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INTRODUCTION

@ Interacting dynamical systems
@ Statistical physics

@ Graph theory

@ COMPLEX NETWORKS

@ Multivariate time series — networks

e Nodes: measuring sites
e Edges: dependence, “connectivity” measures

@ weighted graph
@ threshold — binary graph
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INTRODUCTION

@ Multivariate time series — networks

e Edges: dependence, “connectivity” measure

o linear cross-correlation — the measure of first choice
@ Dependence measures

e Pearson correlation — linearity — Gaussianity
e Nonlinearity? hidden connectivity patterns?
@ Dependence measure — connectivity — topology

e dynamics (serial correlations)
e temporal and spatial sampling (time lags)

@ Connectivity in various time scales

e scale-specific networks
@ cross-scale interactions
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Nonlinearity in air temperature
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Figure 5: Average contribution of nonlinear dependences. Left: average mutual information for each location.
Middle: average nonlinear contribution to mutual information I. Right: average nonlinear contribution
relative to total mutual information (/g /I).
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Figure 6: Dependence patterns of
total mutual information. Bottom: linear mutual information

x locations with high relative nonlinear dependence contribution. Top:
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Nonlinearity in air temperature
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Figure 7: J‘_)\nu]\h of apparent nonlinear coupling between remote areas. The apparent nonlinearity is
attributable to yearly cyclicity in variance, sce text for details. Top: original data anomalies, middle: uni-
variately normalized anomalies, bottom: monthly ve scatterplots
of time series values, right column: variances of data for each month (black: 77 N, 45 E; white: 66 S, 85 W)

ance normalized anomalies. Left colur
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CLIMATE NETWORKS

@ Multivariate time series: gridded “reanalysis data” of
atmospheric variables: air temperature, pressure, humidity,
precipitation...

@ Here: near-surface air temperature anomalies
subtraction of seasonal means (mean Jan, mean Feb ...)
removal of the annual cycle
= fluctuations around seasonal means

@ grid 2.5° x 2.5° — 10* nodes

@ Pearson correlation — weighted network
@ thresholding — binary network

@ — graph-theoretical analysis
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CLIMATE NETWORKS

@ absolute correlations C;; = [c; |

@ adjacency matrix A;; = 1iff C;; > cr

@ threshold cr chosen to get network density o = 0.005
o degree centrality ki = - A

SN A jcos(\)

@ area weighted connectivity AWC; = S cos(n)
j=1 J

Aj — latitude of node j
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Connectivity vs. dynamics

Area Weighted Connectivity o = 0.005 for
NCEP/NCAR SAT anomalies — absolute correlations
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Connectivity vs. dynamics

@ stochastic process { Xj}:
indexed sequence of random variables, characterized by

p(X17' '-»Xn)
@ entropy rate of { X} is defined as

h= lim TH(X, ... X0)

n—oo N

@ dynamical systems: Kolmogorov-Sinai entropy
@ for a Gaussian process with spectral density function f(w)

1 T
hg = 27r/ log f(w)dw

—T
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Connectivity vs. dynamics

DYNAMICAL GPER ENTROPY OF TEMPERATURE ANOMALIES

LATITUDE

LONGITUDE

Entropy rates of temperature anomaly time series for each
node.
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Connectivity vs. dynamics

SURROGATE DATA
@ generated by a model
@ obtained by constrained randomization of the original data

@ |ID (scrambled) surrogate data

@ FT (AAFT, IAAFT ...) surrogate data
@ wavelet

@ recurrence

@ constrained randomization ...

FT surrogates: preserve magnitudes of Fourier coefficients
(spectra), randomize Fourier phases
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Significance testing using surrogate data

@ Use of bootstrap-like strategy (surrogate time series)
@ Ideally preserve all properties except tested (coupling)

Coupling destroyed in surrogates !
|
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| g Index
distribution on

original time \\ surrogate
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|

Surrogate Generating Algorithm
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Connectivity vs. dynamics
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CORRELATION

Surrogate cross-correlation for high-ER (green, blue) and
low-ER (orange, red) NCEP/NCAR grid-points. FT (green,
orange), AAFT (blue, red).
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Connectivity vs. dynamics

Mean absolute correlation of NCEP/NCAR SAT anomalies

with FT surrogate data
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Mutual information

two variables X and Y:
p(x), H(X), p(y), H(Y), joint PDF p(x,y), joint entropy H(X,Y)
mutual information

I(X; Y) = H(X) + X(Y) — H(X, Y)

static p(x) — entropy H(X)
characterization of dynamics — entropy rate

static joint p(x,y) — mutual information I(X;Y) (correlation)
similarity of dynamics — mutual information rate
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Mutual information rate

@ stochastic processes { X}, {Y;}, characterized by
p(X1, ..., Xn) and p(y1, ..., ¥n)
@ mutual information rate

1
(X‘],...,Xn; Y‘],...,Yn)

i(X;: ¥;) = lim_ 1
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Mutual information rate

@ for Gaussian stochastic processes { X}, {Y;},

characterized by power spectral densities (PSD) & x(w),
dy(w) and cross PSD ¢x y(w)

@ mutual information rate

' 1 27
i ¥) = = [ Toa(1 ~ b v(w)P)els
™ Jo
@ magnitude-squared coherence

> |Pxyv(w)?

X,y (W) = Dx(@) Oy (@)
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Gaussian ER and nonlinear DS
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Abstract

The possibility of a relation between the K Sinai entropy of a dy 1 system and the entropy rate of a
Gaussian process isospectral 10 time series generated by the dynamical system is numerically investigated using discrete
and continuous chaotic dynamical systems. The results suggest that such a relation as a nonlinear one-to-one function may
exist when the Kolmogorov-Sinai entropy varics smoothly with variations of the system parameters, but is broken in critical
stales near bifurcation points.

1. Entropy rates H(X1,. ., Xn)
i i ¢ : =- s xp) logp P .
Entropy rates will be considered as a tool for quanti- XZ Z plx )logp(x Xn)
tative characterization of dynamic processes evolving ! " @

me. Let {x;} be a time series, i.e., a series of mea-
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Gaussian ER and nonlinear DS
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Fig. 3. Further results for the Lorenz system: (a) The positive Lyapunoy exponents computed from the Lorenz equations for the parameter
7 varying from 33 to 120 in steps of 1. (b) The GP entropy rates estimated from 15 realizations of 16k time series (mean: thick line;
mean = SD: thin lines, coinciding with the mean) for different valucs of the parameter 7 varying as in (a). (c) Plot of GPER (the same
line codes as before) versus LE. (d), (e), (£) The same as (a). (b, (c). respectively, except for the parameter » varying from 33 to

200 in steps of 1.

r > 65 enters the bifurcation region (Figs. 3a, 3b and
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Route to synchronization

@ unidirectionally coupled Réssler systems

X1
Xo
X3

o=
Vo =
Vs =

—W1Xo — X3
= wiX1+ a3 Xo
= b1 +x3(x1 — 1)

—waYo — Y3+ €(X1 — yy)
w2y + as Yo
bo + y3(y1 — C2)

a=a =015 b1 =b,=02,¢ci=¢c =100
frequencies wy = 1.015, wo = 0.985.
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Route to synchronization and MIR, ER

LYAPUNOV EXPONENTS

ENTROPY/INFORMATION RATES
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Route to synchronization and MIR, ER

PHYSICAL REVIEW E, VOLUME 63, 046211
Synchronization as adjustment of information rates: Detection from bivariate time series

Milan Palus
Institute of Computer Science, Academy of Sciences of the Czech Republic, Pemhskaia Vi 2, 182 07 Prague 8, Czech Republic

Viadimir Koméek, Zbyrié Hmar, and Katalin $rbova
Clinic of Paediatric Neurology, 2nd Medical Faculty of Charles University,wlu 84, 150 06 Prague-8iotol, Czech Republic
(Received 5 July 2000; revised manuscript received 4 December 2000; published 28 Margh 2001

An information-theoretic approach for studying synchronization phenomena in experimental bivariate time
series is presented. “Coarse-grained” information rates are introduced and their ability to indicate generalized
synchronization as well as to establish a “direction of information flow" between coupled systems, i.e., to
discern the driving from the drivefiesponsesystem, is demonstrated using numerically generated time series
from unidirectionally coupled chaotic systems. The method introduced is then applied in a case study of
electroencephalogram recordings of an epileptic patient. Synchronization events leading to seizures have been
found on two levels of organization of brain tissues and “directions of information flow” among brain areas
have been identified. This allows localization of the primary epileptogenic areas, also confirmed by magnetic
resonance imaging and pasitron emission tomography scans.

DOI: 10.1103/PhysRevE.63.046211 PACS nunfter05.45.Tp, 05.45.Xt, 89.76.c

I. INTRODUCTION electroencephalografEEG) recordings of an epileptic pa-
tient. A conclusion is given in Sec. V.
During the last decade there has been considerable inter-
est in the study of the cooperative behavior of coupled cha- ||, COARSE-GRAINED INFORMATION RATES
otic systemg1]. Synchronization phenomena have been ob- . ) ) .
served_in_manv_nhvsiral and_hinlnnical qustems  Aven in Consider discrete random variablésand Y with sets of
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Route to synchronization and MIR, ER

LYAPUNOV EXPONENTS

ENTROPY/INFORMATION RATES
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Connectivity vs. dynamics in climate network

Area Weighted Connectivity o = 0.005 for
NCEP/NCAR SAT anomalies — absolute correlations

0,004726
0,003464
0,002539
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Connectivity vs. dynamics in climate network

Area Weighted Connectivity o = 0.005 for
NCEP/NCAR SAT anomalies — mutual information rate

0,01200
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0,006447
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0,001364
1,000E-03
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Scale-specific climate network, AWC, o = 0.005

NCEP/NCAR SAT anomalies — mutual information rate
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Scale-specific climate network, AWC, o = 0.005

NCEP/NCAR SAT anomalies — mutual information rate

scale/period 7-8 years
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Scale-specific climate network, scale/period 7-8 years

LATITUDE [DEG]

Top: AWC, ¢ = 0.005
Bottom NAO — SAT MIR coherence
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Scale-specific climate network, AWC, o = 0.005

NCEP/NCAR SAT anomalies — mutual information rate

scale/period 7-8 years and Gulf stream
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Phase dynamics approach for multiscale processes

FILTERING — HILBERT TRANSFORM
COMPLEX CONTINUOUS WAVELET TRANSFORM

ANALYTIC SIGNAL
W(t) = s(t) + j3(t) = A(t)e/*)

INSTANTANEOUS PHASE
¢(t) = arctan s(h)

INSTANTANEOUS AMPLITUDE
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CROSS-SCALE INTERACTIONS

Cross-frequency interactions
@ phase—phase
@ amplitude—amplitude
@ phase—amplitude

e neurophysiology: phase of slow oscillations (9, 6)
modulates the amplitude of fast oscillations ()
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CROSS-SCALE INTERACTIONS

CAUSAL PHASE — AMPLITUDE INTERACTIONS
in about a century long records of daily near-surface air
temperature records from European stations

@ phase ¢ of slow oscillations (around 10 year period)

@ amplitude A, of higher-frequency variability (periods 5
years and less)

(*] /(¢1(t), Ag(t + T)|A2(t), Ag(t — 77), ... ,Ag(t — mT]))
@ testing using surrogate data approach

e Fourier transform (FT) surrogate data (Theiler et al.)
e multifractal (MF) surrogate data (Palus)
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CAUSAL PHASE — AMPLITUDE INTERACTIONS
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CAUSAL PHASE — AMPLITUDE INTERACTIONS
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CONCLUSION

@ Interactions within different scales — scale specific
networks
@ Interactions across scales

e cross-scale network in a site
e cross-scale (tele)connections between sites/nodes

@ Complex multigraphs with nodes connected by a number
of links within and across scales
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CONCLUSION

Relevant publications:
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functional connectivity in randomly connected dynamical
systems. Chaos, 2012, Vol. 22, Issue 3, 033107.

Hlinka, J., Hartman, D., Vejmelka, M., Novotna, D.,
Palus, M. Non-linear dependence and teleconnections in
climate data: sources, relevance, nonstationarity.
Climate Dynamics, 2013.

Hlinka, J., Hartman, D., Vejmelka, M., Runge, J.,
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http://ndw.cs.cas.cz, http://www.cs.cas.cz/mp
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CONCLUSION
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