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Abstract. In this paper embedding relations between weighted complementary local Morrey-
type spaces LMy, (R",v) and weighted local Morrey-type spaces LM, ,(R™ v) are charac-
terized. In particular, two-sided estimates of the optimal constant ¢ in the inequality
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( /OOO < /B(o,t) flayonlz) dx) (1) dt) :
: C(/Ooo (/°B(o,t) flafrule) dw) Ziul(t) dt) ;1’ f>0

are obtained, where py, pa, q1, g2 € (0,00), pa < g9 and uy, up and vy, vy are weights on (0, c0)
and R", respectively. The proof is based on the combination of the duality techniques with
estimates of optimal constants of the embedding relations between weighted local Morrey-type
and complementary local Morrey-type spaces and weighted Lebesgue spaces, which allows to
reduce the problem to using of the known Hardy-type inequalities.

1 Introduction

The classical Morrey spaces M, \ = M, \(R"™), were introduced by C. Morrey in [26] in order
to study regularity questions which appear in the Calculus of Variations, and defined as follows:
for0<A<nand1<p< o0,

A-n
My = {f € LR : I fllag,, = swp 777 [fllz,Ban < OO},

zeR™, r>0

where B(z,7) is the open ball centered at x of radius r.

Note that M, o(R") = Lo (R") and M, ,(R") = L,(R").

These spaces describe local regularity more precisely than Lebesgue spaces and appeared to
be quite useful in the study of the local behavior of solutions to partial differential equations,
a priori estimates and other topics in the theory of partial differential equations (cf. [16]).
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The classical Morrey spaces were widely investigated during the last decades, including the
study of classical operators of Harmonic and Real Analysis - maximal, singular and potential
operators - in generalizations of these spaces (the so-called Morrey-type spaces). The local
Morrey-type spaces and the complementary local Morrey-type spaces introduced by Guliyev in
his doctoral thesis [23].

The research on local Morrey-type spaces mainly includes the study of the boundedness of
classical operators in these spaces (see, for instance, |2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 24]),
and the investigation of the functional-analytic properties of them and relation of these spaces
with other known function spaces (see, for instance, [12, 1, 27, 17, 18|). We refer the reader to
the surveys [2] and [3] for a comprehensive discussion of the history of LM, and “LM,y.,.

Let A be any measurable subset of R”, n > 1. By M(A) we denote the set of all measurable
functions on A. The symbol 9" (A) stands for the collection of all f € 9M(A) which are
non-negative on A. The family of all weight functions (also called just weights) on A, that is,
measurable, positive and finite a.e. on A, is given by W(A).

For p € (0, o0, we define the functional || - ||, 4 on 9Mt(A) by

i :={ ([l f@)Pde)' i p<oo

esssup, | f(x)] if p=o0
If w € W(A), then the weighted Lebesgue space L,(w, A) is given by

Ly(w, A) = Lpw(A) = {f € MA) = [[fllpwa = [fwllpa < o0}

When A = R", we often write simply L, ,, and L,(w) instead of L, ,,(A) and L,(w, A), respec-
tively.

Throughout the paper, we always denote by ¢ and C' positive constants, which are indepen-
dent of main parameters but it may vary from line to line. However a constant with subscript
such as ¢; does not change in different occurrences. By a < b, (b 2 a) we mean that a < b,
where A > 0 depends on inessential parameters. If a« < b and b < a, we write a &~ b and say
that a and b are equivalent. We will denote by 1 the function 1(z) =1, z € R.

Given two quasi-normed vector spaces X and Y, we write X =Y if X and Y are equal in
the algebraic and the topological sense (their quasi-norms are equivalent). The symbol X — Y
(Y <= X) means that X C Y and the natural embedding I of X in Y is continuous, that is,
there exist a constant ¢ > 0 such that ||z||y < ¢||z]|x for all z € X. The best constant of the
embedding X — Y is || I||x_y-

The weighted local Morrey-type spaces LMy, (R",v) and weighted complementary local
Morrey-type spaces LM,y (R",v) are defined as follows: Let 0 < p,6 < oco. Assume that
w € M(0,00) and v € W(R").

LMp9¢W<Rn’/U) = {f e L;}?S)(Rn) : Hf”LMpB,w(anv) < 00}7

where
HfHLMPO,uJ(anv) = HHprvUvB(()ﬂ")H@,w,(o,oo)’
and
CLMpG,w(Rn’v) = {f € mt>0LP7v<CB<Oat>) : Hf”cLMpg}w(]R”,v) < OO},
where

||f|| °LMpg,.,(R™,0) = H||pr:UvCB(0:7")HG,w,(O,oo)'
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Remark 1. In [5] and [7] it was proved that the spaces LMy, (R") := LMy, (R",1) and
‘LMp,(R™) := “LM,y,,(R™ 1) are non-trivial, i.e. consists not only of functions equivalent to
0 on R, if and only if

lwllo,t,00) < 00, for some ¢t >0, (1.1)

and
|wllo,0.4) < o0, for some t>0, (1.2)

respectively. The same conclusion is true for LMy, (R",v) and “LM,,(R",v) for any v €
W(R™).

The proof of the following statement is straightforward.

Lemma 1.1. (i) If ||w||o,t,,00) = 00 for some t; > 0, then
fe€ LMy, (R v)=f=0 ae on B(0,t).
(ii) If ||wl|g,(0,0) = 00 for some ty > 0, then
fe€ LMy, ,(R"v)=f=0 ae on “B(0,t).
Let 0 < 6 < co. We denote by

Qp: = {w € M"(0,00) : 0< [|wllo,t,00) < 00, t >0},
Qp:={weM(0,00): 0< [lwllo,0r < o0, t>0}.

Let v € W(R"). It is easy to see that LM, ,(R" v) and “LM,y,(R™ v) are quasi-normed
vector spaces when w € Qg and w € “Qy, respectively.

The following statements are immediate consequences of Fubini’s Theorem and were ob-
served in [5] and [7], for v = 1, respectively.

Lemma 1.2. Let 0 < p < oo and v € W(R"). Then
() LMy B, 0) = L, (w), where w(z) i 0(a)|wll oo @ € B
(ii) LMy, (R",v) = Ly(w), where w(z) := v(z)||w||p0,), € R™

Recall that the embedding relations between weighted local Morrey-type spaces and
weighted Lebesgue spaces, that is, the embeddings

L, (v1) <= LMpy0.,(R™, v3),
Ly, (v1) = LM 00 (R™ vy),
L, (v1) = LM,,0.,(R", v5),
Ly, (v1) 4> LM 0 0 (R™, v3)

are completely characterized in [27].

Our principal goal in this paper is to investigate the embedding relations between weighted
complementary local Morrey—type spaces and weighted local Morrey type spaces and vice versa,
that is, the embeddings

CLMP191,UJ1 (Rna Ul) — LMP292,UJ2 (Rn7 1}2)7 (17)
LMP191 W1 (Rn’ Ul) — CLM;U2927W2 (Rn7 1}2)'
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The approach used in this paper consists of a the duality argument combined with estimates of
optimal constants of embeddings (1.3) - (1.6), which allows us to reduce the problem to using
the following Hardy-type inequalities

I Fllae0 |0y < €1l f € M0, 00), (1.9)

with

(H*f)(t) := /too f(r)ydr, t>0,

where u, v, w are weights on (0,00) and 0 < p, g < 00, 1 < 0 < oco. There exists different
criteria for the validity of these inequalities (for more detailed information see, for instance,
[19] and [20]). We will use characterizations from [21] and [22].

Note that in view of Lemma 1.2, embeddings (1.7) - (1.8) contain embeddings (1.3) - (1.6)
as a special case. Moreover, by the change of variables z = y/|y|? and ¢ = 1/7, it is easy to see
that (1.8) is equivalent to the embedding

cL]Wpl@l,dil (Rn7 @1) — LMp292,®2 (Rn; 172)7

where 3;(y) = v;(y/|y|?)|y| "% and &;(1) = 77%%w;(1/7), i = 1,2. This abservation allows
us to concentrate our attention on characterization of (1.7). On the negative side of things
we have to admit that the duality approach works only in the case when, in (1.7) - (1.8), one
has py < #5. Unfortunately, in the case when ps > 65 the problem of characterization of these
embeddings remains open.

In particular, we obtain two-sided estimates of the optimal constant c in the inequality

a2

( /0 h < /B S dm) " ualt) dt) "
< c( /0 N ( / o, T @) d:c) B ) dt) "

where pi, P2, 1, @2 € (0,00), pa < ¢o and uy, ug and vy, vy are weights on (0,00) and R™,
respectively.

The paper is organized as follows. We start with formulations of our main results in Sec-
tion 2. The proofs of the main results are presented in Section 3.

2 Statement of the main results

We adopt the following usual conventions.
Convention 1. (i) Throughout the paper we put 0/0 =0, 0- (£oo) =0 and 1/(£o0) = 0.

(il) We put
= if 0<p<l,

3

p/ L &) Zf P = 17
p%l if 1< p< oo,
L if p=oo.
(iii) To state our results we use the notation p — q for 0 < p, ¢ < oo defined by
1 1 1 .
— =~ - if q<p,

p—>q q p
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and p — q= o0 if ¢ > p.
(iv) If I = (a,b) C R and g is a monotone function on I, then by g(a) and g(b) we mean
the limits limy_,, g(t) and lim;_,,_ g(t), respectively.

Our main results are the following theorems. Throughout the paper we will denote

~ Vit
V(x) == [[v7 02|l prspe.B0w), and V(t,x) = = ®) (t>0,z>0).

V(t)+ V(x)

Theorem 2.1. Let 0 < 0y = py < p; = 0 < 0o. Assume that vy, vo € W(R"), wy € Qp, and
wy € Qg,. Then

- 1
H I H CLMP1917M1 (R",Ul)%LMng%wz(R",”Uz) ~ H ||w1‘|p17(07‘-|) Hw2Hp27(|'|7OO) leg)pg,vl_lvg,R"'

Theorem 2.2. Let 0 < py, pa, 01, 02 < 00 and 0y # py < py = 01. Assume that vy, v, € W(R"),
wi € Cle and wy € 992.
(1) If P1 < 02, then

~ -1 .
11 LMy, 0y oy (R™01)— LMy 0, o (R™ v2) = SUP H [lws le,(o,\.\) |}pﬁp2,v1—1v273(07t) [[wallos, t,00)3
te(0,00)

(11) If 92 < p1, then

[11]] LMy, 0y 0y (R?01)=LMpy0, w0 (R? v2)
1

- .
~ -1 p1—02 p1—6 102
o (Ml 2 o 4~ Tl ) )™

Theorem 2.3. Let 0 < py, pa, 01, O < 00 and 0y = py < py # 01. Assume that v, ve € W(R"),
w1 € cle and wqy € QQQ.
(i) If 61 < pa, then

~ -1 .
H I || CLMP191YW1 (Rnavl)_)LMPQOQ,WQ(Rn7U2) ~ . S(Ialp ) ||w1||917(07t) H ||w2||p27(|'|700) Hp1—>p2,v171v2,B(O,t)’

,O0

(ii) If py < 61, then

H I H °LM, (R™,v1)—LM,, (R™,v2)

101,w1 202,wo

1
oo T
~ 01—p2 -6 1Pz
~ (] Meslnioolls 7 ot~ Il )
—1
=+ ||w1||017(07oo) H ||w2||172’(|'|700) Hp1—>p2,1)1711)2,]R"'

In view of Lemma 1.2, Theorems 2.1 - 2.3 are straightforward corrolaries of |27, Theorem 3.1]
and |27, Theorem 4.2|.
To state further results we need the following definitions.

Definition 1. Let U be a continuous, strictly increasing function on [0, o) such that U(0) = 0
and limy;_,, U(t) = co. Then we say that U is admissible.
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Let U be an admissible function. We say that a function ¢ is U-quasiconcave if ¢ is
equivalent to an increasing function on (0,00) and ¢/U is equivalent to a decreasing function
on (0,00). We say that a U-quasiconcave function ¢ is non-degenerate if

1 t
lim () = lim — — lim Pt) _ o, U _
t—0-+ t=oo (t)  t=oo U(t)  t=0+ o(t)

The family of non-degenerate U-quasiconcave functions is denoted by Q.

Definition 2. Let U be an admissible function, and let w be a non-negative measurable function
on (0,00). We say that the function ¢, defined by

0=V [ s e 0.0

is a fundamental function of w with respect to U. One will also say that w(7) dr is a represen-
tation measure of ¢ with respect to U.

Remark 2. Let ¢ be the fundamental function of w with respect to U. Assume that

[ g [

Then ¢ € Q.

Remark 3. Suppose that ¢(z) < oo for all z € (0, 00), where ¢ is defined by

w(T)

w(z) = esssup U(t) ess sup , t€(0,00).

( ) te(0,x) ( ) TE(t,00) U(T) ( )
i 1 Ul(t) (t)

w
limsupw(t) = limsup —— = limsup —= = limsup —= = 0,
t—>0+p ®) t—>+oop w(t) t—>0+p w(t) t—>+oop Ul(t)
then ¢ € Qu.

Theorem 2.4. Let 0 < py, pa, 01, 02 < 00, pa < p1, 01 < py < Oy. Assume that vy, vy € W(R"),
w1 € Qg, and wy € Qy,. Suppose that V is admissible and

o1(z) = sup V(t)V(,t) ||w1||9_11,(0,t) €Q

~ 1 .
te(0,00) Ve

(i) If p1 < 0y, then

L1 eL0t, 0y oy (B 00 ) > LMy 0, oy (BP 02) P up e1(z) Sup V(t, @) [|wallos,toc)-

(ii) If 63 < p1, then

1Tl LMy, 0, 0y (R?,01)=LMpy0, o (R™ 02)

[e'e) ;0

p1—02

~ sup maz)( / v<t,x>m%d<—umué’;Z@;)» -
2€(0,00) 0 T

101
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Theorem 2.5. Let 0 < py, po, 01, 02 < 00, po < p1 and ps < min{by,0s}. Assume that
v1,v2 € W(R™), wy € Wy, and wy € Qg,. Suppose that V is admissible and

1
© 91—p2
o2(z) = ( [, opr d( Hmuefzag’?)) co ..
0
(i) If max{py, 01} < 0, then
(RN 1011 (R01) = LM 9y o (R7,02) ™7 zes(lézo) pa2(z) tes(ggo) V(t, @)|w2los, )

+ eIz 0.00) S V(1) [lw2los, 1,00

(ii) If p1 < 0y < 64, then

H I ” LM, p101, WI(R ,vl)—>LM 2605, w2(R ,’Ug)

o0 010201 —py ~ P O1—02
z( [ ® *( sup v<t,x>ucu2||92,<t,oo>)
0

te(0,00)
1
» e
y d( _ ||wl||9hgojg;2>)

+llwillg, 0,00 Sup V()llwzllos (1,005

(111) If 91 < 92 < P1, then

H I H ‘LM p161, Wl(R ,’1)1)—>LM 20o, “’Z(R ,UQ)

1
0 Ty
< s @ [Tyt ertal i)
z€(0,00) 0
1
oo P p1—02
ol ([ 0P = i)

(iv) If 62 < min{py, 61}, then

1]l LMy, 0, 0y (R™,01)=LMpy0, o (R? 02)

61 —0o

~ (/OO 902(1’)%\7(1‘)01—#& (/oo V(t’x>pl_)62d( _ HWQHZQ);I;G;))) P1—05
’ 0
a1
X d( ||w1||9192;vcp)2)) o
OO 1
el ([} V00 =t ))

Theorem 2.6. Let 0 < 0; < p < 0y < co. Assume that vy, v, € W(R™) N C(R"), w; € Qp,
and wsy € QQQ.

HI||CLMpgl,wl(R",vl)ﬁLMpgz,“Q(R",vg)% sup H”W1||9711,(0,|.|)“M7U;1U27B(07t)||W2H02,(t,oo)-
te(0,00)
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Theorem 2.7. Let 0 < 61, 05 < 00 and 0 < p < min{6y,05}. Assume that vi,vo € W(R")
such that vy vy € C(R™). Suppose that w; € Qy,, wy € Qy, and

0 < [lwy * llossp @0 < 00

holds for all x > 0.
(1) [f 91 S 02, then

1] °LMpo, 0y (R™,01)—=LMpg, u (R™,02)

~ sup (V(,Z')el*}p/ d<—Hw1H9197%;‘3)>
z€(0,00) x

1
v y e
- v<t>9ﬁpd( _ leuel,@ﬁ’)) o2 lln oo

+llwillg, 0,00 S V{E)llwsllos .00

7m)
(11) [f 92 < 91, then

H I H °LMpo, wy (R™,01)—=LMpgy o (R™,v2)
01 —09

oo 00 » 95—p
()
0 x
ﬁ
0 102
xd( - !\wll\el,@’;>)
61 —6o
oo x B Oo—p ~
; ( / ( / v<t>9ﬁpd( _ uwluefzojf)) P @) w002,
.
) 102
><d< _ ||w1||91@1;))

+ w1l 0.00) Sup V() |walos.¢.00)-

. 91—)92
<0sup v<7>uwu@,<m>)

<7<z

3 Proofs of main results

Before proceeding to the proof of our main results we recall the following integration in polar
coordinates formula.

We denote the unit sphere {z € R" : || = 1} in R” by S*~!. If 2 € R"\{0}, the polar
coordinates of = are

r=lz|€(0,00), o' =-— €5
]

There is a unique Borel measure o = 0,,_; on S"! such that if f is Borel measurable on R"
and f >0 or f € L'(R"), then

f(z)dr = /OO frayr"tdo (2 )dr
R7 0o Jsn-1

(see, for instance, [15, p. 78|).
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It should be noted that “LM,, g, o, (R™,v1) % LM,,0, 0 (R™,v2) when 0 < py, pa, 01, 62 < o0
and p; < po, where v;,v5 € W(R"), w; € Qp, and wy € Qp,. To see this, assume that
‘LM, 0, w, (R, v1) < LM,,0, w, (R™, v9) holds. Then there exist ¢ > 0 such that

HfHLMpQGQ,wQ(Rn,UQ) S C Hf”cLMplgl‘wl(Rn,’Ul)
holds for all f € 9MT(R™). Let 7 € (0,00) and f € M(R™): supp f C B(0,7). It is easy to see
that
HfHLMp292,w2(Rn,’UQ) = H Hpr27'U2,B(O,t)“927“}27(0700)
> HHf”p2vv2vB(07t)H@g,wg,(ﬂ—,oo)
2> [|w2lloz. 7,00 [ fllp,02, B0 (3.1)

and

||f|| °LMp, 0, 0 (R™01) = HHf||p1,v1,°B(0,t)Hgl’wh(opo)
- HHme,vLCB(OJ)Hel,wh(o,r)
< lwrlloy. ) [1fllpr.or.B0.7)- (3.2)
Combining (3.1) with (3.2), we can assert that

w2 |6y, (r,00) I|.f lp2.va, B0,y < € llwtlloy 0.7 1 llps o, B0,7)-

Since w; € Qp, and wy € Qy,, we conclude that L, (B(0,7),v1) < L,,(B(0,7),vs), which is a
contradiction.
The following lemma is true.

Lemma 3.1. Let 0 < py, po, 01, 02 < 00, poy < p1 and ps < 0. Assume that vi,ve € W(R"),
w1 € Wy, and wy € Qy,. Then
X0 eLat, g, oy (B 01) 5 LMy 0, ) (BT 02)

(8l M
LMy, 04 oy (B? 01)— L (02() H*g(-)) 72 )

= sup

gEMF(0,00) 9]l g2 w3 72,(0,00)

Proof. By duality, interchanging suprema, we have that

H I || CLMplel,wl (R",vl)HLMp292’w2 (R",Uz)

| F11 20,0, 0y (BT 02)

remr @) [l eraty o o @ 00)

1 ( /0 b ( /B | J@pnr dx) o(7) dT) "

sup sup T
fem+ (Rn) Hf” CLMp1917w1 (R7,v1) g€MF(0,00) ||.g|| p29
ﬁ,w;m,(&oo)
o 3
([([  rorutr ) )
= sup L sup 0 BO7)
> Femt (R 1N oy, o, oy BP0

gEM+(0,00) || || P2
Hg‘lgzefzpz’w;pa(opo)
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Applying Fubini’s Theorem, we get that

[ 1]] LMy, 0, 0y (R?,01)—=LMpy 0, o (R 02)

43

1 ([ saror( NG ) d)

= sup - sup

gEM*(0,00) HQHE fem+(rRn) 1Nl ezas 210701 (R™,01)
wy 72 ,(0,00)
By—py 2
—— (3.3
= su 1y - .
gem+ (%700) Hg” i CLMplel,wl (Rnﬂ}l)‘)LPQ (v2(')H*g(|'|)p2 )
W,w;m ,(0,00)
O
Proof of Theorem 2.4. By Lemma 3.1, we have that
I1]] °LMp, 0, 0y (R?,01)=LMpy g, w0 (R? 02)
1
e — 1., s
9EMH(0,00) || (|73 1011 (B01) = Ly (v2( g ()72 )
M-
05—py "2 ,(0,00)
Since 6; < py, applying [27, Theorem 4.2, (a)], we obtain that
” I H ‘LM P61, Wl(R ,’Ul)—>LM 2921‘4,2(]1&”,1)2)
0 el 100 Dl e oy | ™
~ sup ’
geM*(0,00) wy, 2,(0,00)
By using polar coordinates, we have that
[Hg(] - |)|| L vy 02)P2,B(0) T ”H*ng T 08 t>0,
1— p2
where
~ 1 PiP2_ 4
o(r) ::/ (v ') (ra’ )=z "o (2), r > 0.
Sn—l
Thus, we obtain that
|| I || °LMp, 6, 0wy (R?,01)=LMpy6, 0y (R ,v2)
sup ||w H* - P2
N . eto P ” 1||91 (0,t) | 9”1917172 S o)
geEMT(0,00) ||g|| 629%?2,“,;1’27(0,00)
Taking into account that
P1P2 1
/ dr—/ / (v wg) (ra)or=r2 do(2/)r™ tdr
Sn— 1
P1P2 ~ p1pP2
/ (v] tg)Pir2 (z) do = V (t)Pir2 (3.4)
B(0,t)
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(i) if p; < 65, then applying |21, Theorem 3.2, (i)|, we arrive at

1] LMy, 6, w, (R™01) = LMy, 0, 0 (R 02) 7~ x:’(légo) p1(z) tes(lélso) V(t, ) [|wslloz,t,00)3

(ii) if 65 < py, then applying |21, Theorem 3.2, (ii)|, we arrive at

|| I || CLMP1917w1 (anvl)‘)LMpQGQ,wg (R"ﬂ)g)
1
> P1—02
X~ sup gpﬂx) (/ V(t, x)p1—>02d( _ ||w2|‘§;,_(;9§o))) .
z€(0,00) 0

Remark 4. In view of Remark 3, if
lim sup V() ||w; ”fil,(o,t) = limsup V (¢)||w1]lo,,0,1)
t—0+ t—+o0

= limsup [|w1 |9, (0,1) = limsup leH;(&w =0,
—0+ t—-+o00

then ¢y € Q. _1 .

VvV P1—P2
Proof of Theorem 2.5. By Lemma 3.1, applying [27, Theorem 4.2, (c¢)|, we have that
|| I || CLMpIBI,wl (Rnﬂ)l)‘)LMpzﬂz,wz (R",’Uz)

(- DIz (o5 102 en

p1—p2’

~ | He_ll,(o,oo) sup

gEM*(0,00) ||9|| 9293,,2 wy P2 ,(0,00)

1
91-p2 Y py

> . — g2 1
([0 DIEE o ot~ el ) )

+ sup
geEM+(0,00) gl g w3 72,(0,00)
By using polar coordinates, we have that
11]] LMy, 0,y (R™01)=LMps0, o (R™,02)
H* - 2
) Il e,
~ [lwillg, 0,00 Sup
geMT(0,00) Hg” 92 P2 (0,00)
Op—pp’72 A7
o) 61 _ b1pg 916;1102 ) %
* _1]101-p2 1 -p2
</0 ||H g” - ﬁmglpz (© t)d( - ||w1||91,(0,t) ))
+ sup ot —
gEM(0,00) lal 732wy 72,(0,00)
Vs

= Cl + 02.
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Assume first that p; < 5. By using the characterization of the boundedness of the operator
H* in weighted Lebesgue spaces (see, for instance, [28, 25|), we arrive at

Cr % el ooy S0 V0) el o0

(i) Let 6; < 0y. By applying [21, Theorem 3.1, (i)], we obtain that

Cy =~ sup cpg(x) sup V(tyx)HWHBz,(EOO)'

2€(0,00) te(0,00)

Consequently, the proof is completed in this case.
(ii) Let 65 < 01. By using [21, Theorem 3.1, (ii)], we have that

0o 01 —09-0] —py ~ ) 01—02
Cy ~ (/ o) 2or2 V() 1_”’2( sup V(t,x)||w2||927(t,w))
0

te(0,00)

1
9 01—6o
< = lalpti))

and the statement follows in this case.
Let us now assume that 65 < p;. Then, using the characterization of the boundedness of
the operator H* in weighted Lebesgue spaces, we have that

1
B oo 0 p1—02

(iii) Let 6, < 65, then [21, Theorem 3.1, (iii)] yields that
oo ;9
P1—02
Cy =~ sup wz(x)</ V(t,x)p1ﬁ92d< — Hm”gi?teso))) ,
2€(0,00) 0 Y

and these completes the proof in this case.
(iv) If B3 < 6y, then on using [21, Theorem 3.1, (iv)|, we arrive at

61 —0o

oo 01 —09-01—=po ~ o P10
o ([ o) T ( [Tyttt healin)))"
0 0

1
_9 01—6o
< = lalptiz))

and in this case the proof is completed. []

Remark 5. Assume that po(z) < 0o, > 0. In view of Remark 2, if

01 01
1 t To-p2 © o t Toi-m
/ (/ w?) a0 dt:/ V(t)7 (/ wfl) C (8 dt = oo,
0 0 1 0

then o € Q__1 .

V P1—P2
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Proof of Theorem 2.6. By Lemma 3.1, applying [27, Theorem 4.2, (b)|, we get that

1] °LMpo, wy (R 01)—=LMpg, um (R™,02)

-p * .
tGS(}]];IsO) le H917(O,t) HH g(‘ ’) ”OO,(U;l'UQ)pyB(Ovt)

sup
geM*(0,00)

2wy P,(0,00)

Recall that, whenever F, G are non-negative measurable functions on (0, 00) and F' is non-
increasing, then

esssup F(t)G(t) = esssup F(t) esssup G(7). (3.5)
te(0,00) te(0,00) 7€(0,t)
Observe that
TH9(| - Dlloo ot e)r,B02) = S Sup (v W2 ) " H*g(lyl) = 1 H*9ll o 5,00 (3.6)
T7€(0, Y|=7

holds for all ¢ > 0, where o(7) := (sup|y|:T o7 (y)va(y))", 7> 0.
By using (3.5), we get that

sup ||W1”91 (0, t)”H*gHoo ,(0,t)

e ={ swp
LMo, oy (R™,01)—LMpg, o (R™ v2) p
geEMT(0,00) 92 _ w3 (0,00)
65—p Y2 O\
H* >z P
[ g|’oo,||w1||01p7(07‘)v(~),(0,oo)
= sup
gEM*(0,00) 2w, P,(0,00)

By using the characterization of the boundedness of H* in weighted Lebesgue spaces, we
obtain that

|| I || “LMpo, w; (R™,01)—=LMpg, un (R™,02)

1
~ 5 [l e wpnmmmm)<w)

te(0,00) s€(0,t

te(0,00) s€(0,¢) |y|

= sup ||wall6y,(t,00)
te(0,00)

=sm>Mwm@m<sm>wmwmﬁmww(ww@0

mm|wmﬁomm<wwu0

= sup ||w2||92,(too)‘||w1||91,0|I)H

t€(0,00 00,07 L2, B(0,t)

[]
Proof of Theorem 2.7. By Lemma 3.1, applying |27, Theorem 4.2, (d)], and using (3.6), we get
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that

|| I || cLMpgl’wl (]Rnﬂ)l)‘)LMp@z,wQ (anvQ)

H* z
<ol | s A0
(0090} e+ (0,00) ||9Hiw—r' (0,00)
0o O1p 91971) i
H* 91 P 01-p '
o H gHoo’U(Ot) leHQL(Ot)
+ sup

gEg)T+(0,00)
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Again, by using the characterization of the boundedness of H* in weighted Lebesgue spaces,

we obtain that _
Cs & [lwrllg,} 0,00 Sup V()llwzlles,(t,00)-

700)

(i) Let 6; < 65, then by [22, Theorem 4.1|, we have that
Cy = s (‘7(%)91””/ d( lel\el@&ﬁ?)

1
0 nor
- [ Hd( r|wlr|el,zoi€)) Ialls o0

and the statement follows in this case.
(ii) Let 65 < 6y, then |22, Theorem 4.4] yields that

01—09

) ) ; 2" " 01—02
-
Oy ~ / (/ d( leH(,hZOtﬁ’)) (Sup V(T)!lwllez,(mo)>
0 o O<r<zx
ﬁ
9 1—~b2
i =l )
01 —6o
00 T Op—p ~
+( [T ([ rama( - htaten)) T P@r el
0 0
ﬁ
0 102
< = oli%2)) "

and the proof is completed in this case.
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