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Example of a PDE system in fluid mechanics

Euler system of compressible barotropic fluid

∂t%+ divx(%u) = 0

∂t(%u) + divx(%u⊗ u) +∇xp(%) = 0 in (0,T )× Ω

Impermeability boundary conditions

u · n|∂Ω = 0

Initial state

%(0, ·) = %0, u(0, ·) = u0



Mathematical problems - facts

Absence of global-in-time smooth solutions...

Smooth solutions typically develop shocks in a finite time; this is
true for a “generic” class of data.

Weak solutions

∫
[%∂tϕ+ %u · ∇xϕ] = 0∫

[%u · ∂tϕ + %u⊗ u : ∇xϕ + p(%)divxϕ] = 0 for smooth ϕ, ϕ

Admissibility - energy inequality
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Some (more shocking) facts about shocks

Recent mathematical (exact) results

The problem admits global in time (weak) solutions for any
(smooth) initial data (good news!)

There are infinitely many weak solutions for any (smooth)
initial data (bad news!)

There infinitely many physically admissible weak solutions
(satisfying the energy inequality) for a large class of (not
necessarily smooth) data (even worse!)

There are smooth (Lipshitz) initial data for which the problem
admits infinitely many admissible weak solutions (devastating
news!)



What is a good weak solution?

Desired properties

• A weak solution exists globally in time for “any” choice of the
initial state
• A weak solution can be identified as a limit of suitable
approximate problems, e.g. by adding artificial viscosity
• The set of weak solutions is closed; a limit of a family of weak
solutions is another weak solution
• A weak solution can be identified as a limit of a numerical scheme
• A weak solution is the most general object that enjoys the
weak–strong uniqueness property

Weak strong uniqueness

A weak solution coincides with a strong (classical) solution as long
as the latter exists



Even more general solutions?

Measure–valued solutions

∫
[〈νt,x ; %〉 ∂tϕ+ 〈νt,x ; %u〉 · ∇xϕ] = R1∫

[〈νt,x ; %u〉 · ∂tϕ + 〈νt,x ; %u⊗ u〉 : ∇xϕ + 〈νt,x ; p(%)〉divxϕ] = R2

∫ 〈
ντ,x ;

1

2
%|u|2 + P(%)

〉
+D =

∫ 〈
ν0,x ;

1

2
%|u|2 + P(%)

〉

Compatibility

R1 +R2 � D



Why to go measure–valued

Main advantages

They capture singularities - oscillations in hyperbolic systems.

The notion is easy to extend to viscous fluids described via the
Navier–Stokes equations.

They are the solutions generates by (some) numerical schemes

Weak− strong uniqueness A measure valued solution

coincides with the strong solution emanating from the same
initial data as long as the latter exists



Compressible Navier-Stokes system

Field equations

∂t%+ divx(%u) = 0

∂t(%u) + divx(%u⊗ u) +∇xp(%) = divxS(∇xu)

Isentropic EOS, Newton’s rheological law

p(%) = a%γ

S(∇xu) = µ

(
∇xu +∇t

xu− 2

3
divxuI

)
+ ηdivxuI, µ > 0, η ≥ 0

No-slip boundary conditions

u|∂Ω = 0



Numerical method [T. Karper]

FV framework

regular tetrahedral mesh, Qh = {v | v = piece-wise constant}

FE framework - Crouzeix - Raviart

Vh =
{
v
∣∣∣ v = piece-wise affine, ṽΓ continuous on face Γ

}
ṽΓ ≡

1

|Γ|

∫
Γ

v dSx

Upwind discretization of convective terms

〈hu;∇xϕ〉E ≈
∑

Γ

∫
Γ

Up[h,u][[ϕ]] dSx



Dissipative upwind operator

Upwind operator

Up[rh,uh] = {rh} 〈uh · n〉Γ︸ ︷︷ ︸
convective part

−1

2
max{hα; | 〈uh · n〉Γ |} [[rh]]︸ ︷︷ ︸

dissipative part

= routh [〈uh · n〉Γ]− + r inh [〈uh · n〉Γ]+︸ ︷︷ ︸
standard upwind

−hα

2
[[rh]]χ

(
〈uh · n〉Γ

hα

)

Auxilliary function

χ(z) =


0 for z < −1,
z + 1 if − 1 ≤ z ≤ 0
1− z if 0 < z ≤ 1
0 for z > 1



Numerical scheme

Discrete time derivative - implicit scheme

Dtv
k
h =

vk
h − vk−1

h

∆t

Continuity method∫
Ωh

Dt%
k
hφdx −

∑
Γ∈Γint

∫
Γ

Up[%kh ,u
k
h ] [[φ]]dSx = 0

Momentum method

∫
Ωh

Dt
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%kh
〈
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h
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−
∫
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p(%kh)divhφφφdx

+µ

∫
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3

+ η
)∫

Ωh

divhuk
hdivhφφφdx = 0



Convergence results for Karper’s scheme

Convergence to weak solutions

Karper [2013]: Convergence to a weak solution if γ > 3

Error estimates

Gallouet, Herbin, Maltese, Novotný [2015]

Convergence to smooth solutions + error estimates if γ > 3/2 , Ω a

polyhedral domain



Convergence for general adiabatic coefficient

EF, M. Lukáčová/Medviďová [2016]

Let Ω ⊂ R3 be a smooth bounded domain. Let

1 < γ < 2, ∆t ≈ h, 0 < α < 2(γ − 1).

Suppose that the initial data are smooth and that the compressible
Navier-Stokes system admits a smooth solution in [0,T ] in the class

%, ∇x%, u,∇xu ∈ C ([0,T ]× Ω)

∂tu ∈ L2(0,T ;C (Ω;R3)), % > 0, u|∂Ω = 0.

Then
%h → % (strongly) in Lγ((0,T )× K )

uh → u (strongly) in L2((0,T )× K ;R3)

for any compact K ⊂ Ω.



General strategy

Basic properties of numerical scheme

Show stability, consistency, discrete energy inequality

Measure valued solutions

Show convergence of the scheme to a measure− valued solution

Weak-strong uniqueness

Use the weak-strong uniqueness principle in the class of
measure-valued solutions. Strong and measure valued solutions
emanating from the same initial data coincide as long as the latter
exists



Corollary

Convergence of numerical solutions

Bounded numerical solutions emanating from smooth data that
converge to a measure-valued solution converge, in fact,
unconditionally to the unique strong solution



Singular limit problem

Scaled Euler system

∂t%+ divxm = 0

∂tm + divx

(
m⊗m

%

)
+

1

ε2
∇xp(%) = 0

Incompressible (low Mach) limit - EF, Ch.Klingenberg,
S.Markfelder[2017]

Convergence to the limit system

divxv = 0, ∂tv + divx(v ⊗ v) +∇xΠ = 0

for well/ill prepared initial data.



Complete Euler system

Field equations

∂t%+ divx(%u) = 0

∂t(%u) + divx(%u⊗ u) +∇xp(%, ϑ) = 0

∂t

[
1

2
%|u|2 + %e(%, ϑ)

]
+ divx

([
1

2
%|u|2 + %e(%, ϑ)

]
u

)
+divx(p(%, ϑ)u) = 0

Entropy inequality (admissibility)

∂t(%s(%, ϑ)) + divx(%s(%, ϑ)u) ≥ 0

Constitutive relations

p = %ϑ, e = cvϑ, s = log(ϑcv )− log(%)


