =

o= ([ (e ) W mo).

c= BO + CO + HHM(I)||q,w7(07<>°)/||1||p7v,

and in this case

(iv) p < min{g,1} < o and Do+ HHM(1)||L],W7 /||1||p 1,(0,00) < ©, where

)
>0

1
Dy := sup[Vf]W"L (1) (/ [U{]¢(min{,t})w(7) d’L’> ’
0
and in this case
c=Do+ ”Hu(l)Hq,w,(O,oo)/Hal,v,(O,m)’

(v) p<1and g=oo and Ey+||H,(1 )”q,w7 0,00 /||1||pv ) < oo, where

Ey:=ess sup[Vf‘]le’ (r) (ess sup [U{](min{r, t})w(r)) ,

>0 >0

and in this case
C:EO‘FHH( )”qw /||1||pv(0

(vi) 1 < p < oo and q =0 and Fy+ ||H,(1 Mgy 0.00)/ 1Ll v, 0,00) < 00, Where

Foi—estsjoupw(f)< /0< [ a7 ”()dy>')l[v1*12<r>v*2< (e )dr) ,

and in this case

¢= o+ [1Hu(D)llgan 0.0) /1Ll . (0.0)
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Proof. By Corollary 4.4 applied with § = ¢, s = p and T = H,,, inequality (5.3)
holds iff both

<cllfllpqviviy-20 000 f € mt, (5.5)

ul V4P ) Hq,w7(07°°)

and
”Hu(l)”q,m(OpO) < c||1||p7v,(0,oo) (5.6)

hold.
Now the statement follows by applying Theorem 5.1.

THEOREM 5.4. Let 0 < g < o0 and 0 < p < oo. Recall that

Vi) = </;V2v>3, (x> 0).

Denote by

Ui(x) i= /xmu(t)VI%(t)dt, (x> 0).

Then inequality (5.4) with the~ best~c0nstant ¢ holds if and only if the following holds:
(i) 1 <p<q<eoand Aj+A7+|[Hy (1) || g (0,00)/ [ 1]] p.1,(0,00) < 00, where

1
l
A~(*):—sup(/ Uf(z d’L’) v, P (1),
>0

A= supWi (1) (/ U (oyv; ) (z )Vz(r)v(r)dr) :

>0

~-

and in this case
¢~ Ay +AT+ || H, (1)

0700 ’

4w, (0.)/ |
(ii) max{q, 1} < p < e and B+ B} + || H;(1)|

q.w,(0,00 /Halv ) < oo, where

ész—( (/ Ul(r dr) Ulw <r>dr)%,
gia= ([[wio( [Tufev @y o)

and in this case

L
4

w(?) dt> % ,

(e BS +BT + ”H;(l” q,w,
(iii) ¢ < p < 1 and B+ C;+ ||H; (1))

(002)/|

/Halv ) < oo, where

(0,00)

q.w,(0,00

1

Co 1= (/Om (iis(fi‘? l‘ii(:))>£wﬁ(t)w(t)dt) "
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and in this case
cr BS +Cg + HH;(1)||L],W7(O7 /HIHP v,(0,00

(iv) p <min{g, 1} < eo and D+ ||H;; (1)]] g1, (0,00 /||1||P 1(0,00) < 0, Where

Bi=sapvy o) [ vttmax(swisias)

>0
and in this case
¢ =D+ 1Hy (D)l gm0/ 0,00
(v) p<1and g=o0 and E+ || H}(1 )||q’w7 0,00 /||1||pv, 0.00) < o0, Where

Ej :=esssup V;; (1) (ess sup U; (max{’c,t})w(r)) ,
>0

>0
and in this case
c=E;+||H,(1)]
(vi) 1 < p < oo and g = o and Fj + ||H; (1)]

g (0.00)/ 000
g (0,00 /H

fy = st [ [[utowi 0ras) v 2w >dr) ,

and in this case

) < oo, where

¢ = F5 +[1Hy (D) lg 0.0/ I v (0,00

Proof. By change of variables x = 1/1, it is easy to see that inequality (5.4) holds
iff
12z (N gi000) < €M llp o0y fEM

holds, where

i(t) _u<;>t12, w(t) _w<%)tlz, (1) —v<%> <t12), t>0,

when 0 < p < oo, 0 < g < oo;and

i(t) _u<;)tiz, w(t) —w<;>, V(1) —v<;> (%2), t>0,

when 0 < p < oo, g =oc0; and

i(t) —u<;>i, w(t) —w<%> <t12>, V(1) _v<;>, t>0,

when p =00, 0 < g < oo;and

i(t) _u<;)tiz, w(t) —w<%>, V(1) _v<;), >0,

when p =g = oo.
Using Theorem 5.3, and then applying substitution of variables mentioned above
three times, we get the statement.

~
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6. The weighted norm inequalities for iterated Hardy-type operators

In this section we give complete characterization of inequalities (1.5) - (1.6) and
(1.7) - (1.8).

Using results obtained in Section 3 we can reduce the characterization of inequality
(1.5) to the weighted Hardy inequality on the cones of non-increasing functions.

The following theorem is true.

THEOREM 6.1. Let 0 < p < oo, 0 < g < oo and 1 <s < oo. Assume that u,w €
W (0,00) and v € # (0,00) is such that (3.1) holds. Recall that

__s

J

s'+1

¢ [vis|(x) = </Oxv1“"(t)dt) vlf“"(x), x>0,

®[v;s] (x) = <./0xvls/(t)dt) eso.

Denote by

@, (1) = /Oru(x)CID[v;s] 2 () dx = /Oru(x) </0xvls/(t)dt) “%dx, >0,

Then inequality (1.5) with the best constant ci holds if and only if the following holds:
() p<s<g<ooand Ay +Ayp < oo, where

Ayl =sup (/Ot[fls'l]z(r)w(r)d*c) écI>[v;s]*§

>0

A= fgopw*; ®) (/0’ (qp?:iig()f)) S¢[V;S](r)d1) p;p

and in this case ¢y = A1 1 +A12;
(ii) max{p,q} <s and By |+ By < oo, where

(1),

s=q
4q

= [otst 0 [0t @) ot omna)

frai= (-/;W*Sqq © </ol (%) Sxp¢[v;s](f)df) . W(t)dt> Tq

and in this case ¢y ~ B 1 + B 2;
(iii) g < s < p and By 1 +Cy 1 < oo, where
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and in this case ¢; =~ By 1 +Cy 1;
(iv) s <min{p,q} < o0 and D; | < oo, where

q

(;)( /0 w[dﬁﬁ(min{‘c,t})w(r)dr) ,

@l

Dy :=sup®[v;s]”
' >0

and in this case ¢\ = Dy 1;
(v) s< pand q = oo and E1 1 < o, where

1

Ei ) :=ess supq)[v;s]*% (1) (ess sup P (min{r,t})w(r)) ’ ,

t>0 >0

and in this case ¢ ~ E 1;
(vi) p < s and q = o and Fy 1 < o, where

s

= esssupwlo)( [ ( [ uemis to)ar) obisliorar) v

>0
and in this case ¢ ~ I 1.
Proof. By Theorem 3.1 (with the operator 7' = H), , ), inequality (1.5) holds if and
only if

H / fuq)[V;s]zp < Cf Hf”s/p,q)[v;sL(O,oO)v f € Dﬁl (6.1)
0 a/pw,(0,%0)

holds. Moreover, ¢ ~ C; . It remains to apply Theorem 5.1.
We have the following statement when s = 1.

THEOREM 6.2. Let 0 < p <oo and 0 < g < oo, Assume that u,w € #'(0,00) and
v € W (0,00) is such that V(x) < e for all x > 0. Denote by

T
Va(7) ::/ u(x)V?P(x)dx, © > 0.
0
Then inequality

X
} Hpu (/ h) il y-1 (9w b EMT (6.2)
0 q,w,(0,%0) .
with the best constant c% holds if and only if the following holds:
1) p<l1<g<o and A{’l —I—A{’z < oo, where

atyi=sop [ Wl Em@as) v,

t>0

sl [ (45) Twaer) T
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and in this case c{ QA%‘I —i—A%‘z;
(ii) max{p,q} < 1 and B} | + B}, < oo, where

q l-q
T—

si=([viro( [wbew@a) Twbowoa) T

e ([0 [ (42) ) )

and in this case c} ~ B% 1—i—B% 2
(iii) ¢ < 1 < p and B! 1+C1 | < oo, where

1 q 1—¢q

™ (onnn WP @\ 15 g

c! ::(/ (esssup[ W, 1 (t)w(t)dt ,
b 70 7€(0,1) V(1) ( ) ( )

and in this case c} ~ B% 1 —i—Cll 1
(iv) 1 <min{p,q} < and D1 | < oo, where

D%,l =supV (1) </OM[V2]Z(min{‘c,t})w(f)d‘t) q,

t>0

and in this case c% ~ D% I

) 1< pandq—ooandE11<°° where

El | i=esssupV " l(z )(esssup Vz(min{r,t})w(r)) p,
>0

t>0
and in this case c} ~ El1 1
(vi) p< 1 and q = and Fll1 < oo, where

1 1-p
/ / > >
Fly = esssupwi(1)7 (/ (/ u(y)Vz”l(ydy)) ] V(T)df) ",
>0 JO JT
and in this case c} o~ F1171.

Proof. By Theorem 3.11 applied to the operator H, ,, inequality (6.2) with the
best constant ¢; holds if and only if inequality

" v <(CHP IS N1 /o 00e)s f € DT (6.3)

q/p;w,(0,00)

holds. Moreover, ¢! |~ C1 . In order to complete the proof, it remains to apply Theorem
5.1.

The following theorems give us another more simpler and natural method for char-
acterization of inequality (1.6), which is different from the one worked out in [18] and
[19].
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THEOREM 6.3. Let 0 < p < oo, 0 < g < oo and 1 <s <oo. Assume that u,w €
#(0,00) and v € # (0,00) is such that (3.13) holds. Recall that

S/

wvis](x) = < / mvlsl(t)dt) I ), x> 0,

Wvss] (x) = </x°°v1s/(z)dt) o,

/ 2&',

25/ s S
X i ANRET ' e b ANRET '
~ {/0 (/ vls> yl=s (t)dt} (/ vls> v (x), x>0,
t X

_2 1
O [P[v;s] yvis]' s (x) & {/0 (/t vls’) " vls/(t)dt}m , x> 0.

Denote by

T 2p
D, (1) ::/O u(x) (‘P[v;s} -@[‘P[v;s]‘yy/[v;s]ls;s}> (x)dx, T > 0.

Then inequality (1.6) with the best constant c; holds if and only if the following holds:
(1) p<s<g<ooand

Ax 1 +Axn+ (1

p,‘I—’[v;s]zPu,(O,t)Hq,W,(O,OO)/Hle,l[/[v;s],(O,oo) < oo,
where

Agy:=sup ( [t (r)w(r)dr) Colwyu )

t>0

—wowio( [ (2 )— )—
2= O [/ (Gt ol dmas) 7

and in this case

0= Az,l +A2,2 =+ ” ||1||p7‘{’[v;s]217u,(0,t) Hq,w,(O,oo)/||1||s,\4/[v;s],(0,m);
(il) max{p,q} < s and

Bt + Bop + 1] wivss)2ou, (0.) g (0.00) / I s s, (0.00) < 22
where
. s l-s. ] a5 ! 4 ﬁ 4 S;V
pari= ([Tolwy s o @l emoar) et owna)
B (/wWqu (t) ( /t ( CDZ(T) ) P ¢ [\Pv 1—s } (T) dT) Z((YY:Z; (t) dt)
L= § is w
> 0 Jo \ @[ y!=:s] (1) v

s—q
qs
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and in this case

2~ Ba1 4+ B + (|1 wivesizvu, (0.) lgw.(0.00) / 11X Ls v 0,003
(i) g < s < p and

By 1+Coi+[|11]

P, P[v;s]2Pu,(0,t) ”q,w,(O,M)/”l”sﬂy[v;s],(o,m) < oo,
where
oo 2 y% 9 S
Cyy:= (/ (esssup [q)z]l—p(r)> qW*H’ (t)w(t)dt) ! ,
/0 7e(0,t) CI)[‘PSW 73;5} (7)

and in this case

2~ B+ Cot + |1 wivsspru, (0.) g 0.0) /111

5, W[vis], (0,00)3
(iv) s < min{p,q} < = and

Doy + 1 wivss2en, 0.) g 0.00) / 1L 5 yfvis] (0.00) < 02,

where
1

Dy = supCID[‘Psqllfs;s} -5 (1) (/Om[cbz]% (min{t,t})w(7) d’L’) q,

t>0

and in this case
2= D271 =+ ” ||1||p,‘}’[v;s]217u,(0,z) ||q,w7(07°°)/||1||s7u/[v;s]7(07oo);

(v) s< p and g = and
Ep i +l1]

. [vis]220,0.0) g (0.00)/ 11 L yvis] (0,00) < 0

where
1

20 (ess sup @, (min{r,t})W(T)) g

>0

E»y :=esssup® [Py s]
>0

and in this case

0= E271 =+ ” ||1||p7‘{’[v;s]217u,(0,t)| q,w,(O,oo)/Hle,l//[v;s],(O,oo);

(vi) p<s and q = o and
Fz,l + H Hal,‘{’[v;s]zPu,(O,t) ||q,w7(07°°)/||1||s7u/[v;s]7(07oo) < o,
where
=

Fa=esson)( [ [uveey =) v)ar) oty (2)ar)

t>0

and in this case

= F271 + ” ||1||p,‘}’[v;s]21’u,(0,t)| q7W,(0,°°)/H1| 5,y[v3s],(0,00) -
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Proof. By Corollary 3.5 (applied to H,, with § = 1), inequality (1.6) with the

best constant ¢, holds iff both

H, . h
’ P, ¥[v;s]2Pu (/0 )

S ”h”s){’[v;s]xw[v;s]1*5,(0,00)7 hem®

q.w,(0,0)
and
1L wvss]200,(0.0) g (0.00) < [vis], (0,50)
hold.
Moreover, ¢ & ¢2,1 + [|[| 1]l , wivssru,0.) gm0 (0,00) -

Now the statement follows by Theorem 6.1.
We have the following statement when s = 1.

THEOREM 6.4. Let 0 < p < o and 0 < g < 0. Assume that u,w € # (0,

v E #(0,00) is such that Vi (x) < oo for all x > 0. Recall that

- </OXV*2(I)V(t)df) 1/3, (x>0).

T
Vi(t) = / u) (V.- [ViPYP (x) dx, > 0.
0
Then the inequality

()

with the best constant cé holds if and only if the following holds:
1) p<l1<g<o and

Denote by

< C% HhH17V;l’(0’oo)7 heomt
q.w,(0,00)

A21+A22+H||1|| V2Pu, >qu /H

where

by —sp ([ omcoae) i)

t>0

e i </0t (Kj:gz;) l%p{v* ' [Vl*]}z(r)v(r)df> lI_Ip,

t>0

and in this case
1 1 1
Ay +A N+ HHal,vfl’u,(m qu(o /110,000
(il) max{p,q} < 1 and

321+Bzz+||||1||

1

p72u00) gm0/ |

(6.4)

(6.5)

) and

(6.6)
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and in this case
C2~321+Bzz+HH1H V2P, H%w,(o,w)/nl||1,v7(0,m),
(i) g <1< p and
B+ Chi 4 1 yan, 0y soiy/ 111005

where

1
- ARG q
c! ;_</ <esssup[3* ) W, ()w(t dt) ,
! 0 7€(0,t) Vi (T) twit)

and in this case

C2~321+C21+||||1”pV*2]7 Hq,w,(() )
(iv) 1 <min{p,q} < e and
Dai + |11, y20, 0. g ~

where 1

D}y = suplvy] (1) < / m[v;ﬂ(min{r,r})w(r)dr) E

t>0

and in this case
1 1
s % DLy 4 1Ly 0 g0/ 11
V) 1 < pand g= and
E21+H||1||pv2p qu /||1||1v oo,

where

Ezl!l 1= ess sup[Vl*]’l(t) <ess sup [V3*](min{f,t})w(’c)> ﬁ,

t>0 >0

and in this case

ey~ Eyy+|[11]

PV u,(0,1) Hmw (0,00
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(vi) p< 1 and q = and
E A I 20, 00 lyonoomy /10y < o=

where

Fai=essson ([ [uowiertow)

and in this case

1—

P

Vvl (>v<r>dr> ,

L
-

Cz~F21+HH1H,,V2p 0,>H ’w)/HlHl,v,(O,m)

Proof. By Corollary 3.23 applied to the operator H, ,, inequality (6.6) with the
best constant C% holds iff both

[y <L I ) -2ug0smys F €T (67

q/p.w,(0,00)
and
1
H ||1||p7V*2pu,(0,t)Hq7w,(0,oo) < ) ,(0,00) (68)
hold. Moreover, ¢}~ ¢4 + [ 1111, 1, o0 |0/ 1101 APPIying Theorem

5.1 we obtain the statement.
For the sake of completeness we give the characterizations of inequalities of (1.7)
and (1.8) here.

THEOREM 6.5. Let 0 < p < oo, 0 < g< oo and 1 <s <oo. Assume that u,w €
#(0,00) and v € # (0,00) is such that (3.13) holds. Recall that

wlssloo =/ °°v”’<r>dr)ﬁv“’<x>, x>0,

_1
T+1

W] (x) = (/xmv”’(t)dz)” x>0,

Denote by

2p

¥ (1) := /;u(x)‘l’[v;s]z”(x)dx: /:ou(x) (/xmvls/(t)dt) o dx, T>0.

Then inequality (1.7) with the best constant c3 holds if and only if the following holds:
(i) p<s<g<ooand Az +Az < oo, where

A371:—sup( [t <r>dr) ETR

t>0

al—

(1),
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s=p

o =sewhoo [ (Ji%%)”w[v;smm) "

and in this case c3 = A3 1 +A32;
(i) max{p,q} <s <o and B3|+ B3 < oo, where

By := < /0 m‘P[v;s]fILS(t)< /, m[‘ﬂﬂ(r)w(r)d‘c) %][‘Pl]z(t)w(t)dt) ,
q(s—p) 5—q

B3p:= (/OmW%’(f)(/tm (\P[‘I:lii]?r)) ﬁll/[\/;s](%')dr) mq)w(t)dt) "

and in this case c3 =~ B3 1 + B3 »;
(iii) ¢ < s < p and B3 1 +C3,1 < o0, where

o </°m <ises<zs,il)) %) %W% (I)W(t)dt> ;ql

and in this case c¢3 ~ B3 1+ C3 1;
(iv) s < min{p,q} < e and D3 < e, where

q

Dy, = sup\p[v;s]%(t)(/:[\pl]%(max{r,t})w(r)dr) ,

>0

and in this case c3 = D3 1;
(v) s < p and q = oo and E3 1 < o, where

1

E3:=ess sup‘P[v;s]*% (r) (esssup ‘Pl(max{r,t})w(r)) p,

’ >0 >0

and in this case c3 = Ej3 1;
(vi) p < s and g = oo and F3 1 < o, where

s—p

A= esssopu() ([ ( [Tutel )y ) “S”w[v;s](r)dr) "

>0

and in this case c3 =~ F3 1.

Proof. By change of variables x = 1/1, it is easy to see that inequality (1.7) holds

iff
X
oo [0
el )

<c3 ”h”s,ﬁ,(o,oo)
q:w,(0,00)

holds, where
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when 0 < g < oo, and

() = u<%) tlz W(t) = WG) (1) = v<%> <t12) "o,

when g = oo.
Using Theorem 6.1, and then applying substitution of variables mentioned above
three times, we get the statement.

THEOREM 6.6. Let 0 < p <oo and 0 < g < oo, Assume that u,w € # (0,00) and
v € #(0,00) is such that Vi.(x) < oo for all x > 0. Denote by

V(1) = /T TV (x)dx, T 0,

Then inequality

‘ H;u (/ h> < c% Hh”wgl,(o,m)’ hem* (6.9)
X q.w,(0,%0)
with the best constant c% holds if and only if the following holds:
1) p<l1<g<ooand A%)l —l—A%’z < oo, where

abyi=sw ( [WsEwE@ar) v,

>0

o V*(T) -p R
AL, =supWa(t / ( 2 ) v(tT dr) ,
32 I>Ig ()( , V*(T) ( )
and in this case c% %Aé‘l —i—A%‘z;
(i) max{p,q} < 1 and B} | + B}, < oo, where

By, := </ vaT (o) (/ [v;]%(r)w(r)dr>
Bl,: _(/ Wik (/tw(‘g((g)'l"vmdr)Mw(;)dt)",

and in this case cé ~ B% 1 —i—Bé 2
) g<1<p and B3 1 —I—C31 < oo, where

o ([ (am ) wmo)”

. . 1 ~ pl 1 .
and in this case c3 = B3’1 +C3’1,

q l1-q
T—

"vs1h (tyw (r)dr) ,
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(iv) 1 <min{p,q} < e and Dé‘l < oo, where

q

DL i=supv. ) ([ 31 man(e.ppw(eyar )

>0
and in this case c% ~ D% 1
v) 1§pandq2<><>andE3l1 < oo, where

1

E3171 = esssupV, (1) (ess sup Vz*(max{r,t})w('c)) 1 ,
>0

t>0

and in this case c% ~ E31 B

(vi) p< 1 and q = and F31‘1 < oo, where

1

1-p

0 T 1— 3

Fl) = esssupw(r) ( [ ( [ u<y>v3P1<y>dy) ”v(r)dr) "
>0 Jt Jt

<=

and in this case c% ~ F311.

Proof. By change of variables x = 1/1, it is easy to see that inequality (6.9) holds

iff
X

Hﬁ/h

H p’<0)

<c 1ll1,7-1 0,00y 7 € m+
q.,(0,00)

holds, where

when 0 < g < oo} and

i(t) =u<%)tlz, Ww(t) =w<;>, V(t) :./Otv<§))%dy, t>0,

when g = oo.
Applying Theorem 6.2, and then using substitution of variables mentioned above
three times, we get the statement.

THEOREM 6.7. Let 0 < p < oo, 0 < g<ooand 1 <s <oo. Assume that u,w €
#(0,00) and v € W (0,00) is such that (3.1) holds. Recall that

S,

J

¢ [vis](x) = </Oxv”'(t)dt) o

W (%), x>0,
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W [@[v;s 9 [vis]' 58] (x)

25 s 25
bl 4 P\ / s/ P\ /
z{/ (/ vl’) s (t)dt} " (/xvl T) Ty (x),
X 0 JO
1— o 4 1—s 7124:2’ 1—s' ﬁ
W[ D[v;s] olvis]' 5] (x) & / / vi? v (t)de ;
X 0

Denote by

oo 2p
W, (1) ::/T u(x) (CID[v;s] -‘P[db[v;s]sq)[v;s]l‘y;s}) (x)dx, T > 0.

Then inequality (1.8) with the best constant c4 holds if and only if the following holds:
(1) p<s<g<ooand

Ag1+Aa 2+ @pyisge r.00) 000 / 5,0 vis] (0.00) < 25

where

1

Ay =sup </tm[‘P2]%(r)w(r)d1:> "@rel s (),

s—p

=0 [ (et ) v almar)

and in this case

ca ~ Aa 1 +Aa 2+ ([ wvis2ru (1,00) [ gos 0,00) /I 5,01v:5],(0.00)5

(il) max{p,q} < s < oo and

By 1+ Bas+ || ||1||p7q>[v;s]2pu,(,,m) g (0.00)/ 1 Ll wis] (0,00) < 22

where

Biy:= (./Ow\p[qwl%s} ‘qu(t)(/lw[‘Pz]%(r)w(r)dr>

Byy:= (/Ost"q(t)(/tm (\P[cp:;lj—(f)s](r)> ﬁw[cb"gbl*s;s} (T)dr) mq)w(l)dt) "

and in this case

q
5—q

[‘Pz]%(t)w(t)dt) ,

¢4~ By +Bir+|| |\1Hp,q>[v;s]2pu7(;7m) Wl g, 0.00)/ 1 Ll 5], (0,00) < 095
(iil) g < s < p and

By i+ Cat + 1]y wpyssgzrou, (1,00) Lo 0.00) /1Ll 5,9 w281, (0,00) < 02,
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where

o= ([ (e wiamoa)

and in this case

C4 = B4,1 + C4,1 =+ ” ||1||p7<I>[v;s]2PLt,(t,w) ”q,w,(O&o)/||1||s,q)[v;s],(0,e<!);

(iv) s < min{p,q} < = and

D41+ ” ||1||p7<I>[v;s]2PLt,(t,w)| C],W,(O,m)/HIH&‘P[V;X]a(Oa"") <,

where

Dy = sup‘P[CID‘Y(j)lfs;s} = (1) (./Om[‘PQ]Iq’ (max{t,t})w(T) d’L’) 5,

t>0

and in this case

5,9[vis],(0,00)>

q7w,(0,w)/H 1|

4~ Dy g+ [1L], @fss2eu, (r.00)|
(v) s< p and g = and

Es 1+ 11l copyss2ru, (r.00) lgow0.00) /1Ll 5,9 w251, (0,00) < 02,

where

1

Esy :=esssup¥[@'¢' ;5] - () (ess sup ‘Pz(max{r,t})w(r)) "

t>0 >0

and in this case

ca ~ Ea 1 + U] pis2ru, (1,00) lgan0.00) / 1L 5.0 1257, (0,00)
(vi) p<s and q = o and

F471 + H Hal,cb[v;s]Zl’u,(t,oo) ”q,m(&m)/”l||s7¢[V;s]7(07°<’) < oo,

where
el T 1 ﬁ% %#
Fi. :=esssg1pW(t)(/t (/ u(y)W[@9' ;5] (y)dy) w[®9' s (T)df> :
> B Jt
and in this case
ca = Fa 1 + 1] apvssgzou,(1,00) [l g 0.00) / L] 5,9 v:5],(0.00)-
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Proof. Obviously, inequality (1.8) holds with the best constant ¢4 iff

el )

< calhlls,5,(0,00)
Qw‘;""!(o’m>

holds, where

when 0 < g < oo} and

(1) = u(%) tlz, w(t) =w(;), W(t) = v(%) (tiz) Fs, >0,

when g = oo.
Using Theorem 6.3, and then applying substitution of variables mentioned above
three times, we get the statement.

<

THEOREM 6.8. Let 0 < p <oo and 0 < g < oo, Assume that u,w € # (0,00) and
v € W (0,00) is such that V(x) < e for all x > 0. Recall that

1

Vi(x) == </:V2v>3, (x>0).

V3(1) := /;u(x){V-Vlz}ZP(x)dx, 7> 0.

X X
()
with the best constant ci holds if and only if the following holds:

1) p<l<g<o and

Denote by

Then inequality

< C‘1‘||h||l,V717(0700)) (6.10)
q:w,(0,00)

1 1
Ay +As,+ (1]

p,V217u7(t7oo)| q,w,(O,oo)/HlHl,v,(O,oo) < oo,

where

-

abyi=sup ( [TV owtear) o)

t>0

abzi=swio [ (PE) v v Hemeae) "

t>0

and in this case

1 1 1
cq R A1+ AL+ I v2ru(r,00) g 0.00)/ 1L 12,0,00)
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(il) max{p,q} < 1 and

1 1
By + By, + |l

pv2ru o0 g 0./l

where

q l—q

Bhai= </ v (/ Vil (o de) 111‘13;17(f)W(t)dt)T,

sai= ([wo ([ (D) T Vil) (ov(e)ar) Hw(r)dt> -

and in this case

¢4~ By g +Bio+ 1L vz .00 lgan 0,000/ Ll 1,00,
(1) g < 1< p and
B41+C41+||||1||pV21’u (t,%0) ”qw /HIHIV 0,

where

™ assou VP @ T
c) :_(/ (esssup 31° T) qWﬁtwt dt> q,
. Jo \ze@e) V1(7) Ehwte)

and in this case

4~B41+C41+|\H1Hpv2pu 1o

q.w,(0

(iv) 1 <min{p,q} <~ and

Dyt + 111l y2ms 1.0

q:w, (0,00 %%

where

DY, :=supV; (¢ >( /O “[v31%<max{r,t}>w<r>dr) %,

>0
and in this case
1 1
g~ Dy + | ||1||p,v217u,(t,oo) ||q,w7(07°°)/||1||1,v7(07 )

W1 < pand g=o and

1
E4,1 + Hal,VZPM,(t,oo) ||q,w7(07oo)/||1||1,v7(07oo) < oo

where

E4 | :=esssupV, (1) (es::(l)lp [V3](max{f,t})w(’c)> p,

>0
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and in this case

1 1 .
Cy~ E4,1 + ” ||1||p,V21’u,(t,oo) Hq,w,(O,oo)/HlH 1,,(0,00)

(vi) p< 1 and q = and

F41,1 + H Hal,Vzl’u,(t,oo) ”q,w,(O,w)/”l” 1,v,(0,00) < oo,

where
I-p

Fiyi= esssupwi(t)7 (/tw (/tru(y)vlzﬂ1(y) dy) = {V'V1}2(1)v(r)d1) 7,

>0

and in this case

Céll ~ F41,1 + ” ||1||p,V2Pu,(t,oo) Hq,w,(O,oo)/HlH 1,v,(0,00)-

Proof. Obviously, inequality (6.10) holds with the best constant c}f iff

X
holds, where
) INT o (IND e (1) ]
M(t)_u(?>t_2’w(t)_w(t>t2’V*(t)_/t v(y)yzdy,t>0,

when 0 < g < oo; and

i(r) =u<%)tlz, W(t) :w<%>, Vi(t) ;/;:(%)ylzdy, t>0,

when g = oo.
Applying Theorem 6.4, and then using substitution of variables mentioned above
three times, we get the statement.

< Czll ||h||1“~/*71‘(0‘oo>7 hem"
q,,(0,00) .

REMARK 6.9. It is worth to mention that Theorem 6.3 - 6.8 can be proved by
reducing corresponding iterated inequality to the cone of monotone functions. For in-
stance: inequality (1.7) with the best constant c¢3 holds iff the inequality

< Cg ”f”s/p,l[/[v;s],(o,oo)v /e mT

‘ / SJuPv; s]2p
0 q/p.w,(0,%0)

holds, and the statement of Theorem 6.5 immediately follows by Theorem 5.2.
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