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GENERIC NORMS AND METRICS ON COUNTABLE
ABELIAN GROUPS

MICHAL DOUCHA

Abstract. For a countable abelian group G we investigate generic
properties of the space of all invariant metrics on G. We prove that
for every such an unbounded group G, i.e. group which has ele-
ments of arbitrarily high order, there is a dense set of invariant
metrics on G which make G isometric to the rational Urysohn
space, and a comeager set of invariant metrics such that the com-
pletion is isometric to the Urysohn space. This generalizes results
of Cameron and Vershik, Niemiec, and the author.

Then we prove that for every G such that G ∼=
⊕

N G there is a
comeager set of invariant metrics on G such that all of them give
rise to the same metric group after completion. If moreover G is
unbounded, then using a result of Melleray and Tsankov we get
that the completion is extremely amenable.

Introduction

For an unbounded countable abelian group G, J. Melleray and T.
Tsankov prove in [9] that the set of all invariant metrics on G which
make G extremely amenable is comeager in the Polish space of all
invariant metrics on G. That result motivated the work presented in
this paper. We focus on two main themes:

Groups isometric to the Urysohn space. In [2], Cameron and
Vershik prove that there is an invariant metric on Z which makes it
isometric to the rational Urysohn space. In particular, the completion
is isometric to the Urysohn space and thus the Urysohn space has a
structure of a monothetic abelian group. Niemiec in [10] proves that
the Shkarin’s universal abelian Polish group is isometric to the Urysohn
space and its canonical countable dense subgroup (which is

⊕
N Q/Z)

is isometric to the rational Urysohn space. Here we generalize these
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2 M. DOUCHA

results by proving that actually every unbounded countable abelian
group, i.e. group having elements of arbitrarily high order, admits
an invariant metric which makes it isometric to the rational Urysohn
space. In particular, this covers the cases of Z and

⊕
NQ/Z. We prove

something more general stated in the theorem below.

Theorem 0.1. For any unbounded countable abelian group G, the set
of all invariant metrics which make G isometric to the rational Urysohn
space is dense in the space of all invariant metrics on G. Moreover, the
set of all invariant metrics on G with which the completion is isometric
to the Urysohn space is dense Gδ.

Generic metrics. We motivate the next topic by the following facts.
We recall that in the Polish space of all countable graphs, those that are
isomorphic to the random graph form a comeager subset. One cannot
expect literally the same property for a metric structure, however it is
true that in the Polish space of all metrics on a countable set, those
whose completion is isometric to the Urysohn universal space form a
comeager set. Analogously, one can show that in the Polish space of
all norms on the countable infinite-dimensional vector space over Q,
those whose completion is isometric to the Gurarij space ([5]) form a
comeager set.

Our aim is to find generic metrics on countable abelian groups. There
are of course many countable abelian groups to consider. However, we
can prove the following result.

Theorem 0.2. Let G be a countable abelian group such that G ∼=⊕
NG. Then there is a comeager set of invariant metrics on G such

that all of them give rise to the same metric group after the completion.

When the group G is moreover unbounded we get the following.

Corollary 0.3. Let G be an unbounded countable abelian group such
that G ∼=

⊕
NG. Then there is a comeager set of invariant metrics

on G such that all of them give rise to the same metric group after
the completion which is isometric to the Urysohn space and extremely
amenable.

We also derive the extreme amenability of a universal abelian Polish
group.

Corollary 0.4. The universal abelian Polish group of Shkarin [13] and
Niemiec [10] is extremely amenable.
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1. Definitions and preliminaries

Throughout this paper, since we shall work only with abelian groups,
we adopt the additive notation.

A metric d on an abelian group G is invariant if for every a, b, c ∈ G
we have d(a, b) = d(a+c, b+c). A norm on G is a function λ : G→ R+

0

from G to non-negative reals which attains zero only at 0G ∈ G and
satisfies for every a, b ∈ G, λ(a) = λ(−a) and λ(a + b) ≤ λ(a) + λ(b).
There is a one-to-one correspondence between invariant metrics and
norms on abelian groups: for a norm λ, dλ(a, b) := λ(a− b) defines an
invariant metric, and for an invariant metric d, λ(a) := d(a, 0) defines
a norm.

Consider the set of all norms, respectively invariant metrics, on some
countable abelian group G. It can be viewed as a subset of RG, resp.
RG×G. In both cases, one can easily check it is a closed set, thus a
Polish space (we refer the reader to [7] for facts needed about Polish
spaces). It turns out it is more convenient for us to work with norms,
rather than invariant metrics, so we shall do so mostly in the sequel.

Let us denote the Polish space of norms on G by NG. Later, when
the group is known from the context, or it is fixed, we shall just write
N . Clearly, the space NG is homeomorphic with the Polish space of all
invariant metrics on G via the formula above.

The content of this paper is to investigate generic properties of the
space of norms on countable abelian groups. We recall one important
result of Melleray and Tsankov in that direction that we shall apply in
our paper.

The “official” definition of an unbounded abelian group is postponed
till later when it is used. Let us say it means the group contains
elements of arbitrarily high order.

Theorem 1.1 (Melleray, Tsankov, Theorem 6.4 in [9]). Let G be a
countable unbounded abelian group. Then the set E = {λ ∈ NG :
(G, λ) is extremely amenable} is dense Gδ in NG.

We note that Melleray and Tsankov formulated the theorem with
invariant metrics rather than norms which is, as noted above, however
equivalent.

Definition 1.2. Let G be an abelian group and A ⊆ G a symmetric
subset, i.e. A = −A, containing zero. A partial norm on A is a function
λ : A→ R+

0 satisfying the following requirements:

• λ(x) = 0 iff x = 0, for x ∈ A,
• λ(x) = λ(−x) for x ∈ A,
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• λ(x) ≤
∑n

i=1 λ(xi), where n is arbitrary, x, x1, . . . , xn ∈ A and
x =

∑n
i=1 xi.

If λ satisfies all the conditions except the first one, then it is called a
partial seminorm. If it satisfies the first and the second condition we
call it a partial pre-norm.

Lemma 1.3. Let G be an abelian group, A ⊆ G some symmetric subset
containing zero and λA : A → R+

0 a partial norm on A. Then for any
subset B with A ⊆ B ⊆ 〈A〉 ≤ G, where 〈A〉 is the subgroup of G
generated by A, there exists a partial seminorm λB : B → R+

0 which
extends λA. In particular, if A is finite and B = 〈A〉 = G, then λB is
a norm on G extending λA.

Moreover, if A is finite and λA is rational-valued, then so is λB.

Proof. Take b ∈ B and set

λB(b) = inf{
n∑
i=1

λA(ai) : (ai)
n
i=1 ⊆ A, b =

n∑
i=1

ai}.

Since B ⊆ 〈A〉, there exist (ai)
n
i=1 ⊆ A such that b =

∑n
i=1 ai. It

directly follows from the definition that λB satisfies all the conditions
of a partial seminorm and extends λA. Moreover, if A is finite, then the
infimum from the definition of λB might be replaced by the minimum.
It follows that λB in that case is a partial norm and if λA was rational-
valued, so is now λB. �

Remark 1.4. Notice that λB is actually the greatest extension of λA to
a partial seminorm on B; i.e. if λ : B → R+

0 is any partial seminorm
on B that extends λA, then λ ≤ λB; and if A is finite, then λB is the
greatest partial norm extending λA.

When we are given a symmetric subset A ⊂ G containing zero of
some abelian group and also some pre-norm ρ′ : A→ R+

0 then we can
get, using the same formula as in the proof above, a greatest partial
seminorm determined by ρ′; or, in the case A is finite, a greatest partial
norm determined by ρ′. We state that explicitly in the next fact and
omit its easy proof.

Fact 1.5. Let A ⊆ G be a symmetric subset containing zero of some
abelian group. Let ρ′ : A → R+

0 be a pre-norm. Then the formula,
applied for every x ∈ A,

ρ(x) = inf{
n∑
i=1

ρ′(xi) : x =
n∑
i=1

xi, (xi)
n
i−1 ⊆ A}

gives a partial seminorm on A, resp. partial norm on A if A is finite.
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In the text below we shall be interested in the possibilities how to
extend partial norms. We recall the notion of a Katětov function on
a metric space which corresponds, in the terminology of continuous
model theory, to the quantifier-free type over a metric space. Let X
be a metric space and f : X → R+

0 a function. It is called Katětov if
it satisfies for every x, y ∈ X

|f(x)− f(y)| ≤ dX(x, y) ≤ f(x) + f(y).

A Katětov function f without zeros can be then viewed as a prescrip-
tion of distances of a new point to the points of X in the sense that we
can define a one-point extension X ∪ {xf} and define the distance of
xf to a point y ∈ X as f(y).

We start with some algebraic definition of elements in abelian groups
that have the potential to realize Katětov functions. Fix G an abelian
group and A ⊆ G a subset. We recall that an oriented Cayley graph
CA
G of G with respect to the set A is an oriented graph such that

• the set of vertices is G;
• the set of oriented edges is the set {(g, g + a) : g ∈ G, a ∈ A}.

An oriented path from g ∈ G to h ∈ G is a sequence g = x0, . . . , xn =
h from G such that for every 0 ≤ i < n, (xi, xi+1) is an oriented
edge. In other words, there are elements a1, . . . , an ∈ A such that
xi = x0 +

∑i
j=1 aj, for 1 ≤ j ≤ n. The length of this path is n.

Definition 1.6. Let now G be again an abelian group and A ⊆ G a
symmetric subset (containing zero). Let g ∈ G \ A. We define the
distance of g from A in G, denoted by distG(g, A), as the length of the

shortest oriented path between g and A in C
A∪{g}
G .

Now let G be an abelian group, A ⊆ G a finite symmetric subset
containing zero and λA a partial norm on A. Set Ā = {a − b : a, b ∈
A} = A − A = A + A. Note that A ⊆ Ā and that Ā is again a finite
symmetric subset containing zero. Let λ̄A be the greatest extension of
λA onto Ā guaranteed by Lemma 1.3, and note that it induces a metric
dA on A defined as dA(a, b) = λ̄A(a− b) for a, b ∈ A. Let f : A → R+

be a Katětov function with respect to the metric dA. We are now
interested whether it is possible to find an element g ∈ G \ A and a
partial norm λ on {g − a, a − g : a ∈ A} ∪ Ā which extends λ̄A and
such that for every a ∈ A we have f(a) = λ(g − a).

Set m = min{min λ̄A(Ā \ {0}),min f(A)} and
M = max{max λ̄A(Ā),max f(A)}. Then we have the following propo-
sition.



6 M. DOUCHA

Proposition 1.7. Under the setting above, suppose that there exists
g ∈ G \ Ā such that dist(g, Ā) > 2M

m
. Then there exists a partial norm

λ on {g − a, a − g : a ∈ A} ∪ Ā which extends λ̄A and such that for
every a ∈ A we have f(a) = λ(g − a).

Proof. Set B = Ā ∪ {g − a, a − g : a ∈ A}. Note that B is also a
symmetric set containing zero. Define λ on B as follows: for any b ∈ B
set

λ(b) =

{
λ̄A(b) b ∈ Ā,
f(x) if b = g − x, or b = x− g.

Notice that there is no collision in the definition above since the sets
Ā and {g − a, a − g : a ∈ A} are disjoint. Indeed, if for some a ∈ A
and ā ∈ Ā we have g− a = ā, then there is an oriented edge between g

and ā in C
Ā∪{g}
G , and that is a contradiction with dist(g, Ā) > 2M

m
≥ 2.

Now it suffices to check that λ is a partial norm on B. The first
two conditions of the definition of a partial norm are easily checked.
We claim that also the last condition is satisfied. Suppose otherwise.
Then there are b ∈ B and (bi)

n
i=1 ⊆ B \ {0} such that b =

∑n
i=1 bi and

λ(b) >
∑n

i=1 λ(bi). We have that n < M
m

because M ≥ λ(b) > n ·m.
Moreover, without loss of generality we may also suppose that for

no i 6= j ≤ n we have bi = g − ai and bj = aj − g, for some ai, aj ∈ A.
Indeed, suppose otherwise. Then since g − ai + aj − g = aj − ai ∈ Ā
and the function f is Katětov we have that λ(g − ai) + λ(aj − g) =
f(ai) + f(aj) ≥ dA(aj, ai) = λ̄A(aj − ai). Thus we can replace the pair
bi, bj by aj − ai.

Case 1: b ∈ Ā. We claim that there must be some i ≤ n such that
bi is equal to g − a or a− g for some a ∈ A. Indeed, otherwise we get
into a contradiction since λ̄A is a partial norm. By the argument in the
paragraph above there is a single sign ε ∈ {1,−1} such that for every
bi /∈ Ā we have bi = ε · g − ε · ai for some ai ∈ A. Suppose that ε = 1,
the other case is analogous. It follows that there is some 0 < k ≤ n
such that b = k · g +

∑n
i=1 ci, where (ci)

n
i=1 ⊆ Ā. Thus there is an

oriented path from g to b in C
Ā∪{g}
G of length k − 1 + n < 2n which

contradicts that dist(g, Ā) > 2M
m
> 2n. Indeed, set e0 = 0 and ei = g,

for 1 ≤ i ≤ k − 1, and ej = cj−k+1, for k ≤ j ≤ k − 1 + n. Then

(xi = g +
∑i

j=0 ej)
k−1+n
i=0 is the desired path.

Case 2: b = g− a, or b = a− g, for some a ∈ A. Let us say b = g− a,
the other case is analogous. Suppose at first that for all i ≤ n we have
bi ∈ Ā. Since g −

∑n
i=1 bi = a, if we set x0 = g and xj = g −

∑j
i=1 bi,
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for 1 ≤ j ≤ n, we get that x0, . . . , xn is an oriented path from g to a

in C
Ā∪{g}
G which is again a contradiction with dist(g, Ā) > 2M

m
.

Thus we suppose that for some i ≤ n we have bi /∈ Ā. As in Case
1 we may suppose that there is a single sign ε ∈ {1,−1} such that for
every bi /∈ Ā we have bi = ε · g − ε · ai for some ai ∈ A.

Suppose at first that ε = −1. Then there is some 1 < k ≤ n + 1
such that k · g =

∑n
i=1 ci, where (ci)

n
i=1 ⊆ Ā. Thus we get an oriented

path of length k − 1 + n− 1 < 2n from g to cn in C
Ā∪{g}
G which again

contradicts that dist(g, Ā) > 2M
m

.
Now suppose that ε = 1. Suppose without loss of generality that

b1 = g− a1, for some a1 ∈ A. Then, since n > 1,
∑n

i=2 bi = a1− a ∈ Ā.
If there are indices 2 ≤ i ≤ n such that bi = g − ai, for some ai ∈ A,
then there is some 0 < k ≤ n − 1 so that a1 − a = k · g +

∑n−1
i=1 ci,

where (ci)
n−1
i=1 ⊆ Ā. As above, this again leads to a contradiction with

dist(g, Ā) > 2M
m

.
Thus suppose that for every 2 ≤ i ≤ n we have bi ∈ Ā. Then

we claim that we may suppose that n = 2. Indeed, we have that∑n
i=2 bi = a1 − a ∈ Ā and thus λ̄A(a1 − a) ≤

∑n
i=2 λ̄A(bi). So we are

left with the case that

λ(g − a) = f(a) > λ(g − a1) + λ(a1 − a) = f(a1) + λ̄A(a1 − a) =

f(a1) + dA(a1, a),

which is again a contradiction with the fact that f is Katětov. �

Definition 1.8. We shall call an abelian group G unbounded if it
either contains an element of infinite order or it contains elements of
arbitrarily high finite orders.

Lemma 1.9. Let G be an unbounded abelian group, A ⊆ G a finite
symmetric subset containing zero and R > 0 a real number. Then
there exists g ∈ G such that dist(g, A) > R.

Proof. Set B = {n1 · a1 + . . . + ni · ai : a1, . . . , ai ∈ A, n1, . . . , ni ≥
0, n1 + . . . + ni ≤ R}. Note that B is again finite symmetric and
containing zero. It suffices to show that there is g ∈ G such that
n · g /∈ B, for every 0 < n ≤ R. Indeed, suppose we have found
such g ∈ G, yet still dist(g, A) ≤ R. Then there exists a sequence
(ci)

n
i=1 ⊆ A ∪ {g}, where n ≤ R, such that g +

∑n
i=1 ci ∈ A. Without

loss of generality, we may suppose that there is some 1 ≤ j ≤ n+1 such
that ci = g if and only if i < j. Then b =

∑n
i=j ci ∈ B and j · g = −b,

a contradiction.
If there is b ∈ B such that b has infinite order, then it clearly suffices

to take N ·b, for N sufficiently large, as g. So suppose that every b ∈ B
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has finite order. Let N be the maximum of orders of elements from B.
Suppose there is no such g ∈ G, thus for every g ∈ G there are n ≤ R
and b ∈ B such that n · g = b. However, then the order of every g ∈ G
is bounded by R · N . That is a contradiction with unboundedness of
G. �

2. Groups isometric to the rational Urysohn space

We recall here that the Urysohn universal metric space U is the
unique Polish metric space (i.e. complete and separable) containing
isometrically every separable metric space (containment of every finite
metric space is enough) and satisfying the property that a partial isom-
etry between two finite subsets extends to an autoisometry of the whole
space. It was constructed by Urysohn in [14]. We refer to Chapter 5
in [12] for more information about this space.

The Urysohn space has one distinguished countable dense set which
is called the rational Urysohn space and denoted by QU. It is the
unique countable metric space with rational distances that contains
isometrically every finite rational metric space and again has the prop-
erty that any partial isometry between two finite subsets extends to an
autoisometry of the whole space. The following well-known fact gives
another characterization of QU which we will use.

Fact 2.1. Let X be a countable metric space with rational distances.
Then X is isometric to QU iff for every finite subset F ⊆ X and every
rational Katětov function f : F → Q there exists x ∈ X realizing f ,
i.e. ∀y ∈ F (d(x, y) = f(y)).

Lemma 2.2. Let G be an abelian group, F ⊆ G a finite symmetric
subset containing zero and let ρ be a partial norm on F . Then for any
ε > 0 there exists a rational partial norm ρR on F such that for any
f ∈ F we have |ρ(f)− ρR(f)| < ε.

Proof. Enumerate F as (fi)
n
i=1 such that for i < j ≤ n we have

ρ(fi) ≥ ρ(fj), and fn = 0. Let δ = min{ε,min{|ρ(f) − ρ(g)| : f, g ∈
F, ρ(f) 6= ρ(g)}}. Moreover, choose an (not necessarily strictly) in-
creasing sequence of positive real numbers (ri)

n−1
i=1 such that

• for any i, j < n if ρ(fi) = ρ(fj), then ri = rj;
• for any i < n we have ri < δ and ρ(fi) + ri ∈ Q.

Now for i < n we define ρR(fi) = ρ(fi) + ri, and ρR(fn) = 0. We
claim ρR is as desired. Clearly, it is rational and for any i ≤ n we have
ε > ri = ρR(fi)− ρ(fi) ≥ 0. If we check that ρR is a partial norm then
we will be done.
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First, for any i ≤ n we have ρR(fi) = 0 if and only if fi = fn = 0,
and also for any i < j < n, if fi = −fj, then ρR(fi) = ρR(fj). So
it remains to check that for any i1, . . . , ik, i < n such that fi = fi1 +
. . . + fik we have ρR(fi) ≤ ρR(fi1) + . . . + ρR(fik). Notice that we
have ρR(f1) ≥ . . . ≥ ρR(fn) = 0 since for j < l ≤ n, ρ(fj) = ρ(fl) if
and only if ρR(fj) = ρR(fl), and otherwise we have ρ(fj) > ρ(fl), so
ρR(fl) = ρ(fl) + rl ≤ ρ(fj) < ρR(fj). So if for some j ≤ k we have that
ij ≤ i, then ρR(fi) ≤ ρR(fij) and we are done. Otherwise, for all j ≤ k
we have i < ij. Then since ρR(fi)− ρ(fi) = r1 ≤ ri1 = ρR(fi1)− ρ(fi1),
so

ρR(fi) = ρ(fi) + ri ≤ ri1 +
k∑
j=1

ρ(fij) ≤
k∑
j=1

ρR(fij).

�

Theorem 2.3. Let G be a countable unbounded abelian group. Then
there exists a norm λ on G such that (G, λ) is isometric to the rational
Urysohn space.

Moreover, the set of all norms on G which make G isometric to the
rational Urysohn space is dense.

Proof. The proof uses Lemmas 1.9 and 1.3, and Proposition 1.7 and
follows the standard construction of the rational Urysohn space. Enu-
merate G as {gn : n ∈ N} and let {(Ai, fi) : i ∈ N} be an enumeration
with infinite repetition of all pairs (A, f), where A is a finite rational
metric space and f : A→ Q a rational Katětov function over A.

By induction, we shall produce finite symmetric sets Fi, i ∈ N0, con-
taining zero, with partial rational norm λi on Fi such that for every
n, Fn ⊆ Fn+1 and λn ⊆ λn+1, G =

⋃
n Fn, and such that G with the

metric induced by the norm λ =
⋃
n λn is isometric to the rational

Urysohn space.

Set F0 = {0} and let λ0 be the trivial norm on F0. Now suppose that
for some even n, Fn and λn on Fn have been defined. We define Fn+1

and λn+1. Take the element g = gn/2+1. If g ∈ Fn then we do nothing,
i.e. set Fn+1 = Fn and λn+1 = λn. So suppose that g /∈ Fn. We set
Fn+1 = Fn ∪ {g,−g}. We need to extend λn. We distinguish cases:

• g ∈ 〈Fn〉: then we use Lemma 1.3 to extend the partial norm
λn on Fn to a partial norm λn+1 on Fn+1,
• g /∈ 〈Fn〉: then we can set

(1) λn+1(a) = λn(a) if a ∈ Fn,
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(2) let m be the minimal positive integer such that for some
f ∈ Fn \ {0}, m · g = f ; if no such m exists (then in
particular, g has an infinite order), or f = 0, then we set
λn+1(g) = λn+1(−g) = 1; otherwise, we set λn+1(g) =
λn+1(−g) = λn(f)/m.

In any case, it is easy to check that λn+1 is a partial norm on
Fn+1.

Now suppose that for some odd n, Fn and λn on Fn have been defined.
Set Gn = F̄n = {a−b : a, b ∈ Fn} and extend λn to ρn on Gn by Lemma
1.3. Then ρn induces a metric dn on Fn, as usual, by dn(a, b) = ρn(a−b),
for a, b ∈ Fn.

Set (A, f) = (An+1
2
, fn+1

2
). If there is no subset of (Fn, dn) isometric

to A then do nothing and set Fn+1 = Fn and λn+1 = λn. Otherwise,
take some subset B ⊆ Fn isometric to A and consider f to be defined
on B ∼=iso A. We can clearly extend f to the whole Fn, still denoted by
f , so that it is still Katětov and rational-valued. Just set for instance
f(x) = min{f(a) + dn(a, x) : a ∈ B}, for x ∈ Fn.

Set m = min{min ρn(Gn \ {0}),min f(Fn)} and
M = max{max ρn(Gn),max f(Fn)}. By Lemma 1.9 we can find some
element g ∈ G such that dist(g,Gn) > 2M

m
. Then by Proposition 1.7

we can extend Gn to F ′n+1 = Gn ∪ {g − a, a − g : a ∈ Fn} and ρn to
a partial norm λ′n+1 on F ′n+1 such that f(x) = λ′n+1(g − x) for every
x ∈ Fn. If there was a unique isometric embedding of A into (Fn, dn)
then we are done. Otherwise, we consecutively repeat the above pro-
cedure for all other isometric embeddings of A into Fn enlarging F ′n+1

to F ′′n+1, then to F ′′′n+1, etc. The last obtained set is Fn+1.

When the induction is finished we have that G =
⋃
n Fn since at the

n-th step, for even n, we have guaranteed that gn/2+1 is contained in
Fn+1. Moreover, G with the metric induced by the norm λ =

⋃
n λn

is isometric to the rational Urysohn space. By Fact 2.1 it suffices to
check it satisfies the rational one-point extension property. However
if we take some finite B ⊆ G and one-point extension determined by
a rational Katětov function f on B, then we can find n such that
B ⊆ F2n−1, B is isometric to An and f on B corresponds to fn on An.
Then we have guaranteed that the Katětov function is realized in F2n.

Finally, we show how to get the “moreover part” from the statement
of the theorem, i.e. that the set of norms with which G is isometric to
the rational Urysohn space is actually dense.
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Take any finite symmetric subset F ⊆ G containing zero, let ρ be an
arbitrary partial norm on F and ε > 0 arbitrary. Then using Lemma
2.2 we get a partial rational norm ρR on F such that for every f ∈ F
we have |ρ(f)−ρR(f)| < ε. We just set F0 = F and λ0 = ρR. Then we
continue the induction as above and obtain at the end a norm λ with
which G is isometric to the rational Urysohn space and is ε-close on a
finite subset F to the partial norm ρ. �

Corollary 2.4. If G is unbounded, then the set of norms
{λ : (G, λ) is isometric to U} is comeager.

Proof. Consider the set of norms λ on G satisfying the following con-
dition:

(2.1) ∀ε > 0∀F ⊆ G finite symmetric and containing zero,

∀f : F → Q Katětov with respect to F̄

∃g ∈ G∀a ∈ F (|f(a)− λ(g − a)| < ε).

It is well-known and straightforward to prove using standard arguments
that for any λ satisfying (2.1) we have that the completion (G, λ) is
isometric to the Urysohn space.

Moreover, an immediate computation gives that (2.1) is a Gδ condi-
tion. Any norm λ with which G is isometric to the rational Urysohn
space certainly satisfies (2.1), thus it follow from Theorem 2.3 that the
condition defines a dense Gδ set. �

The proofs of Theorem 2.3 and Corollary 2.4 also conclude the proof
of Theorem 0.1.

Remark 2.5. We note that there is one example in the literature of a
countable abelian group which admits a norm which make it isomet-
ric to the rational Urysohn space, yet it is not unbounded. It is the
countable Boolean group (see [11]). The case of exponent 2 is obviously
special and it is open whether other bounded countable abelian groups
admit such a norm (see the open problems in [10], where it is proved
that groups of exponent 3 do not admit such a norm). We conjecture
that they do not.

3. Generic norms

For a norm λ on G denote by (G, λ) the completion. We shall call
a norm λ on a countable abelian group G generic if the set {ρ ∈ NG :

(G, λ) ∼= (G, ρ)} is comeager. In other words, a countable abelian
group G admits a generic norm if all the norms on G except those
coming from a meager set give rise to the same normed group after the
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completion. It follows from Theorem 1.1 that if λ is a generic norm
on a countable unbounded abelian group G, then (G, λ) is extremely
amenable.

Let us start with the following easy to check and well known observa-

tion. If (G, λ) is a normed abelian group and g ∈ G then limn→∞
λ(n·g)
n

exists and is equal to infn
λ(n·g)
n

. Following Niemiec in [10], by O0 we
denote the class of those abelian normed groups (G, λ) such that for all

g ∈ G, limn
λ(n·g)
n

= 0. The next lemma shows that if there is a generic
norm λ on G, then necessarily (G, λ) ∈ O0.

Lemma 3.1. For every countable abelian group G the set N0 ⊆ NG of
those norms λ on G such that (G, λ) ∈ O0 is dense Gδ.

Proof. First we check that N0 is Gδ. We have λ ∈ N0 if and only if

for all g ∈ G and every ε > 0 there exists n ∈ N such that λ(n·g)
n

< ε,
which is certainly a Gδ condition.

To show that it is dense it suffices to show that the set of bounded
norms is dense, since bounded norms clearly belong to N0. That is
however immediate. Take some basic open neighborhood of some λ′

given by a finite set A ⊆ G and some ε > 0 (the ε will be however
irrelevant). Let M = max{λ′(g) : g ∈ A} + 1 and define a norm λ as
min{λ′,M}. �

From now on, we shall call norms λ (on some G) such that (G, λ) ∈
O0, N0-norms.

Definition 3.2. Let G be a countable abelian group. We call G
infinitely-summed if G ∼=

⊕
n∈NG.

In particular, notice that if non-trivial G is infinitely-summed then
it is not finitely generated.

Let G be a non-trivial infinitely-summed countable abelian group.
Write G as

⊕
nGn, where for each n ∈ N, Gn

∼= G. For each i ∈ N, let
φi : G1 → Gi be an isomorphism. Fix some infinite sequence (d′n)n ofG1

such that for every n, d′n+1 /∈ 〈d′i : i ≤ n〉, and G1 = 〈d′n : n ∈ N〉. Let
D = {φi(d′n) : i, n ∈ N}, i.e. D generates G. Fix also an enumeration
{dn : n ∈ N} of D. For every set of integers (finite in all cases in
the sequel) A ⊆ N, let FA ≤ G be the subgroup 〈di : i ∈ A〉. Note
that for any finite A ⊆ N there exists finite A′ ⊆ N disjoint from A
and a bijection φ : A→ A′ which uniquely determines an isomorphism
between φ̄ : FA → FA′ determined by sending di to dφ(i) for i ∈ A. Let
Φ be the set of all isomorphisms between finitely generated subgroups of
the form FA and FA′ which are determined by some bijection between
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A and A′. Obviously, for most choices of generating sets D, not all
bijections between two finite subsets A,A′ ⊆ N of the same size give
rise to isomorphisms between FA and FA′ , which do not have to be
isomorphic at all. We write A ≡ A′ if there does exist a bijection
between A and A′ which gives rise to an isomorphism between FA and
FA′ . If we want to specify the isomorphism, we write A ≡φ A′, where φ
is the bijection between A and A′ and φ̄ the corresponding isomorphism
between FA and FA′ .

Also, for each finite A ⊆ N, let | · |A : FA → N be the length function
(i.e. norm) associated to the generating set {di,−di : i ∈ A}, i.e. the
distance from 0 in the graph metric of the Cayley graph of FA with
{di,−di : i ∈ A} as a generating set. If there is no danger of confusion
then we write just | · | instead of | · |A.

The next definition introduces a certain distance between two norms
ρ, resp. ρ′ on FA, resp. FA′ , where A ≡ A′.

Definition 3.3. Suppose that A,A′ ⊆ N are two finite subsets such
that A ≡φ A′ for some φ ∈ Φ. Suppose also that FA is equipped with
a norm ρ and FA′ with a norm ρ′. Then we say that (A, ρ) and (A′, ρ′)
are φ, ε-close and write (A, ρ) ≡φ,ε (A′, ρ′) if

sup
f∈FA\{0}

|ρ(f)− ρ′(φ̄(f))|
|f |A

< ε.

Note that if (A, ρ) ≡φ,ε (A′, ρ′) and (A′, ρ′) ≡ψ,δ (A′′, ρ′′), then
(A, ρ) ≡ψ◦φ,ε+δ (A′′, ρ′′).

We shall also need a notion of ‘closeness’ of two subgroups FA, FA′ ≤
G with respect to some norm λ on G and some φ ∈ Φ such that
A ≡φ A′.
Definition 3.4. Suppose that G is equipped with a norm λ. Let A,A′

be two finite subsets of naturals such that for some φ ∈ Φ we have
A ≡φ A′ and let ε > 0. Then we write δλφ(A,A′) < ε if for every a ∈ A
we have λ(da−φ̄(da)) = λ(da−dφ(a)) < ε. Notice that this is equivalent
to saying that for every non-zero f ∈ FA we have λ(f − φ̄(f)) < ε · |f |.
Again, we shall suppress the upper index λ from δλφ when it is clear
from the context.

Next lemma shows that the condition (A, ρ) ≡φ,ε (A′, ρ′) is deter-
mined on finite sets for N0-norms.

Lemma 3.5. Let A,A′ ⊆ N be two finite subsets such that A ≡φ A′.
Then for any N0-norm ρ on FA and any ε > 0 there exist a finite subset
C ⊆ FA and δ > 0 such that for any N0-norm ρ′ on FA′, if for every
a ∈ C we have |ρ(a)− ρ′(φ̄(a))| < δ, then (A, ρ) ≡φ,ε (A′, ρ′).
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Proof. To simplify the notation, we shall assume that φ is the identity.
Therefore we look for a finite subset C ⊆ FA and δ > 0 such that for
any N0-norm ρ′ on FA, if for every a ∈ C we have |ρ(a) − ρ′(a)| < δ,

then |ρ(x)−ρ′(x)|
|x| < ε, for every x ∈ F .

Since FA is a finitely generated abelian group it is isomorphic to a
sum of a finitely generated free abelian group F and a finite abelian
group K. Suppose first that FA is F , i.e. it is a finitely generated free
abelian group, and moreover suppose that the generators (di)i∈A are
the generators. Any x ∈ FA can be thus uniquely written as

∑
i∈A ki ·di.

For i ∈ A denote by |x|i the absolute value of ki. Now for any n ∈ N
set A′n = {x ∈ FA : ∀i ∈ A(|x|i ≤ n)} and An = {x ∈ FA : |x| ≤ n}.

We also set (see Claim 3.3 in [3]), for any k ∈ N

B′k = sup
x∈FA

min{|x− l · y|
|x|

: l ∈ N, y ∈ A′k, |l · y| ≤ 2|x|}

and

Bk = sup
x∈FA

min{|x− l · y|
|x|

: l ∈ N, y ∈ Ak, |l · y| ≤ 2|x|}.

Claim 3.6. There exists K and δ > 0 such that for every N0-norm ρ′

on FA, if |ρ(x) − ρ′(x)| < δ, for every x ∈ AK, then for every x ∈ FA
such that |x| > K we have ρ′(x)

|x| < ε/2.

Once the claim is proved we are done (with the case when FA is a
free abelian group with free generators). Indeed, use δ > 0 from the
previous claim and set as C the set AK . Then if ρ′ is a N0-norm on FA
which is δ-close to ρ on C, then for any x ∈ FA \ {0}

• if x ∈ C, then trivially |ρ(x)−ρ′(x)|
|x| < ε as we may assume that

δ < ε;

• if |x| > K, then by the claim we have ρ(x)
|x| < ε/2 and ρ′(x)

|x| < ε/2,

so |ρ(x)−ρ′(x)|
|x| ≤ ρ(x)+ρ′(x)

|x| < ε.

Proof of the claim. Set M = max{ρ(di) : i ∈ A}. By Claim 3.3 from [3]
there exists k′ ∈ N so that B′k < ε/(4M +ε/8). Since for every k′ there
is k so that we have Ak′ ⊆ A′k′ ⊆ Ak we get that Bk < ε/(4M + ε/8).

Now let K ′ > k be such that for every y ∈ Ak we have

ρ(m · y)

m
< ε/32

for every m ≥ K ′, which is possible since ρ is an N0-norm. Finally, let

K > 2K ′ · k be such that for every x ∈ AK′·k we have ρ(x)
K

< ε/16.
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We claim that K and δ = ε/32 are as desired. Take any N0-norm ρ′

on FA which is ε/32-close to ρ on AK . Take any x /∈ AK . We may find

some y ∈ Ak and l, such that l|y| ≤ 2|x|, so that |x−l·y||x| < ε/(4M+ε/8).

We claim that l ≥ K ′ since otherwise |l ·y| < K ′ ·k, so |x− l ·y| ≥ |x|/2,

so |x−l·y||x| > 1/2.

We have
ρ′(x)

|x|
≤ ρ′(l · y) + ρ′(x− l · y)

|x|
where

ρ′(x− l · y)

|x|
≤ (M + ε/32)|x− l · y|

|x|
< (M+ε/32)ε/(4M+ε/8) = ε/4.

So it suffices to show that ρ′(l·y)
|x| < ε/4. Write l as tK ′ + r, where

r < K ′. Note that t ≥ 1. Then we have

ρ′(l · y)

|x|
≤ t · ρ′(K ′ · y) + ρ′(r · y)

|x|
≤ 2t · ρ′(K ′ · y)

t · |K ′ · y|
+
ρ′(r · y)

K
.

Note that

2t · ρ′(K ′ · y)

t · |K ′ · y|
≤ 2

ρ′(K ′ · y)

K ′
≤ 2

ρ(K ′ · y) + ε/32

K ′
< 2(ε/32+ε/32) = ε/8

by the definition of K ′ and since ρ′ is ε/32-close to ρ on AK , and

ρ′(r · y)

K
≤ ρ(r · y) + ε/32

K
≤ ε/16 + ε/32 < ε/8

by the definition of K and again since ρ′ is ε/32-close to ρ on AK .

Now we suppose that FA is in general a sum of a finitely generated
free abelian group F and a finite group K. Let us however assume that
the given generators of FA are free generators of F together with all
the non-zero elements of K. Denote the length function on F by | · |F
and the length function on FA determined by the generators above by
| · |′. First we apply the result above for F with its free generators,
ρ � F and ε/4. We get some corresponding finite C ′ ⊆ F and δ > 0
such that δ < ε/2. Now let M = (max ρ(K)) + δ. Take some k ∈ N
such that C ′ ⊆ C = {x ∈ FA : |x|′ ≤ k} and M/k < ε/8. We claim
that now C ⊆ FA and δ > 0 are as desired. Let ρ′ be an arbitrary norm
on FA such that |ρ(a)−ρ′(a)| < δ for all a ∈ C. Take any z ∈ FA \{0}.
If |z|′ ≤ k, then |ρ(z)− ρ′(z)| < δ, so |ρ(z)−ρ′(z)|

|z|′ < ε, since δ ≤ ε/2. So

suppose that |z|′ > k and write z as x + u, where x ∈ F and u ∈ K.
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We have |x+ u|′ − |x|F ∈ {0, 1} and

|ρ(x+ u)− ρ′(x+ u)|
|x+ u|′

≤ |ρ(x)− ρ′(x)|+ ρ(u) + ρ′(u)

|x|F + 1
≤

|ρ(x)− ρ′(x)|
|x|F + 1

+
ρ(u) + ρ′(u)

k
< ε/4 + 2ε/8 + δ < ε.

Now suppose that the generators of FA are arbitrary. It is a well-
known and easy to observe that the length function | · |A and the length
function | · |′ from the paragraph above are bi-Lipschitz equivalent. In
particular, there is some L such that | · |A ≤ L| · |′. Thus we may apply
the result from the paragraph above for FA with the generators above
and with ε/L to obtain the result for FA with generators {da : a ∈ A}
and with ε. �

We present one more definition of a certain easily definable norm.

Definition 3.7. Let us denote a norm on some FC , for C finite, finitely
generated if it is obtained as an extension using Lemma 1.3 of some
partial norm defined on a finite symmetric subset of FC containing zero.

Moreover, call a norm on some FC , where again C is finite, bounded
finitely generated, if it is a bounded norm which is defined as a minimum
over a finitely generated norm and a positive constant. This constant
is called a bound of the norm.

Note that there are only countably many rational bounded finitely-
generated norms on a fixed countable abelian group, i.e. norms that
are defined as a minimum over a rational bound and a rational finitely
generated norm. We shall call them BRFG norms.

Claim 3.8. Let C ⊆ N be finite and let ρ be an N0-norm on FC.
Then for every ε > 0 there exists a BRFG norm ρR on FC such that
(C, ρ) ≡id,ε (C, ρR).

Proof of Claim 3.8. Fix C, an N0-norm ρ on FC and ε > 0. We use
Lemma 3.5 to find a finite set F ⊆ FC and δ > 0 such that for any N0-
norm ρ′ on FC , if |ρ(f)− ρ′(f)| < δ, for every f ∈ F , then (C, ρ) ≡id,ε

(C, ρ′). We may suppose that F is finite symmetric containing zero.
Then we use Lemma 2.2 to find a partial rational norm ρ′R on F such
that |ρ(f)− ρ′R(f)| < δ, for every f ∈ F . Then we take the extension
of ρ′R to the whole FC , obtained by Lemma 1.3. Finally we bound this
extension by maxf∈F ρ

′
R(f). This is the desired BRFG norm ρR. �

We now restate Theorem 0.2 here for the convenience of the reader
and start with its proof.
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Theorem 3.9. Let G be an infinitely-summed group. Then G admits
a generic norm λ.

From now on, fix a non-trivial infinitely-summed group G, the enu-
merated set of generators D = {dn : n ∈ N} as above, and the set of
bijections Φ as above.

Let G ⊆ N denote the set of all N0-norms λ on G satisfying the
following condition:

(3.1) ∀ε > ε′ > 0,∀A0 ⊆ A ⊆ N finite ∀ρA BRFG norm on FA

if (A0, ρA) ≡id,ε (A0, λ) then ∃A′ ⊆ N,∃φ ∈ Φ such that

(A, ρA) ≡φ,ε′ (A′, λ) and δλφ(A0, φ[A0]) < ε.

In order to prove Theorem 3.9, we shall prove that G is dense Gδ

and that for any λ, ρ ∈ G we have (G, λ) = (G, ρ). That will give that
G admits a generic norm. Moreover in case G is unbounded, we show
that there is λ ∈ G such that (G, λ) is isometric to the rational Urysohn
space. That will complete the proof of Theorem 3.9.

The first step showed in the next lemma is simple.

Lemma 3.10. G is Gδ.

Proof. Being N0-norm is a Gδ condition by Lemma 3.1, so we check
that the condition (3.1) is also Gδ.

That follows from the following observations. Fix ε > ε′ > 0, A0 ⊆
A ⊆ N finite and a BRFG norm ρA on FA. Then the implication from
(3.1), after rewriting it as a disjunction, gives a union of the following
two sets

{λ ∈ N : ¬(A0, ρA) ≡id,ε (A0, λ)}
and

{λ ∈ N : ∃A′ ⊆ N∃φ ∈ Φ ((A, ρA) ≡φ,ε′ (A′, λ) ∧ δλφ(A0, φ[A0]) < ε)}.

Using Lemma 3.5, which says that the relation ≡φ,ε is determined
on finite subsets for N0-norms, we get that the first set is closed and
the second one is open. In particular, both are Gδ since N is a Polish
space, so closed sets are Gδ. Since a union of two Gδ sets is again Gδ

we get that for fixed ε > ε′ > 0, A0 ⊆ A ⊆ N finite and a BRFG norm
ρA on FA the condition (3.1) determines a Gδ set.

Finally one can check that all the universal quantifiers in (3.1) can be
taken over countable sets which shows that (3.1) defines a Gδ subset.

�
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Next we want to show that all the norms from G give rise to the
same normed group after the completion. Note that the condition
(3.1) is similar to the condition on vector space norms which give rise
to the Gurarij space, the separable Banach space of almost universal
disposition constructed by Gurarij in [5]. The following proposition
is thus similar to the main result of [8] where the authors prove the
uniqueness of the Gurarij space.

Proposition 3.11. For any two λ, λ′ ∈ G we have that (G, λ) and

(G, λ′) are isometrically isomorphic.

Proof. Consider two norms λ, λ′ ∈ G. Let (ij)j be an enumeration of
N with an infinite repetition.

By induction, for every j ∈ N we shall construct two finite sequences
(aji )

2j−1
i=0 ⊆ N and (bji )

2j
i=0 ⊆ N such that

(1) for every j ∈ N, ij ∈ {aji : i ≤ 2j − 1} ∩ {bji : i ≤ 2j}, i.e. there

are k, k′ such that ij = ajk = bjk′ ;

(2) for every j ∈ N there are some φj ∈ Φ such that φj(a
j
i ) = bji ,

for every i ≤ 2j − 1, and

((aji )
2j−1
i=0 , λ) ≡φj ,1/22j−1 ((bji )

2j−1
i=0 , λ

′),

and ψj ∈ Φ such that ψj(b
j
i ) = aj+1

i , for every i ≤ 2j, and

((bji )
2j
i=0, λ

′) ≡ψj ,1/22j ((aj+1
i )2j

i=0, λ);

(3) for every j ∈ N we have

δλψj◦φj((a
j
i )

2j−1
i=0 , (a

j+1
i )2j−1

i=0 ) < 1/22j−1

and
δλ
′

φj+1◦ψj
((bji )

2j+1
i=0 , (b

j+1
i )2j+1

i=0 ) < 1/22j.

Note that in particular for every j ∈ N we have

(3.2) aj+1
i = ψj ◦ φj(aji ),∀i ≤ 2j − 1,

bj+1
i = φj+1 ◦ ψj(bji ),∀i ≤ 2j.

Suppose at first that such sequences have been constructed. Denote
by G the completion of (G, λ) and by G′ the completion of (G, λ′). By
(3), for each i ∈ N we have that the sequence (gji )j, where gji = daji

for

all i, j, is Cauchy in (G, λ), thus it has the limit, denoted by gi, in G.
Analogously by (3), for each i ∈ N the sequence (hji )j, where hji = dbji
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for all i, j, is Cauchy in (G, λ′) and we denote by hi the limit in G′.
We claim that 〈(gi)i〉 is a dense subgroup in G and 〈(hi)i〉 is a dense
subgroup in G′. We prove the former, the latter is analogous. Since G
is dense in G it suffices to show that for any g ∈ G and any ε > 0 there
exists g′ ∈ 〈(gi)i〉 such that λ(g′ − g) < ε. Take some finite C ⊆ N
such that g ∈ FC and let k = |g|C . There exists N such that for every
j ≥ N and i ≤ 2j − 1 we have

λ(gji − gi) < ε/k.

Also, by (1), for each c ∈ C we can find ic and jc ≥ N such that
gjcic = dc. Since |g|C = k, λ(gjcic − gic) < ε/k, for every c ∈ C, it follows
there is an element g′ ∈ 〈gic : c ∈ C〉 such that λ(g′ − g) < ε, and the
claim is proved.

Next we claim that the map sending gi to hi, for each i ∈ N, can be
extended to an isometric isomorphism Ψ : 〈gi : i ∈ N〉 → 〈hi : i ∈ N〉.
Take a finite subset S ⊆ N and integers (ki)i∈S ⊆ Z. Then

|λ(
∑
i∈S

ki · gi)− λ′(
∑
i∈S

ki · hi)| = lim
j→∞
|λ(

∑
i∈S

ki · gji )− λ′(
∑
i∈S

ki · hji )| ≤

lim
j→∞

∑
i∈S

|ki|/22j−1 = 0.

The first equality follows from the definition, the second inequality
follows from (2).

It follows that we may uniquely extend Ψ to G, which we shall still
denote by Ψ and which is an isometric isomorphism between G and G′.
It remains to find the sequences.

We will proceed by induction. We show the first odd and even steps
of the induction and then the general odd and even steps of the induc-
tion.

Set a1
1 = i1. Then by Claim 3.8 there exists a BRFG norm ρ1 on

F{a11} such that ({a1
1}, λ) ≡id,1/4 ({a1

1}, ρ1). By (3.1), using A0 = ∅
and A = {a1

1}, ε′ = 1/4, ε arbitrary bigger than ε′ and ρ1, there
exists b1

1 such that ({a1
1}, ρ1) ≡φ1,1/4 ({b1

1}, λ′) for some φ1 ∈ Φ, thus
({a1

1}, λ) ≡φ1,1/2 ({b1
1}, λ′). This finishes the first odd step.

Now if b1
1 = i1 then take as b1

2 an arbitrary natural number; otherwise,
take b1

2 = i1. By Claim 3.8 there exists a BRFG norm ρ2 on F{b11,b12}
such that ({b1

1, b
1
2}, λ′) ≡id,δ ({b1

1, b
1
2}, ρ2), where δ < 1/8 is sufficiently

small so that we still have ({a1
1}, λ) ≡φ,1/2 ({b1

1}, ρ2). Then by (3.1),
using A0 = {b1

1} and A = {b1
1, b

1
2}, ε = 1/2, ε′ = 1/8 and ρ2, there exist

a2
1, a

2
2 ∈ N such that
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• ({a2
1, a

2
2}, λ) ≡φ2,1/8 ({b1

1, b
1
2}, ρ2), for some φ2 ∈ Φ,

thus ({a2
1, a

2
2}, λ) ≡φ2,1/4 ({b1

1, b
1
2}, λ′),

• δφ−1
2 ◦φ1

({a1
1}, {a2

1}) < 1/2; in other words, λ(da11 − da21) < 1/2.

Now suppose that we have found sequences (an−1
i )2n−3

i=0 and (bn−1
i )2n−2

i=0 .
We shall find (ani )2n−1

i=0 and (bni )2n
i=0. Since by assumption we have that

((an−1
i )2n−3

i=0 , λ) ≡φn−1,1/22n−3 ((bni )2n
i=0, λ

′), again using first Claim 3.8

and then (3.1) we can find (ani )2n−2
i=0 and ψn−1 ∈ Φ such that

((bn−1
i )2n−2

i=0 , λ′) ≡ψn−1,1/22n−2 ((ani )2n−2
i=0 , λ),

and moreover

δψn−1◦φn−1((a
n−1
i )2n−3

i=0 , (ani )2n−3
i=0 ) < 1/22n−3.

If in ∈ (ani )2n−2
i=0 then we set an2n−1 to be any natural number. Otherwise,

we set an2n−1 = in.
Then analogously, using Claim 3.8 and (3.1), we find (bni )2n−1

i=0 and
φn ∈ Φ such that

((ani )2n−1
i=0 , λ) ≡φn,1/22n−1 ((bni )2n−1

i=0 , λ′),

and moreover

δφn◦ψn−1((b
n−1
i )2n−2

i=0 , (bni )2n−2
i=0 ) < 1/22n−2.

Again, if in ∈ (bni )2n−1
i=0 then we set bn2n to be any natural number.

Otherwise, we set bn2n = in. This finishes the induction and the proof.
�

To finish the proof of Theorem 3.9 we need to prove that G is dense.
Notice that so far we have not yet even proved that G is non-empty.
The next proposition will do.

Proposition 3.12. G is dense.
Moreover, if G is unbounded, then the subset {λ ∈ G : (G, λ) ∼=iso

QU} ⊆ G is dense.

Proof. Fix a basic open set in N . It is given by some partial norm
ρ on some, without loss of generality, finite symmetric subset F of G
containing zero, and some ε > 0. We may suppose that F is such that
for some finite C ⊆ N we have 〈F 〉 = FC . We use Lemma 2.2 to get
a rational partial norm ρ′R on F such that |ρ(f) − ρ′R(f)| < ε for all
f ∈ F . Then we use Lemma 1.3 to extend it to a rational finitely
generated norm on 〈F 〉 = FC and finally we make it bounded by some
rational constant to get a BRFG norm ρR on FC that agrees with ρ′R
on F .



GENERIC NORMS AND METRICS ON COUNTABLE ABELIAN GROUPS 21

Let us now enumerate all triples Tn = (Bn, An, ρn), where Bn ⊆ An ⊆
N are finite and ρn is a BRFG norm on FAn . Moreover, suppose that
there is an infinite repetition of each such a triple in the enumeration.

By induction, we shall construct an increasing sequence of finite sets
(Cn)n, i.e. Cn ⊆ Cm, for n < m, and an increasing sequence of bounded
rational norms (λn)n, i.e. λn ⊆ λm, for n < m, such that

(1) C1 = C and λ1 = ρR;
(2)

⋃
nCn = N;

(3) for each n, λn is a norm on FCn ;
(4) for every n, if there are B′n ⊆ Cn and φ′ such that

(B′n, λn) ≡φ′,1/2n (Bn, ρn),

then there are A′n ⊆ Cn+1 and φ such that

(An, ρn) ≡φ (A′n, λn+1),

i.e. φ induces an isometric isomorphism between (FAn , ρn) and
(FA′n , λn+1), and

δφ◦φ′(B
′
n, φ ◦ φ′[B′n]) < 1/2n.

We shall now proceed to the induction. The first step has been
already done, i.e. we set C1 = C and λ1 = ρR as obtained from the
claim above.

Let us now describe the general step. Suppose we have produced
a finite set Cn and a norm λn on FCn for n ≥ 1. Consider now the
triple Tn = (Bn, An, ρn). Suppose that there are some B′n ⊆ Cn and
φ′ ∈ Φ such that φ[B′n] = Bn and (B′n, λn) ≡φ′,1/2n (Bn, ρn). There
can be at most finitely many such B′n’s. To simplify the notation and
proof, we shall suppose there is just one such B′n ⊆ Cn, and actually
B′n = Bn, and thus φ′ = id. If there are more such finite subsets of Cn,
the procedure that follows is repeated (finitely many times). If there is
no such a finite subset B′n, then we set C ′n+1 = Cn and λ′n+1 = λn and
use the procedure below to extend C ′n+1 to Cn+1 and λ′n+1 to λn+1.

Thus we suppose that Bn ⊆ Cn and (Bn, λn) ≡id,1/2n (Bn, ρn). Since
G is infinitely-summed we can find A′n such that there is some φ ∈ Φ
which is a bijection between An and A′n inducing an isomorphism φ̄
between FAn and FA′n , and FCn ∩FA′n = {0}. Set C ′n+1 = Cn ∪A′n. We
shall now define a bounded rational norm λ′n+1 on FC′n+1

which extends
λn.
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For each c ∈ Bn, set hc to be min{1/2n, λn(dc) + ρn(dc)}. For x ∈
FCn ∪ FA′n ∪ {dc − φ̄(dc), φ̄(dc)− dc : c ∈ Bn} we set

χ(x) =


λn(x) if x ∈ FCn ,

ρn(y) if x = φ̄(y), y ∈ FAn ,

hc if x = ε(dc − φ̄(dc)), where c ∈ Bn, ε ∈ {1,−1}.

We use Fact 1.5 to get a partial norm λ′n+1 on FCn ∪ FA′n ∪ {dc −
φ̄(dc), φ̄(dc) − dc : c ∈ Bn}. Note that it is bounded by some K. Also
note that for each c ∈ Bn we have λ′n+1(dc− φ̄(dc)) ≤ 1/2n. We need to
check that for each x ∈ FCn ∪ FA′n we have λ′n+1(x) = χ(x). Then we
could use Lemma 1.3 again to extend λ′n+1 to a norm bounded by K on
FC′n+1

still denoted by λ′n+1. It will follow that (An, ρn) ≡φ (A′n, λ
′
n+1)

and that δφ(Bn, φ[Bn]) ≤ 1/2n.
So fix some x ∈ FCn∪FA′n . We need to check that for any x1, . . . , xk ∈

FCn ∪FA′n ∪ {dc− φ̄(dc), φ̄(dc)− dc : c ∈ Bn} such that x =
∑k

i=1 xi we

have χ(x) ≤
∑k

i=1 χ(xi).
We have two cases: x ∈ FCn and x ∈ FA′n . We shall treat only the

first one, the second is analogous.

So we suppose that x ∈ FCn . Since G is abelian we may suppose
that there are k1, k2 such that 0 ≤ k1 ≤ k2 ≤ k, for every 1 ≤ i ≤ k1

we have xi ∈ FCn , for every k1 < i ≤ k2 we have xi ∈ FA′n and for every
k2 < i ≤ k we have xi ∈ {dc − φ̄(dc), φ̄(dc) − dc : c ∈ Bn}. Moreover,
for every k2 < i ≤ k we may suppose that χ(xi) = 1/2n. Otherwise,
χ(xi) = λn(dc)+ρn(dc), for some c ∈ Bn, i.e. xi is equal to dc− φ̄(dc) or
φ̄(dc)− dc. In that case we would replace xi by a pair dc, −φ̄(dc), resp.

φ̄(dc), −dc without increasing the sum
∑k

i=1 χ(xi). Set z1 =
∑k1

i=1 xi,

z2 =
∑k2

i=k1+1 xi and z3 =
∑k

i=k2+1 xi. Since x = z1 + z2 + z3, it follows

that z3 = −z2 + φ̄−1(z2). Since (Bn, λn) ≡id,1/2n (Bn, ρn) we get that
φ̄−1(z2) ∈ FBn and |λn(φ̄−1(z2))− ρn(φ̄−1(z2))| < |z2|/2n. Since

k∑
i=k2+1

χ(xi) ≥ |z2|/2n,

we get that

k∑
j=1

χ(xj) ≥ λn(z1) + ρn(φ̄−1(z2)) + |z2|/2n ≥ λn(x)

because x− z1 = z2 + z3 = φ̄−1(z2), and we are done.
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Finally, set Cn+1 = C ′n+1 ∪ {n} and extend λ′n+1 to a bounded ratio-
nal norm λn+1 on FCn+1 arbitrarily.

When the induction is finished we get λ =
⋃
n λn is a norm on G.

We check that λ ∈ G. First, since it is a direct limit of bounded
norms, clearly it is an N0-norm. Now take any ε > ε′ > 0, finite
subsets A0 ⊆ A ⊆ N. Let ρR be some BRFG norm on FA such that
(A0, ρR) ≡id,ε (A0, λ). Then by the construction, we can find n such
that A ⊆ Cn and Tn = (A0, A, ρR), where 1/2n < ε. By the inductive
construction, there is some φ such that A ≡φ φ[A], φ[A] ⊆ Cn+1 and

(A, ρR) ≡φ,ε′ (φ[A], λ)

and
δφ(A, φ[A]) < 1/2n < ε,

and we are done.
Also, since at the beginning the finite symmetric subset F and a

partial norm ρ on F were arbitrary, it shows that G is dense.

Finally, we show how to get the “moreover” part from the statement
of the proposition. If G is unbounded then we combine the two in-
duction procedures from this proof and the proof of Theorem 2.3 into
one. Besides the enumeration of triples (Tn)n as above, consider also
the enumeration {(Ai, fi) : i ∈ N} (again with infinite repetition) of all
pairs (A, f), where A is a finite rational metric space and f : A→ Q a
rational Katětov function over A. Then we divide the induction proce-
dure into odd and even steps. During odd steps, we take care of triples
(Tn)n as above. During even steps, we take care of pairs (An, fn)n as in
the proof of Theorem 2.3, just ensuring that the norm is bounded after
every step. It follows that after the induction we get a norm λ ∈ G
such that (G, λ) is isometric to the rational Urysohn space. �

Corollary 3.13. Let G be an unbounded infinitely-summed countable
Abelian group. There exists an Abelian Polish metric group G which is
extremely amenable and isometric to the Urysohn space such that for
comeager-many norms λ on G we have

G = (G, λ).

In particular, for every such G there is a norm λ such that (G, λ) is
extremely amenable and isometric to the rational Urysohn space.

Remark 3.14. Although the results above show that for every infinitely-
summed countable Abelian group G there is a corresponding Abelian
Polish metric group G, one might ask whether there is actually a single



24 M. DOUCHA

generic Abelian Polish metric group H. That is, whether for every
infinitely-summed countable Abelian group G and a generic metric ρ
on G, we have (G, ρ) = H.

Clearly, if G1 and G2 are two infinitely-summed countable abelian
groups of bounded torsion, where the bounds are different for G1 and
G2 respectively, then the corresponding generic metrics cannot give the
same group after completion. However, it is reasonable to expect that
the groups G∞(N), where N ∈ {0, 2, 3, 4, . . .} from [10], are the only
generic abelian Polish groups.

3.1. Extremely amenable universal abelian group. In this sec-
tion, we observe that the universal abelian Polish group of Shkarin from
[13], further investigated by Niemiec in [10], is extremely amenable,
and provide another proof that it is, with its norm, isometric to the
Urysohn space. More precisely, we formulate a certain extension prop-
erty of this group (analogous to the extension property of the Gurarij
Banach space) and show that this extension property is a dense Gδ

property. Then we use our results and results of Melleray and Tsankov
to show that the extension property defines this group uniquely up to
isometric isomorphism, and that the group is extremely amenable and
isometric to the Urysohn space.

Since the group is essentially constructed using Fräıssé theoretic
methods, we shall assume here that the reader has a basic knowledge
of this area. We refer the reader to Chapter 7 in [6] as a reference to
the Fräıssé theory.

We note that the group is universal in the sense that every abelian
Polish group, or every second-countable abelian Hausdorff group, em-
beds via topological isomorphism as a subgroup. The group was con-
structed as a normed group, however it is universal only in the topo-
logical sense. It does not contain isometrically every separable abelian
normed group as a subgroup. A normed group universal in this stronger
sense was constructed by the author in [3].

Let us describe the construction of the Shkarin’s group, further de-
noted by GS: First one considers the class of all finite groups equipped
with rational-valued norms. Then one can check that this class is a
Fräıssé class, thus it has a Fräıssé limit. It is straightforward to check
that the limit is a countable abelian group, denoted by GS, which is
algebraically isomorphic to

⊕
N Q/Z, equipped with a rational norm

λS. In particular, GS is an infinitely-summed unbounded group. Then
one takes the completion (GS, λS) to obtain the group GS.
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In the sequel, we shall use the following notation. For two finite
groups G,H which are isomorphic via some φ, and which are equipped
with norms λG and λH respectively, and for some ε > 0 we shall write

(G, λG) ≡φ,ε (H,λH)

to express that they are ε-isomorphic via φ, i.e. for every g ∈ G we
have |λG(g)− λH(φ(g))| < ε.

Consider now the following set S of norms λ on GS =
⊕

N Q/Z, i.e.
a subset of NGS

:

(3.3) ∀ε > 0∀G0 ≤ G1 ≤ GS finite,∀ρ a rational norm on G1

if (G0, ρ) ≡id,ε (G0, λ) then ∃G′1, G0 ≤ G′1 ≤ GS, isomorphic to G1

via some φ such that (G′1, λ) ≡φ,ε (G1, ρ).

First, it is clear, by the definition of a Fräıssé limit, that λS ∈ S;
moreover, that the set S is dense. Secondly, one can check as in the
proof of Lemma 3.10 that (3.3) defines a Gδ subset of NGS

. Thus S is
a dense Gδ set.

It also follows from the proofs of Shkarin and Niemiec that for any
λ ∈ S, the group (GS, λ) is also universal replicating the approximation
arguments for λS. It is analogous to the case of metrics on a countable
set satisfying (2.1) from the proof of Corollary 2.4. Then applying
Theorem 3.9, Corollary 2.1 and Theorem 1.1 of Melleray and Tsankov
we get the following corollary.

Corollary 3.15. There exists a generic norm λ on GS =
⊕

N Q/Z such

that (GS, λ) is the Shkarin’s group, which is thus extremely amenable
and isometric to the Urysohn space.

Remark 3.16. On the other hand, the metrically universal abelian
group constructed by the author in [3] is not generic. This can be
immediately seen as the norm on that group cannot be an N0-norm.

4. Problems

The result of Melleray and Tsankov cannot be used to prove that
the metrically universal group from [3] is extremely amenable. That
does not mean it is not possible though. We note that although the
results of this paper cannot be directly used to show that the metrically
universal group is isometric to the Urysohn space, it was nevertheless
proved in [3]. So we ask:
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Question 4.1. Is the metrically universal group from [3] extremely
amenable?

Another challenging problem is to investigate similar properties of
the spaces of metrics on non-abelian countable groups. There one can
distinguish two cases, which coincide in the case of abelian groups:
the space of all continuous left-invariant metrics (we comment on the
‘continuity’ below) and the space of bi-invariant metrics. In the case of
bi-invariant metrics, one can again easily check that for any countable
group G, the set of all bi-invariant metrics, is a closed subset RG×G,
thus a Polish space.

We do not know if there is some countable non-abelian group which
admits a generic bi-invariant metric. Also, we do not know whether
for some countable non-abelian group the subset of bi-invariant metrics
with which this group is extremely amenable is comeager; i.e. we do not
know whether it is possible to generalize the Melleray and Tsankov’s
result to the non-abelian situation.

Regarding the general left-invariant metrics, first thing to observe is
that while bi-invariant metrics make the group operations continuous,
in fact Lispchitz, this is no longer true for general left-invariant metrics.
The corresponding general norms on groups (that do not necessarily
make the group topological) were considered in the literature, see e.g.
[1]. However, in most cases it is reasonable to consider only such metrics
that do make the group operations continuous. For a group G and a
left-invariant metric d on G, the group operations are continuous if and
only if for every g ∈ G and every ε > 0 there is δ > 0 such that for
every h ∈ G, if λd(h) < δ, then λd(g

−1 · h · g) < ε, where λd is the
corresponding norm. Let us call such norms and metrics continuous.

The main problem is that we do not know how to code the continuous
norms and metrics on a non-abelian group as a Polish space. Indeed,
the straightforward computation gives that they form an Fσδ subset
of RG (RG2

), thus not necessarily a space with Polish topology. Even
some special subsets of continuous norms such as uniformly discrete
norms seem not to be Polish, but rather Fσ subsets of RG. A special
subclass of uniformly discrete norms, often considered in geometric
group theory, that is, the class of all proper norms again seems to be
Fσδ.

However, we do not exclude the possibility that a better computa-
tion reveals that these are Polish spaces — in a natural way.
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