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In this paper, we show that the interpolation spaces between Grand, small or classical

Lebesgue are so called Lorentz-Zygmund spaces or more generally GΓ-spaces. As a direct

consequence of our results any Lorentz-Zygmund space La,r(LogL)β , is an interpolation

space in the sense of Peetre between either two Grand Lebesgue spaces or between two

small spaces provided that 1 < a < ∞, β 6= 0. The method consists in computing the so

called K-functional of the interpolation space and in identifying the associated norm.
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1 Introduction. Main results

Let (X0, || · ||0), (X1, || · ||1) two Banach spaces contained continuously in a Hausdorff

topological vector space (that is (X0, X1) is a compatible couple).

For g ∈ X0 + X1, t > 0 one defines the so called K functional K(g, t;X0, X1)=̇K(g, t)

by setting

K(g, t) = inf
g=g0+g1

(
||g0||0 + t||g1||1

)
. (1)

For 0 6 θ 6 1, 1 6 p 6 +∞, α ∈ IR we shall consider

(X0, X1)θ,p;α =
{
g ∈ X0 +X1, ||g||θ,p;α = ||t−θ−

1
p
(
1− Log t

)α
K(g, t)||Lp(0,1) is finite

}
.

Here || · ||V denotes the norm in a Banach space V . The weighted Lebesgue space

Lp(0, 1;ω), 0 < p 6 +∞ is endowed with the usual norm or quasi norm, where ω is a

weight function on (0, 1).
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Our definition of the interpolation space is different from the usual one (see [5, 22]) since

we restrict the norms on the interval (0, 1).

If we consider ordered couple, i.e. X1 ↪→ X0 and α = 0, (X0, X1)θ,p;0 = (X0, X1)θ,p is

the interpolation space as it is defined by J. Peetre (see [5, 22, 6]).

A particular attention will be brought to the so-called Grand Lebesgue space Lp),α(Ω),

with Ω a bounded (open) set of IRn whose measure is 1, 1 < p < +∞, α > 0 defined as

Lp),α(Ω)=
{
f : Ω→ IR measurable, ||f ||p),α= sup

0<t<1
(1−Log t)−

α
p

(∫ 1

t

fp∗ (σ)dσ

) 1
p

< +∞
}

and its associated spaces L(p′,α(Ω),
1

p′
+

1

p
= 1 defined as (see [12])

L(p′,α(Ω)=

{
f : Ω→ IR measurable, ||f ||(p′,α=

∫ 1

0

(1− Log t)
− α
p′+α−1

(∫ t

0

fp
′

∗ (σ)dσ

) 1
p′ dt

t
<+∞

}
.

Here, f∗ is the decreasing rearrangement of |f |, say it is the generalized inverse of the

distribution function

Df (t) = measure{x ∈ Ω, |f(x)| > t}, t ∈ IR+.

Many works related to Grand and small Lebesgue spaces have been recently done (see

for instance [2, 12, 14, 15, 9]).

We will show in particular, the

Theorem 1.1.

Let 1 < p < q, α > 0. Then

Lq),α = (Lp),α, Lq)1,∞;−α
q
.

An explicit equivalent of K(f, t;Lp),α, Lq) is given in Theorem 3.2.

For convenience, we will sometimes drop the dependence with respect to the domain Ω

or (0, 1) and we shall write Lp(Ω) = Lp. . . etc

More, we will write sometimes

∫
E

fm∗ (t)dt =

∫
E

fm∗ .

Definition 1.1. (Lorentz-Zygmund space)

For 1 6 p, q 6∞, −∞ < α < +∞, the Lorentz-Zygmund space Lp,q(Log L)α consists
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of all functions f measurable such that

||f ||p,q;α =



(∫ 1

0

[
t
1
p
− 1
q (1− Log t)αf∗(t)

]q
dt

) 1
q

if 1 6 q < +∞,

sup
0<t<1

t
1
p (1− Log t)αf∗(t) if q = +∞

is finite.

One of the major theorems of the first section will be

Theorem 1.2.

Let 0 < θ < 1, 1 6 r < +∞, α > 0, 1 < p < q. Then(
Lp),α, Lq),α

)
θ,r

= Lpθ,r
(
LogL

)− α
pθ where

1

pθ
=

1− θ
p

+
θ

q
.

We will also use the following extension of Generalized Gamma space (see [17]).

Definition 1.2. of a Generalized Gamma space with double weights

Let w1, w2 be two weights on (0, 1), m ∈ [1,+∞], 1 6 p < +∞. We assume the

following conditions:

c1) There exists K12 > 0 such that w2(2t) 6 K12w2(t) ∀ t ∈ (0, 1/2). The space

Lp(0, 1;w2) is continuously embedded in L1(0, 1).

c2) The function

∫ t

0

w2(σ)dσ belongs to L
m
p (0, 1;w1).

A generalized Gamma space with double weights is the set :

GΓ(p,m;w1, w2) =

{
v : Ω→ IR measurable

∫ t

0

vp∗(σ)w2(σ)dσ is in L
m
p (0, 1;w1)

}
.

Property 1.1.

Let GΓ(p,m;w1, w2) be a Generalized Gamma space with double weights and let us define

for v ∈ GΓ(p,m;w1, w2)

ρ(v) =

[∫ 1

0

w1(t)

(∫ t

0

vp∗(σ)w2(σ)dσ

)m
p

dt

] 1
m

with the obvious change for m = +∞.

Then,

1. ρ is a quasinorm.
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2. GΓ(p,m;w1, w2) endowed with ρ is a quasi-Banach function space.

3. If w2 = 1

GΓ(p,m;w1, 1) = GΓ(p,m;w1).

Proof:

1. Due to the property of the monotone rearrangement we have ρ(v) = 0 if and only

if v = 0 and for λ ∈ IR ρ(λv) = |λ|ρ(v). Let us show that

ρ(v1 + v2) 6 (2K12)
1
p

(
ρ(v1) + ρ(v2)

)
for v1 and v2 in GΓ(p,m;w1, w2).

We have for all σ ∈ (0, 1), v = v1 + v2

(v1 + v2)∗(σ) 6 v1∗

(σ
2

)
+ v2∗

(σ
2

)
.

Therefore, we have (using the triangle inequality)(∫ t

0

vp∗(σ)w2(σ)dσ

) 1
p

6

(∫ t

0

vp1∗

(σ
2

)
w2(σ)dσ

) 1
p

+

(∫ t

0

vp2∗

(σ
2

)
w2(σ)dσ

) 1
p

(2)

6 2
1
p

(∫ t
2

0

vp1∗(s)w2(2s)ds

) 1
p

+ 2
1
p

(∫ t
2

0

vp2∗(s)w2(2s)ds

) 1
p

(3)

Using condition c1), we have(∫ t

0

vp∗(σ)w2(σ)dσ

) 1
p

6 (2K12)
1
p

[(∫ t

0

vp1∗(s)w2(s)ds

) 1
p

+

(∫ t

0

vp2∗(s)w2(s)ds

) 1
p

]
.

Using again the triangle inequality with the space Lm(0, 1;w1) we derive that:

ρ(v1 + v2) 6 (2K12)
1
p

[
ρ(v1) + ρ(v2)

]
.

2. The function ρ satisfies:

If 0 6 v1 6 v2 then v1∗ 6 v2∗ everywhere on (0, 1) so that

ρ(v1) 6 ρ(v2).

If 0 6 v1k ↗ v almost-everywhere then by the Beppo-Levi’s theorem we have for

all t ∈ [0, 1]

lim
k→+∞

(∫ t

0

vp1k∗(σ)w2(σ)dσ

) 1
p

=

(∫ t

0

vp∗(σ)w2(σ)dσ

) 1
p

,
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since v1k∗ ↗ v∗ everywhere on [0, 1].

Because Lm(0, 1;w1) is a Banach function space, we deduce that

lim
k→+∞

ρ(v1k) = ρ(v).

The condition c2) implies that

ρ(χE) 6 ρ(1) < +∞

for any E ⊂ Ω, χE denoting its characteristic function.

To conclude that it is a complete space, we shall prove the inequality in next

Proposition 1.1, which has been already given in the frame of GΓ(p,m;w1)
(

with

one weight (see [16, 17, 14])
)

. ♦

Proposition 1.1. Inequality for GΓ

Let v ∈ GΓ(p,m;w1, w2), E ⊂ Ω, |E| > 0. Then

ρ(v)

[∫ |E|
0

w2(σ)dσ

] 1
p

[∫ |E|
0

w1(t)

(∫ t

0

w2(s)ds

)m
p

dt

] 1
m

>

[∫ |E|
0

vp∗(σ)w2(σ)dσ

] 1
p

.

Proof:

Let us set

V (t) =

∫ t

0

vp∗(σ)w2(σ)dσ∫ t

0

w2(σ)dσ

.

Then V is decreasing since vp∗ is decreasing. Therefore, we have for 1 6 m < +∞

ρ(v) =

[∫ 1

0

V
m
p (t)w1(t)

(∫ t

0

w2(σ)dσ

)m
p

dt

] 1
m

> V
1
p (|E|)

[∫ |E|
0

w1(t)

(∫ t

0

w2(σ)dσ

)m
p

dt

] 1
m

.

This gives the inequality m < +∞.

6



For m = +∞, the argument is the same, since

sup
t61

w1(t)

(∫ t

0

vp∗(σ)w2(σ)dσ

) 1
p

> sup
t6|E|

V
1
p (t)w1(t)

(∫ t

0

w2(σ)dσ

) 1
p

> V
1
p (|E|) sup

t6|E|
w1(t)

(∫ t

0

w2(σ)dσ

) 1
p

.

♦
One of our results which motivates the introduction of Generalized Gamma space with

double weights is

Theorem 1.3.

Let 1 < p < +∞, 0 < θ < 1, 1 6 r < +∞. Then

(Lp), L(p)θ,r = GΓ(p, r;w1, w2) with w1(t) = t−1(1−Log t)θr−1, w2(t) = (1−Log t)−1, t ∈ (0, 1).

The proof is given in the last theorem of this paper.

2 Notations. Preliminary Lemmas

For two positive quantities A and B depending on some parameters like functions
(
real

number as a function on (0, 1)
)

we shall write A . B if there exists a constant c > 0

independent of the parameters such that A 6 cB, and A ≈ B if B . A and A . B.

Proposition 2.1.

Let a > 0, b ∈ IR, Φ(t) = ta(1 − Log t)b, t ∈ (0, 1). Then, there exists an invertible

function ϕ from [0, 1] into [0, 1] such that

1. t ≈ Φ(ϕ(t)) = ϕ(t)a(1− Logϕ(t))b

2. 1 + |Logϕ(t)| ≈ 1 + |Log t| for t ∈ (0, 1).

Proof:

Let us set t0 =

e
a−b
a if a < b,

1 if a > b.
Then Φ is strictly increasing on [0, t0].

Define g(t) =
Φ(t t0)

Φ(t0)
for t ∈ [0, 1]. Then g is continuous and strictly increasing from

[0, 1] into itself, and g(t) ≈ ta(1 − Log t)b and then 1 − Log g(t) ≈ 1 − Log t. Setting

ϕ(t) = g−1(t) the inverse of g we have the result. ♦
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Proposition 2.2.

Let β ∈ IR, −∞ < α < 1. Then, there exists cαβ > 0:∫ a

0

t−α(1− Log t)βdt 6 cαβa
1−α(1− Log a)β ∀ a ∈ [ 0, 1 ].

Moreover, if β > 0 then∫ a

0

t−α(1− Log t)βdt >
1

1− α
a1−α(1− Log a)β.

Proof:

We start with the case β > 0.

Let k ∈ IN such k − 1 6 β < k. Then by integration by parts, we have∫ a

0

t−α(1− Log t)βdt = cαβk

∫ a

0

t−α(1− Log t)β−kdt+ a1−α
k−1∑
j=0

cαβj(1− Log a)β−j

(using the fact that the function t→ (1− Log t)β−k is increasing).

6 cαβk(1− Log a)β−k
∫ a

0

t−αdt+ cαβka
1−α(1− Log a)β

6 cαβa
1−α(1− Log a)β.

If β < 0 the inequality is still true since the function t→ (1− Log t)β is increasing, we

argue as in the last line of the above proof. If β > 0 then t→ (1−Log t)β is decreasing,

then the last result follows directly. ♦
Using an argument of [3], we have:

Proposition 2.3.

For any α < −1, β ∈ IR, we have∫ 1

a

tα(1− Log t)βdt . aα+1(1− Log a)β.

Proof:

Let ε > 0 such that α + ε < −1. For N = 1 +
|β|
ε
, t−ε(N − Log t)β is decreasing. So∫ 1

a

tα(1− Log t)βdt . a−ε(N − Log a)β
∫ 1

a

tα+εdt . (1− Log a)βaα+1. ♦

For convenience, we recall some of those Hardy type inequalities (see [3] Theorem 6.4,

[18] Lemma 2.7, Corollary 2.9) that we will use.
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Theorem 2.1.

Suppose λ > 0, 1 6 b 6 +∞, and −∞ < β < +∞, Φ a nonnegative measurable

function on (0, 1). Then∫ 1

0

[
t−λ(1− Log t)β

∫ t

0

Φ(s)ds

]b
dt

t
6 c

∫ 1

0

[
t1−λ(1− Log t)βΦ(t)

]bdt
t
,

and ∫ 1

0

[
tλ(1− Log t)β

∫ 1

t

Φ(s)ds

]b
dt

t
6 c

∫ 1

0

[
t1+λ(1− Log t)βΦ(t)

]b dt
t
.

The constant c is independent of Φ.

If Φ(t) = tµ−1Φ1(t), µ > 0, Φ1 decreasing, then the above inequalities hold true for

0 < b < 1.

In the above formula when b = +∞, the integral is replaced by the supremum. In the

case where λ = 0 we use the following Hardy inequalities given in Bennett-Rudnick

([3] Theorem 6.5)

Theorem 2.2.

Suppose 1 6 a 6∞, α ∈ IR and α+
1

a
6= 0. Let ψ be a nonnegative measurable function

on (0, 1). Then, if α +
1

a
> 0,

(∫ 1

0

[
(1− Log t)α

∫ t

0

ψ(s)ds

]a
dt

t

] 1
a

6 c

(∫ 1

0

[
t(1− Log t)1+αψ(t)

]adt
t

] 1
a

(4)

and α +
1

a
< 0,

(∫ 1

0

[
(1− Log t)α

∫ 1

t

ψ(s)ds

]a
dt

t

) 1
a

6 c

(∫ 1

0

[
t(1− Log t)1+αψ(t)

]adt
t

) 1
a

. (5)

The constant c is independent of ψ.

Let (R, µ) be a measure space and M(R, µ) be the set of all µ measurable functions

over R . A Banach space X = X(R, µ) of µ-measurable complex-valued functions in

M(R, µ)( set of all µ measurable functions over R ), equipped with the norm ‖ · ‖X , is

said to be a rearrangement-invariant Banach function space (shortly r.i. space) over

(R, µ) (or over R with respect to µ) if the following five axioms hold:

(P1) 0 ≤ g ≤ f µ-a.e. implies ‖g‖X ≤ ‖f‖X ;

(P2) 0 ≤ fn ↗ f µ-a.e. implies ‖fn‖X ↗ ‖f‖X ;
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(P3) ‖χE‖X <∞ for every E ⊂ R of finite measure;

(P4) for every E ⊂ R with µ(E) < ∞ there exists a constant CE such that∫
E
|f(x)| dµ(x) ≤ CE‖f‖X for every f ∈ X;

(P5) ‖f‖X = ‖g‖X whenever f∗ = g∗.

Given an r.i. space X on (R, µ), the set

X ′ =

{
f ∈M(R, µ) :

∫
R
|f(x)g(x)| dµ(x) <∞ for every g ∈ X

}
,

equipped with the norm

‖f‖X′ = sup
‖g‖X≤1

∫
R
|f(x)g(x)| dµ(x) = sup

‖g‖X≤1

∫ µ(R)

0

f∗(t)g∗(t) dt,

is called the associate space of X. It turns out that X ′ is again an r.i. space over R
with respect to µ and that X ′′ = X.

For every r.i. space X over (R, µ), there exists a unique r.i. space X over (0,∞) with

respect to the one-dimensional Lebesgue measure, satisfying

‖f‖X = ‖f∗‖X

for every f ∈ X. This space, equipped with the norm

‖f‖X = sup
‖g‖X′≤1

∫ µ(R)

0

f∗(t)g∗(t) dt,

is called the representation space of X.

The fundamental function of a r.i. Banach space, X , is defined by

ΦX(t) = ‖χ[0,t]‖X , t ∈ (0, µ(R)).

. There is no loss of generality if we assume ΦX to be positive, nondecreasing, absolutely

continuous far from the origin, concave and to satisfy

ΦX(t)ΦX′(t) = t for all t ∈ (0, µ(R)).

Details and further material on r.i. spaces can be found in [5, Chapter 2].

Note that (see [8]) grand Lebesgue spaces Lp),α(Ω) and small Lebesgue spaces L(p,α(Ω)

are r.i. spaces over Ω and

ΦLp),α(t) ≈ t
1
p (1− Log t)

−α
p and ΦL(p,α(t) ≈ t

1
p (1− Log t)

α
p′

(Lp),α)′ = L(p′,α.

Let A0 and A1 be two r.i. Banach spaces over [0, 1] and let Φ0, Φ1 be respectively their

fundamental functions. We suppose that the following conditions are satisfied:
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i) There exists a constant C such that, for i = 0; 1 and for all t > 0∫ t

0

ds

Φi(s)
≤ Ct

Φi(t)
, (C.0)

ii) There exists a constant C such that, for all t > 0

Φ1(t)

Φ0(t)

∥∥∥∥χ[0,t]

Φ1

∥∥∥∥
A0

≤ C, (C.1)

Φ0(t)

Φ1(t)

∥∥∥∥χ[t,1]

Φ0

∥∥∥∥
A1

≤ C. (C.2)

Lemma 2.1. [4, Lemma 2.2] Let A0 and A1 be two r.i. Banach function spaces satisfied

(C.0), (C.1) and (C.2) Then

K

(
f,

Φ0(t)

Φ1(t)
;A0, A1

)
≈
∥∥f∗χ[0,t]

∥∥
A0

+
Φ0(t)

Φ1(t)

∥∥f∗χ[t,1]

∥∥
A1
, 0 < t < 1.

Remarks on the choice of the method

We have chosen a direct method for the proof of our results by computing the K-

functionals. In some part of the manuscript (for instance Theorem 5.1) we can adopt

an alternative proof as using limiting reiteration theorems [1, 10, 11, 13]. Although, we

observe that it is not possible to get the result without computations. The feature of

our method is that, as a byproduct, we make explicit the behavior of the K-functional.

3 Computation of some K-functionals and characterization of

the interpolation spaces (Lp),α, Lq),α)θ,r

We shall need few lemmas before reaching the proof of Theorem 1.1 and Theorem 1.2.

Lemma 3.1.

Let σ =
p

p− 1
, 1 < p < +∞, α > 0. Then

sup
0<t<1

t−1(1− Log t)−
α
p

∫ tσ

0

f∗(s)ds 6 cαp sup
0<t<1

(1− Log t)−
α
p

(∫ 1

t

fp∗ (s)ds

) 1
p

0 < t < 1, for some constant cαp > 0.
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Proof:

We have

N1 ≡ sup
0<t<1

t−1(1− Log t)−
α
p

∫ tσ

0

f∗(s)ds

= sup
0<t<1

t−1(1− Log t)−
α
p

∫ tσ

0

(
2

s

) 1
p

(∫ s

s
2

dτ

) 1
p

f∗(s)ds

. sup
0<t<1

t−1(1− Log t)−
α
p

∫ tσ

0

s−
1
p

(∫ s

s/2

fp∗ (τ)dτ

) 1
p

ds

. sup
0<t<1

t−1 (1− Log t)−
α
p

(∫ tσ

0

s−
1
p

(
1− Log

s

2

)α
p
ds

)
× sup

0<s<t

(
1− Log

s

2

)−α
p

(∫ 1

s/2

fp∗ (τ)dτ

) 1
p

(6)

Applying Proposition 2.2, we have∫ tσ

0

s−
1
p

(
1− Log

s

2

)α
p
ds 6 cαpt

σ(1− 1
p

)(1− Log t)
α
p (7)

From the two last inequalities, we have:

N1 6 cαp sup
0<t<1

(1− Log t)−
α
p

(∫ 1

t

fp∗

) 1
p

≈ ||f ||p),α.

♦
The next lemma has been already proved (see Theorem 4.1 [15]) for a characterization

of grand Lebesgue spaces as interpolation spaces between Lebesgue spaces, obtained

using the Holmstedt’s formula as well.

Lemma 3.2.

For 1 < p < +∞, α > 0 we have

Lp),α = (L1, Lp)1,∞;−α
p
.

Proof:

According to the Holmstedt’s formula (see [5]), we have for all f ∈ L1 + Lp, and for all

t ∈ (0, 1)

K(f, t;L1, Lp) ≈
∫ tσ

0

f∗(s)ds+ t

(∫ 1

tσ
fp∗ (s)ds

) 1
p

=̇K1p(f, t) with σ =
p

p− 1
.

12



Making use of the definition of the norm in (L1, Lp)1,∞;−α
p

||f ||1,∞;−α
p

= sup
0<t<1

t−1(1− Log t)−
α
pK1p(f, t)

≈ sup
0<t<1

t−1(1− Log t)−
α
p

∫ tσ

0

f∗(s)ds+ sup
0<t<1

(1− Log t)−
α
p

(∫ 1

tσ
fp∗ (s)ds

) 1
p

.

From Lemma 3.1, we deduce that

||f ||1,∞;−α
p
≈ sup

0<t<1
(1− Log t)−

α
p

(∫ 1

t

fp∗ (s)ds

) 1
p

= ||f ||p),α.

Noticing 1− Log t ≈ 1− Log t
1
σ . ♦

Lemma 3.3.

Let 1 < p < q, α > 0. Then

sup
0<t<1

t
1
q
− 1
p (1− Log t)−

α
q

(∫ t

0

fp∗ (s)ds

) 1
p

6 cαpq sup
0<t<1

(1− Log t)−
α
q

(∫ 1

t

f q∗ (s)ds

) 1
q

(8)

for some constant cαpq > 0.

Proof:

The relation (8) is equivalent to

sup
0<t<1

t−1(1− Log t)−
αp
q

(∫ tσ

0

f∗(s)ds

)
. sup

0<t<1
(1− Log t)−

αp
q

(∫ 1

t

f∗(s)
q
pds

) p
q

with σ =
r

r − 1
, r =

q

p
> 1.

So we deduce Lemma 3.3 from Lemma 3.1, replacing p by r. ♦

Theorem 3.1.

Let 1 6 p < q, α > 0. Then

Lq),α(Ω) =
(
Lp(Ω), Lq(Ω)

)
1,∞;−α

q

.

Proof of Theorem 3.1

According to Holmstedt’s formula [5] we have for all f ∈ Lp + Lq, all t ∈ (0, 1)

K(f, t;Lp, Lq) ≈
(∫ tσ

0

fp∗ (s)ds

) 1
p

+ t

(∫ 1

tσ
f q∗ (s)ds

) 1
q

=̇Kpq(f, t) (9)

13



with σ =
pq

q − p
.

According to the norm of f in (Lp, Lq)1,∞;−α
q

we have:

||f ||1,∞;−α
q
≈ sup

0<t<1
t−1(1− Log t)−

α
qKpq(f, t)

≈ sup
0<t<1

t−1(1− Log t)−
α
q

(∫ tσ

0

fp∗ (s)ds

) 1
p

+ sup
0<t<1

(1− Log t)−
α
q

(∫ 1

tσ
f q∗ (s)ds

) 1
q

(10)

= I1 + I2.

The first term I1 of relation (10) is equivalent to

sup
0<τ<1

τ
1
q
− 1
p (1− Log τ)−

α
q

(∫ τ

0

fp∗ (s)ds

) 1
p

.

(making use of the change of variables τ = tσ and knowing as for I2, 1 − Log τ
1
σ ≈

1− Log τ).

According Lemma 3.3, this last term is dominated by I2.

Therefore we have

||f ||1,∞;−α
q
≈ I1 + I2 ≈ I2 = ||f ||q),α.

♦

Theorem 3.2. (Computation of the K-functional for the couple (Lp),α, Lq))

Let 1 < p < q, α > 0. Then

K(f, t;Lp),α, Lq) ≈ sup
0<s<ϕ(t)

(1− Log s)−
α
p

(∫ ϕ(t)

s

fp∗ (x)dx

) 1
p

+ t

(∫ 1

ϕ(t)

f q∗ (s)ds

) 1
q

= Kpq(f, t)

where ϕ is the inverse of the increasing function ψ(t) = t
1
p
− 1
q (1− Log t)−

α
p , t ∈ (0, 1).

Thus

t = ϕ(t)
1
p
− 1
q (1− Logϕ(t))−

α
p .

Proof of Theorem 3.2

To apply Lemma 2.1, we need to check that the conditions (C.0), (C.1) and (C.2) are

satisfied. Let Φ0(t) =
∥∥χ[0,t]

∥∥
Lp),α

and Φ1(t) =
∥∥χ[0,t]

∥∥
Lq

. As we have

Φ0(t) ≈ t
1
p (1− Log t)−

α
p , Φ1(t) ≈ t

1
q ,

14



we have that ψ(t) = Φ0(t)
Φ1(t)

.. The conditions (C.0) (C.1) and (C.2) easily follow by using

the Proposition 2.2 and Proposition 2.3. and using Lemma 2.1 we get desired result.

♦By same way we can obtain following theorem

Theorem 3.3. (Computation of the K-functional for the couple (Lp),α, Lq),α))

Let 1 < p < q, α > 0. Then

K(f, t;Lp),α, Lq),α) ≈ sup
0<s<ϕ(t)

(1− Log s)−
α
p

(∫ ϕ(t)

s

fp∗ (x)dx

) 1
p

+ t sup
ϕ(t)<s<1

(1− Log s)−
α
q

(∫ 1

s

f q∗ (x)dx

) 1
q

,

where ϕ is the inverse of the increasing function ψ(t) = t
1
p
− 1
q (1−Log t)−

α
p

+α
q , t ∈ (0, 1).

Thus

t = ϕ(t)
1
p
− 1
q (1− Logϕ(t))−

α
p

+α
q .

Proof of Theorem 1.1

Let f be in (Lp),α, Lq)1,∞;−α
q
. Then, its norm is

||f ||1,∞;−α
q

= sup
0<t<1

t−1(1− Log t)
−α
q K(f, t;Lp),α, Lq).

Following Theorem 3.2, this expression gives:

||f ||1,∞;−α
q
≈ sup

0<t<1
t−1(1− Log t)

−α
q sup

0<s<ϕ(t)

(1− Log s)
−α
p

(∫ ϕ(t)

s

fp∗ (τ)dτ

) 1
p

+ sup
0<t<1

(1− Log t)
−α
q

(∫ 1

ϕ(t)

f q∗ (τ)dτ

) 1
q

= J1 + J2. (11)

But we have by the definition of ϕ,

t−1 = ϕ(t)
1
q
− 1
p (1 + |Logϕ(t)|)

α
p , 1 + |Logϕ| ≈ 1 + |Log t|.

Thus the first term J1 of (11), after a change of variables, gives

J1 ≈ sup
0<t<1

t
p−q
qp (1− Log t)

α(q−p)
pq sup

0<s<t
(1− Log s)

−α
p

(∫ t

s

fp∗ (τ)dτ

) 1
p

. (12)

But we can bound the last term of (12) as:

sup
0<s<t

(1−Log s)
−α
p

(∫ t

s

fp∗ (τ)dτ

) 1
p

6 t
q−p
pq sup

0<s<t
(1−Log s)

α(p−q)
qp sup

0<s<t
(1−Log s)

−α
q

(∫ t

s

f q∗ (τ)dτ

) 1
q

15



(using Hölder inequality and introducing new factor).

Therefore, we can estimate J1 (after simplifying):

J1 . sup
0<s<1

(1− Log s)
−α
q

(∫ 1

s

f q∗ (τ)dτ

) 1
q

= ||f ||q),α. (13)

While for the second term J2, we have:

J2 ≈ sup
0<t<1

(1− Logϕ(t))
−α
q

(∫ 1

ϕ(t)

f q∗ (τ)dτ

) 1
q

(14)

which implies

J2 ≈ sup
0<s<1

(1− Log s)
−α
q

(∫ 1

s

f q∗ (τ)dτ

) 1
q

= ||f ||q),α. (15)

We then have from relations (11) to (15)

J2 . ||f ||1,∞;−α
q
≈ J1 + J2 (16)

This shows the result. ♦
Next, we want to prove Theorem 1.2.

For this, we shall need the:

Lemma 3.4.

Let 1 < p < q, α > 0, 0 < θ < 1, 1 6 r < +∞. Then(
Lp),α, Lq),α

)
θ,r

=
(
Lp),α, Lq

)
θ,r;−αθ

q

.

Proof:

From Theorem 1.1, we know that(
Lp),α, Lq),α

)
θ,r

=
(
Lp),α,

(
Lp),α, Lq

)
1,∞;−α

q

)
θ,r
.

In this case, we can apply the Holmstedt formula (see Theorem 3.1 in [18]) valid also

for the extreme case θ1 = 1.

K
(
f, t;Lp),α, (Lp),α, Lq)1,∞;−α

q

)
≡̇Kα(t) ≈ t sup

ψ(t)<s<1

s−1(1− Log s)
−α
q K(f, s;Lp),α, Lq)

(17)

where ψ is an invertible function from [0, 1] into itself according to Proposition 2.1 so

that

t ≈ ψ(t)(1− Logψ(t))
α
q for t ∈ [ 0, 1 ].

16



Considering the norm ||f ||θ,r of f in
(
Lp),α, Lq),α

)
θ,r

we have:

||f ||θ,r ≈
∥∥∥t−θKα(t)

∥∥∥
Lr(0,1; dt

t
)

≈
∥∥∥t1−θ sup

ψ(t)<s<1

s−1(1− Log s)
−α
q K(f, s;Lp),α, Lq)

∥∥∥
Lr(0,1; dt

t
)

≈
∥∥∥ψ(t)1−θ(1− Logψ(t))

α(1−θ)
q sup

ψ(t)<s<1

s−1(1− Log s)
−α
q K(f, s;Lp),α, Lq)

∥∥∥
Lr( dt

t
)

≈
∥∥∥t1−θ(1− Log t)

α(1−θ)
q sup

t<s<1
s−1(1− Log s)

−α
q K(f, s;Lp),α, Lq)

∥∥∥
Lr( dt

t
)
.

The last line is obtained after the change of variables t → ψ(t). To control this last

term, we need

Proposition 3.1.

Let Kd be a decreasing nonnegative function on (0, 1) and p, q, α, θ, r are as in Lemma

3.4. Then

Ir≡̇
∫ 1

0

[
t1−θ(1− Log t)

α(1−θ)
q sup

t<s<1
(1− Log s)

−α
q Kd(s)

]r
dt

t

≈
∫ 1

0

[
t1−θ(1− Log t)

−αθ
q Kd(t)

]r dt
t
≡̇Id.

Proof:

Since sup
t<s<1

(1− Log s)
−α
q Kd(s) > (1− Log t)

−α
q Kd(t), we deduce

Ir >
∫ 1

0

[
t1−θ(1− Log t)

−αθ
q Kd(t)

]r dt
t

= Id.

For the reverse inequality, since Kd is decreasing and s → (1 − Log s)
−αr
q increasing

then,

(1− Log s)
−αr
q Kr

d(s) .
∫ s

s/2

(1− Log x)
−αr
q Kr

d(x)
dx

x
. (1− Log

s

2
)
−αr
q Kr

d

(s
2

)
. (18)

Setting

I1r =

∫ 1

0

t(1−θ)r(1− Log t)
αr(1−θ)

q sup
t<s<1

(∫ s

s/2

(1− Log x)
−αr
q Kr

d(x)
dx

x

)
dt

t
,

thus, we can bound, the integral Ir by I1r:

Ir =

∫ 1

0

t(1−θ)r(1− Log t)
αr(1−θ)

q sup
t<s<1

(1− Log s)
−αr
q Kr

d (s)
dt

t
. I1r (19)
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and

I1r .
∫ 1

0

t(1−θ)r(1− Log t)
αr(1−θ

q sup
t<s<1

(1− Log
s

2
)
−αr
q Kr

d

(s
2

) dt
t

= I2r.

By a change of variables in the term I2r, we have

I2r . Ir. (20)

Therefore, relations (19) and (20) imply:

Ir ≈ I1r.

We may bound I1r as:

I1r 6
∫ 1

0

t(1−θ)r(1− Log t)
αr(1−θ)

q

(∫ 1

t/2

(1− Log x)
−αr
q Kr

d(x)
dx

x

)
dt

t
.

By Fubini’s Theorem, the upperbound in this inequality gives:

I1r .
∫ 1

0

(1− Log x)
−αr
q Kr

d(x)

(∫ 2x

0

t(1−θ)r(1− Log t)
αr(1−θ)

q
dt

t

)
dx

x
.

From Proposition 2.2, we have∫ 2x

0

t(1−θ)r−1(1− Log t)
αr(1−θ)

q dt 6 c0qαx
(1−θ)r(1− Log x)

αr(1−θ)
q . (21)

From relation (21), the last estimate I1r becomes

I1r .
∫ 1

0

x(1−θ)r(1− Log x)
−αrθ
q Kr

d(x)
dx

x
= Id.

With relation (19) we get:

Ir . I1r . Id 6 Ir.

♦

End of proof of Lemma 3.4

We apply Proposition 3.1 with

Kd(t) = t−1K(f, t;Lp),α, Lq), t ∈ (0, 1)

to derive the:

||f ||θ,r ≈
∥∥∥t1−θ(1− Log t)

α(1−θ)
q sup

t<s<1
(1− Log s)

−α
q Kd(s)

∥∥∥
Lr( dt

t
)

≈ I
1
r
d = ||f ||V with V =

(
Lp),α, Lq

)
θ,r;−αθ

q

.

18



♦

Proof of Theorem 1.2

Let

V =
(
Lp),α, Lq),α

)
θ,r

and Lpθ,r(LogL)
− α
pθ = Vθ

with
1

pθ
=

1− θ
p

+
θ

q
.

We recall that, for f ∈ V

|f ||rV =

∫ 1

0

[
t−θ(1− Log t)

−αθ
q K(f, t;Lp),α, Lq),α)

]r dt
t
. (22)

Applying Theorem 3.3, we have

||f ||rV ≈
∫ 1

0

t−θ sup
0<s<ϕ(t)

(1− Log s)
−α
p

(∫ ϕ(t)

s

fp∗ (τ)dτ

) 1
p

r dt
t

+

∫ 1

0

[
t1−θ sup

ϕ(t)<s<1

(1− Log s)
−α
q

(∫ 1

s

f q∗ (τ)dτ

) 1
q

]r
dt

t

= II1 + II2.

From the first term II1, we know that

t = ϕ(t)
1
p
− 1
q (1− Logϕ(t))

−α
p

+α
q

and

1− Log t ≈ 1− Logϕ(t).

Therefore, we have

t−θ ≈ ϕ(t)θ(
1
q
− 1
p

)(1− Logϕ(t))
−αθ(p−q)

qp . (23)

Replacing the integrand in the integral by the II1 of (23) and making the change of

variables x = ϕ(t) or equivalently t = ψ(x), we have

II1 ≈
∫ 1

0

[
xθ(

1
q
− 1
p

)(1− Log x)
−αθ(p−q)

qp sup
0<s<x

(1− Log s)
−α
p

(∫ x

s

fp∗ (τ)dτ

) 1
p

]r
dx

x
.

Thus the monotony of f∗ leads to:

II1 &
∫ 1

0

[
xθ(

1
q
− 1
p

)(1− Log x)
−αθ(p−q)

qp (1− Log
x

2
)
−α
p x

1
pf∗(x)

]r dx
x
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II1 &
∫ 1

0

[
t
1−θ
p

+ θ
q (1− Log t)

−α(q(1−θ)+θp)
pq f∗(t)

]r dt
t

= ||f ||rVθ . (24)

In particular, we have shown that

||f ||V & ||f ||Vθ . (25)

For the reverse of relation (25), let us consider ε > 0 small enough so that

θ

(
1

q
− 1

p

)
+
ε

p
< 0.

II1 .
∫ 1

0

[
xθ(

1
q
− 1
p

)(1− Log x)
−αθ(p−q)

qp sup
0<s<x

(1− Log s)
−α
p

(∫ x

s

tε−1t1−εfp∗ (t)dt

) 1
p

]r
dx

x
.

Then

II1 .
∫ 1

0

[
xθ(

1
q
− 1
p

)+ ε
p (1− Log x)

−α
pθ sup

0<t<x
t
1−ε
p f∗(t)

]r
dx

x
.

We have the following

Proposition 3.2.

For all x > 0

sup
0<t<x

t
1−ε
p f∗(t) 6 2(Log 2)

1
r′

(∫ x

0

sr
1−ε
p
−1f r∗ (s)ds

) 1
r

,

with
1

r′
+

1

r
= 1.

Proof:

For any s ∈
[
t

2
, t

]
, we have

t
1−ε
p
−1f∗(t) 6 s

1−ε
p
−1f∗(s),

since
1

p
− 1− ε

p
< 0.

Integrating between
t

2
and t, and using Hölder inequality, we have

t
1−ε
p f∗(t) 6 2

(∫ t

t/2

s
1−ε
p
r−1f r∗ (s)ds

) 1
r

(Log 2)
1
r′

t
1−ε
p f∗(t) 6 2

(∫ t

0

s
1−ε
p
r−1f r∗ (s)ds

) 1
r

(Log 2)
1
r′ .

From which, we derive the result. ♦
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Using this Proposition 3.2, setting m = θ

(
1

q
− 1

p

)
+
ε

p
< 0,

II1 .
∫ 1

0

xmr−1(1− Log x)
−αr
pθ

(∫ x

0

s
1−ε
p
r−1f r∗ (s)ds

)
dx. (26)

Applying Hardy type inequality (see Theorem 2.1 and [3], Theorem 6.4 ), relation (26)

becomes

II1 .
∫ 1

0

[
s

1
pθ (1− Log s)

−α
pθ f∗(s)

]r ds
s

= ||f ||r
Lpθ,r(LogL)

− α
pθ
. (27)

It remains to show that the second term satisfies:

II2 =

∫ 1

0

[
t1−θ supϕ(t) < s < 1(1− Log s)

−αθ
q

(∫ 1

s

f q∗ (τ)dτ

) 1
q

]r
dt

t
. ||f ||rVθ .

For this, we recall that ϕ is the inverse of the function ψ(x) = x
1
p
− 1
q (1−Log x)

−α
p

+α
q , x ∈

[ 0, 1 ] so we have the following relations:

t = ϕ(t)
1
p
− 1
q (1− Logϕ(t))

−α
p

+α
q ,

1− Logϕ(t) ≈ 1− Log t,

and
ψ′(x)

ψ(x)
≈ 1

x
.

Therefore, we rewrite II2 as:

II2 ≈
∫ 1

0

[
ϕ(t)(1−θ)( 1

p
− 1
q

)(1− Logϕ(t))
−α(1−θ)

p
+
α(1−θ)

q sup
ϕ(t)<s<1

(1− Log s)
−α
q

(∫ 1

s

f q∗ (τ)dτ

) 1
q

]r
dt

t
.

Making the change of variables, t = ψ(x)⇐⇒ x = ϕ(t)

II2 ≈
∫ 1

0

[
x(1−θ)( 1

p
− 1
q

)(1− Log x)
−α(1−θ)

p
+
α(1−θ)

q sup
x<t<1

(1− Log t)
−α
q

(∫ 1

t

f q∗ (s)ds

) 1
q

]r
dx

x
.

(28)

Applying Proposition 3.1, we have :∫ 1

0

[
x(1−θ)( 1

p
− 1
q

)(1− Log x)
−α(1−θ)

p
+
α(1−θ)

q supx<t<1(1− Log t)
−α
q

(∫ 1

t
f q∗ (s)ds

) 1
q

]r
dx

x

6 c
∫ 1

0

[
x

1
pθ (1− Log x)

−α
pθ f∗(x)

]r dx
x
≡ c||f ||rVθ .

♦

From the preceding results, we can characterize the interpolation spaces for small

Lebesgue spaces.
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Theorem 3.4.

Let 0 < θ < 1, 1 < r < +∞, 1 < p < q, α > 0. Then(
L(p,α, L(q,α

)
θ,r

= Lpθ,r(LogL)
α
p′
θ

with
1

pθ
=

1− θ
p

+
θ

q
,

1

pθ
+

1

p′θ
= 1.

Proof:

By the duality result on interpolation spaces, (see [7, 22]), we have,[(
L(p,α, L(q,α

)
θ,r

]′
=
(
Lp
′),α, Lq

′),α
)
θ,r′

=
(
Lq
′),α, Lp

′),α
)

1−θ,r′
(29)

and noticing
(
Lp
′),α
)′

= L(p,α, L∞(Ω) is in L(p,α∩L(q,α and dense in each of these spaces.

From Theorem 1.2, since q′ < p′, we have(
Lq
′),α, Lp

′),α
)

1−θ,r′
= Lq

′
1−θ,r

′
(LogL)

− α
q′
1−θ , (30)

with
1

q′1−θ
=
θ

q′
+

1− θ
p′

= 1− 1

pθ
=

1

p′θ
.

Thus taking the associate space in the above equation (30) gives, taking into account

(29), (
L(p,α, L(q,α

)
θ,r

=
[
(L(p,α, L(q,α)θ,r

]′′
= Lpθ,r(LogL)

α
p′
θ

with
1

pθ
=

1− θ
p

+
θ

q
,

1

pθ
+

1

p′θ
= 1. ♦

A main consequence of Theorem 1.2 and Theorem 3.4 is the

Theorem 3.5.

Let 1 < a < +∞, β ∈ IR, β 6= 0, 1 < r < +∞. Then the Lorentz-Zygmund space

La,r(LogL)β is an interpolation space in the sense of Peetre of two Grand Lebesgue

spaces if β < 0 and of two small Lebesgue spaces if β > 0.

Remark 3.1.

If β = 0, it is already known that the Lorentz space La,r(Ω) is an interpolation space of

two classical Lebesgue spaces.
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4 Small Lebesgue space as interpolation of usual Lebesgue

spaces

The next proposition has been already proved on [10], we drop its proofs :

Proposition 4.1. [10]

Let 1 < p < +∞, α > 0. Then

L(p,α =
(
Lp, L∞

)
0,1;−α

p
+α−1

.

Proposition 4.2.

Let 1 < p < q, α > 0. Then

L(p,α =
(
Lp, Lq

)
0,1;−1+α−α

p

.

Proof:

It is similar to the above Proposition 4.1. Indeed, let set Wpq the space on the RHS,

then for f ∈ Wpq

||f ||Wpq =

∫ 1

0

(1− Log t)−1−α
p

+αK(f, t;Lp, Lq)
dt

t
.

By the Holmstedt formula, we have

K(f, t;Lp, Lq) ≈
(∫ tσ

0

fp∗ (s)ds

) 1
p

+ t

(∫ 1

tσ
f q∗ (s)ds

) 1
q

with
1

σ
=
q − p
pq

.

Then, we deduce the equivalent expression of the norm:

||f ||Wpq ≈ ||f ||L(p,α +

∫ 1

0

(1− Log t)−1−α
p

+αt
1
σ

(∫ 1

t

f q∗ (s)ds

) 1
q dt

t
. (31)

Let us show that the last term in relation (31) is less or equal to the norm of f in L(p,α.

Let us temporarily set β = −1 + α− α

p
, let 1 < ε <

q

σ
+ 1, then

O1 =

∫ 1

0

[
(1− Log t)βqt

q
σ
−ε+1tε−1

∫ 1

t

f q∗ (x)dx

] 1
q dt

t

6
∫ 1

0

[
(1− Log t)βqt

q
σ
−ε+1

∫ 1

t

xε−1f q∗ (x)dx

] 1
q dt

t
. (32)

Applying Hardy inequality (see Theorem 2.1 and [3] Theorem 6.4), we obtain from the

relation (32)

O1 .
∫ 1

0

[
(1− Log t)βt

1
σ

+ 1
q f∗(t)

]dt
t
. (33)
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But
1

σ
+

1

q
=

1

p
then t

1
σ

+ 1
q f∗(t) 6

(∫ t

0

fp∗ (x)dx

) 1
p

. So we derive

O1 .
∫ 1

0

[
(1− Log t)β

(∫ t

0

fp∗ (x)dx

) 1
p

]
dt

t
= ||f ||L(p,α . (34)

Thus, we have from relations (31) to (34):

||f ||L(p,α . ||f ||Wpq . ||f ||L(p,α .

♦

5 Interpolation between small, Grand Lebesgue spaces and the

associated K-functional

In this section, we want to determine the interpolation space
(
L(p,α, Lq),β

)
θ,r
. Due to

the technical aspect of the proof, we shall only consider the case where α = β = 1, the

argument remains the same in the general case.

We want to show the following theorem:

Theorem 5.1.

Let 0 < θ < 1, 1 6 r < +∞, p < q. Then(
L(p, Lq)

)
θ,r

= Lpθ,r
(
LogL

)αθ
where

1

pθ
=

1− θ
p

+
θ

q
, αθ = 1− θ − 1

pθ
.

We shall need the following K-functional.

Theorem 5.2.

Let 1 < p < q < +∞. Then for all t > 0, f ∈ L(p + Lq)

K(f, t;L(p, Lq)) ≈
∫ ϕ(t)

0

(1− Log s)
−1
p

(∫ s

0

fp∗ (τ)dτ

) 1
p ds

s
+ (1− Log t)

p−1
p

(∫ ϕ(t)

0

fp∗ (τ)dτ

) 1
p

+t sup
ϕ(t)<s<1

(1− Log s)
−1
q

(∫ 1

s

f q∗ (τ)dτ

) 1
q

=̇
3∑
i=1

Ki(t)
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where ϕ is an invertible function from [0, 1] into itself satisfying the equivalence

ϕ(t)
1
p
− 1
q (1− Logϕ(t))

p−q+pq
pq ≈ t.

Proof:

We can apply Lemma 2.1 for A0 = L(p and A1 = Lq). Let Φ0(t) =
∥∥χ[0,t]

∥∥
L(p and

Φ1(t) =
∥∥χ[0,t]

∥∥
Lq

. As we have

Φ0(t) ≈ t
1
p (1− Log t)

1
p′ , Φ1(t) ≈ t

1
q (1− Log t)−

1
q ,

we have that ψ(t) = Φ0(t)
Φ1(t)

.. As p < q the conditions (C.0) (C.1) and (C.2) easily follow

by using the Proposition 2.2 and Proposition 2.3. and from Lemma 2.1 we obtain the

result. ♦

Next, we want to prove Theorem 5.1. We need to show that the norm of f inW =̇(L(p, Lq))θ,r

is equivalent to its norm in V = Lpθ,r(LogL)αθ .

For commodity, we set

λ = θ

(
1

p
− 1

q

)
, αθ = 1− θ − 1

pθ
, a = λ− θ, λ1 =

1

pθ
− 1

q
= (1− θ)

(
1

p
− 1

q

)
.

According to Theorem 5.2, the expression of the norm of f in W is composed with 3

terms:

||f ||rW =

∫ 1

0

(
t−θK(f, t;L(p, Lq))

)r dt
t
≈ N1 +N2 +N3

with Ni corresponding to the function Ki and which reads as follow after a change of

variables

N1 =

∫ 1

0

[
t−λ(1− Log t)a

∫ t

0

(1− Log s)
−1
p

(∫ s

0

fp∗ (x)dx

) 1
p ds

s

]r
dt

t
,

N2 =

∫ 1

0

[
t−λ(1− Log t)αθ

(∫ t

0

fp∗ (x)dx

) 1
p

]r
dt

t
,

N3 =

∫ 1

0

[
tλ1(1− Log t)αθ+ 1

q sup
t6s<1

(1− Log s)
−1
q

(∫ 1

s

f q∗ (x)dx

) 1
q

]r
dt

t
.

We start with a lower bound for ||f ||W .

Lemma 5.1.

One has

||f ||rW & N3 & ||f ||rV =

∫ 1

0

[
t

1
pθ (1− Log t)αθf∗(t)

]r dt
t
.
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Proof:

One has

N3 >
∫ 1

0

[
tλ1(1− Log t)αθ

(∫ 1

t

f q∗ (x)dx

) 1
q

]r
dt

t

>
∫ 1

2

0

[
tλ1(1− Log t)αθ

(∫ 2t

t

f q∗ (x)dx

) 1
q

]r
dt

t

&
∫ 1

2

0

[
tλ1+ 1

q (1− Log t)αθf∗(2t)
]r dt

t
.

Thus, we have, after a change of variables∫ 1

0

[
t

1
pθ (1− Log t)αθf∗(t)

]r dt
t
. N3 . ||f ||rW .

♦

For the upper bound, we start with the estimate of N2

Lemma 5.2.

One has

N2 . ||f ||rV .

Proof:

We set b =
r

p
∈] 0,+∞[, β = pαθ, we note that 0 < λp < 1 we can write

N2 =

∫ 1

0

[
t−λp(1− Log t)β

∫ t

0

fp∗ (x)dx

]b
dt

t
.

We may apply the Hardy’s inequalities of Theorem 2.1 to derive

N2 .
∫ 1

0

[
t1−λp(1− Log t)βfp∗ (t)

]bdt
t
. (35)

The right hand side (RHS) of this inequality is equal to∫ 1

0

[
t
1
p
−λ(1− Log t)αθf∗(t)

]r dt
t

(36)

since
1

p
− λ =

1− θ
p

+
θ

q
=

1

pθ
, we get the result. ♦

Next, we want to estimate N1
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Lemma 5.3.

One has:

N1 .
∫ 1

0

[
t

1
pθ (1− Log t)αθ−1f∗(t)]

r dt

t
6 ||f ||rV .

Proof:

Let us set

H(s) = s−1(1− Log s)−
1
p

(∫ s

0

fp∗dx

) 1
p

.

Then, from the Hardy’s inequality given in Theorem 2.1 and the expression of N1:

N1 .
∫ 1

0

[
t1−λ(1− Log t)aH(t)

]r dt
t
. (37)

Replacing H, noticing that a− 1

p
= −θ− 1

pθ
= αθ − 1, we then have from relation (37)

N1 .
∫ 1

0

[
t−λ(1− Log t)αθ−1

(∫ t

0

fp∗dx

) 1
p

]r
dt

t
. (38)

Applying again the Hardy inequality as in Lemma 5.2 we have

N1 .
∫ 1

0

[
t
1
p
−λ(1− Log t)αθ−1f∗(t)

]r dt
t
. (39)

This gives the result. ♦

It remains to estimate the term N3. We have

Lemma 5.4.

One has

N3 . ||f ||rV .

The key lemma to estimate N3 is the analogous of Proposition 3.1

Proposition 5.1.

Let Kd be a decreasing nonnegative function on (0, 1), ν > 0 and β two real numbers.

Then∫ 1

0

[
tν(1− Log t)β sup

t6s<1
(1− Log s)−

1
qKd(s)

]r dt
t
≈
∫ 1

0

[
tν(1− Log t)β−

1
qKd(t)

]r dt
t
.
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The proof follows the same argument as for Proposition 3.1.

Applying the Proposition 5.1, we deduce

N3 .
∫ 1

0

[
tλ1(1− Log t)αθ

(∫ 1

t

f q∗ (x)dx

) 1
q

]r
dt

t
. (40)

(The function Kd(t) =

(∫ 1

t

f q∗ (x)dx

) 1
q

is decreasing).

Again applying Hardy inequalities (see Theorem 2.1) we have

N3 .
∫ 1

0

[
t
1
q

+λ1(1− Log t)αθf∗(t)
]r dt
t
. (41)

But we have
1

q
+ λ1 =

1

pθ
so the RHS of the above equation (41) is the norm of f in V

at the power r. ♦

We have shown

||f ||rW . N1 +N2 +N3 . ||f ||rV

and

||f ||rW & N3 & ||f ||rV .

This proves Theorem 5.1. ♦

6 The critical case p = q. The interpolation space (Lp), L(p) and

its K-functional

The preceding study can be extended to the case where p = q. In this case, the inverse

function of ψ1(x) = (1 − Log x)−1, say ϕ1(t) = e1− 1
t will play the fundamental role to

express the K-functional. Note that in this case we can’t use the Lemma 2.1. we should

do it it by direct calculation. .

Theorem 6.1. K-functional for (Lp), L(p)

For 1 < p < +∞, 0 < t < 1, f ∈ Lp) + L(p, one has

K(f, t;Lp), L(p) ≈ sup
0<s<e1−

1
t

(1−Log s)
−1
p

(∫ e1−
1
t

s

fp∗ (x)dx

) 1
p

+t

∫ 1

e1−
1
t

(1−Log s)
−1
p

(∫ s

e1−
1
t

fp∗ (x)dx

) 1
p ds

s
.
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Proof:

We only sketch it since the arguments are similar to the proof of Theorem 3.2.

We consider f = g + h ∈ Lp) + L(p. Then for t > 0, f∗(t) 6 g∗

(
t

2

)
+ h∗

(
t

2

)
. We

derive

K0(t) = sup
0<s<e1−

1
t

(1− Log s)
−1
p

(∫ e1−
1
t

s

fp∗ (x)dx

) 1
p

6 I5 + I6.

with

I5 = sup
0<s<ϕ1(t)

(1− Log s)
−1
p

(∫ ϕ1(t)

s

gp∗

(x
2

)
dx

) 1
p

.

With a change of variables, we have

I5 . sup
0<s<ϕ1(t)

(1− Log
s

2
)
−1
p

(∫ ϕ1(t)/2

s
2

gp∗(x)dx

) 1
p

. ||g||Lp) . (42)

While for the term

I6 = sup
0<s<ϕ1(t)

(1− Log s)
−1
p

(∫ ϕ1(t)

s

hp∗

(x
2

)
dx

) 1
p

,

since 1− Logϕ1(t) =
1

t
and s→ (1− Log s)

−1
p is increasing, we have

I6 6 t
1
p

(∫ ϕ1(t)

0

hp∗(x)dx

) 1
p

= t× t
1
p
−1

(∫ ϕ1(t)

0

hp∗(x)dx

) 1
p

. (43)

We replace the quantity t
1
p
−1 by making an integration of the following integral:∫ 1

ϕ1(t)

(1− Log s)
−1
p
ds

s
=

1

1− 1
p

[
t
1
p
−1 − 1

]
. (44)

Therefore, we have from (43) to (44)

I6 . t

∫ 1

ϕ1(t)

(1− Log s)
−1
p

(∫ s

0

hp∗(x)dx

) 1
p ds

s
+ t||h||Lp , (45)

I6 . t
(
||h||L(p + ||h||Lp

)
. t||h||L(p . (46)

Thus, we have

K0(t) . ||g||Lp) + t||h||L(p . (47)
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While for the second term in the expression of K, say

K1(t) = t

∫ 1

ϕ1(t)

(1− Log s)
−1
p

(∫ s

ϕ1(t)

fp∗ (x)dx

) 1
p ds

s
.

One has

K1(t) 6 I7 + I8,

with

I7 = t

∫ 1

ϕ1(t)

(1− Log s)
−1
p

(∫ s

ϕ1(t)

gp∗

(x
2

)
dx

) 1
p ds

s
,

and

I8 = t

∫ 1

e1−
1
t

(1− Log s)
−1
p

(∫ s

ϕ1(t)

hp∗

(x
2

)
dx

) 1
p ds

s
.

To estimate I7, we use the relation
1

t
= 1− Logϕ1(t) to derive

I7 . t

(∫ 1

ϕ1(t)/2

gp∗(x)dx

) 1
p

t
1
p
−1 . t(1− Log

ϕ1(t)

2
)
p−1
p

(∫ 1

ϕ1(t)/2

gp∗(x)dx

) 1
p

. ||g||Lp) .

(48)

While for the second term I8, we have after a change of variables

I8 . t

∫ 1

0

(1− Log x)
−1
p

(∫ x

0

hp∗(τ)dτ

) 1
p dx

x
= t||h||L(p . (49)

Then, we deduce from (48) to (49)

K1(t) . ||g||Lp) + t||h||L(p . (50)

Therefore, we have for all f = g + h

K0(t) +K1(t) . ||g||Lp) + t||h||L(p .

That is

K0(t) +K1(t) . K(f, t;Lp), L(p). (51)

For the reverse, we use the same decomposition as before f ∈ Lp) + L(p, say

g =
(
|f | − f∗(ϕ1(t))

)
+

=
(
|f | − f∗(ϕ1(t))

)
χ{|f |>f∗(ϕ1(t))}, h = f − g,

so that h∗ + g∗ = f∗ and

g∗ =
(
f∗ − f∗(ϕ1(t))

)
+
, h∗ = f∗(ϕ1(t))χ

(0,ϕ1(t))
+ f∗(s)χ(ϕ1(t),1).
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With those expressions, we derive

||g||Lp) 6 sup
0<s<ϕ1(t)

(1− Log s)
1
p

(∫ ϕ1(t)

s

fp∗ (x)dx

) 1
p

= K0(t). (52)

While for the term in h,

t||h||L(p 6 t

(∫ ϕ1(t)

0

(1− Log s)
−1
p s

1
p
ds

s

)
f∗(ϕ1(t))

+t

∫ 1

ϕ1(t)

(1− Log s)
−1
p
ds

s
ϕ1(t)

1
pf∗(ϕ1(t))

+t

∫ 1

ϕ1(t)

(1− Log s)
−1
p

(∫ s

ϕ1(t)

fp∗ (x)dx

) 1
p ds

s
. (53)

For the first integral in (53), one can use Proposition 2.2 to derive∫ ϕ1(t)

0

s
1
p
−1(1− Log s)

−1
p ds . ϕ1(t)

1
p (1− Logϕ1(t))

−1
p . (54)

So we obtain

t

∫ ϕ1(t)

0

(1− Log s)
−1
p s

1
p
ds

s
f∗(ϕ1(t)) . t(1− Logϕ1(t))

−1
p

(∫ ϕ1(t)

ϕ1(t)/2

fp∗ (x)dx

) 1
p

. t sup
0<s6ϕ1(t)

2

(1− Log s)
−1
p

(∫ ϕ1(t)

s

fp∗ (x)dx

) 1
p

. tK0(t) 6 K0(t). (55)

For the second integral, we use relation (44) to derive

B = t

∫ 1

ϕ1(t)

(1− Log s)
−1
p
ds

s
ϕ1(t)

1
pf∗(ϕ1(t)) . t

1
pϕ1(t)

1
pf∗(ϕ1(t)). (56)

Since

∫ ϕ1(t)

e−
1
t

dx =
e− 1

e
ϕ1(t), we then have

ϕ1(t)
1
pf∗(ϕ1(t)) .

(∫ ϕ1(t)

e−
1
t

fp∗ (x)dx

) 1
p

. (57)

So that relations (56) and (57) imply

B = t

∫ 1

ϕ1(t)

(1− Log s)
−1
p
ds

s
ϕ1(t)

1
pf∗(ϕ1(t)) . (1− Log e1− 1

t )−
1
p

(∫ ϕ1(t)

e−
1
t

fp∗ (x)dx

) 1
p

.

(58)

31



Therefore, we obtain

B . sup
0<s<ϕ1(t)

(1− Log s)
−1
p

(∫ ϕ1(t)

s

fp∗ (x)dx

) 1
p

= K0(t). (59)

The last term in relation (53) is equal to K1(t).

Combining these last relations (52) to (59), we come to

||g||Lp) + t||h||L(p . K0(t) +K1(t),

which implies that

K(f, t;Lp), L(p) . K0(t) +K1(t) . K(f, t;Lp), L(p).

♦
We can now identify the interpolation space (Lp), L(p)θ,r as we state in

Theorem 6.2.

Let 1 < p < +∞, 0 < θ < 1, 1 6 r < +∞. Then Zθ,r=̇(Lp), L(p)θ,r has the following

equivalent norm:

For f ∈ Zθ,r, βθ = θ − 1

p
− 1

r

• if θ <
1

p
then

||f ||Zθ,r ≈

[∫ 1

0

[
(1− Log t)βθ

(∫ 1

t

fp∗ (s)ds

) 1
p

]r
dt

t

] 1
r

.

• if θ >
1

p
then Zθ,r = GΓ(p, r, w), w(t) = t−1(1− Log t)βθr and

||f ||Zθ,r ≈

[∫ 1

0

[
(1− Log t)βθ

(∫ t

0

fp∗ (s)ds

) 1
p

]r
dt

t

] 1
r

.

• if θ =
1

p

||f ||Zθ,r ≈

+∞∑
k=0

(∫ 21−2k

21−2k+1
fp∗ (s)ds

) r
p


1
r

.

In particular

(Lp), L(p) 1
p
,p = Lp and (Lp), L(p)θ,p = Lp,p(LogL)θ−

1
p .
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Proof:

According to Theorem 6.1, we have for f ∈ Zθ,r,

||f ||rZθ,r ≈
∫ 1

0

t−θ sup
0<s<ϕ1(t)

(1− Log s)
−1
p

(∫ ϕ1(t)

s

fp∗ (y)dy

) 1
p

r dt
t

+

∫ 1

0

[
t1−θ

∫ 1

ϕ1(t)

(1− Log s)
−1
p

(∫ s

ϕ1(t)

fp∗ (y)dy

) 1
p ds

s

]r
dt

t
=̇F1 + F2.

Using the change of variables x = ϕ1(t) so that t = (1− Log x)−1, we have

F1 =

∫ 1

0

[
(1− Log x)θ sup

0<s<x
(1− Log s)

−1
p

(∫ x

s

fp∗ (y)dy

) 1
p

]r
dx

(1− Log x)x
,

F2 =

∫ 1

0

[
(1− Log x)θ−1

∫ 1

x

(1− Log s)
−1
p

(∫ s

x

fp∗ (y)dy

) 1
p ds

s

]r
dx

(1− Log x)x
.

Let us start with the upper bound of this norm.

Proposition 6.1.

One has

F1 + F2 .
∫ 1

0

[
(1− Log x)θ−

1
r
− 1
p

(∫ x

0

fp∗ (s)ds

) 1
p

]r
dx

x
, if θ < 1.

Proof:

For the term F1, we have(∫ x

s

fp∗ (t)dt

) 1
p

6

(∫ x

0

fp∗ (t)dt

) 1
p

for s < x,

so, one deduces

F1 6
∫ 1

0

[
(1− Log x)θ−

1
r

(∫ x

0

fp∗ (s)ds

) 1
p

sup
0<s<x

(1− Log s)
−1
p

]r
dx

x
, (60)

which gives the upper estimate since sup
0<s<x

(1− Log s)
−1
p = (1− Log x)

−1
p .

For the term F2, we have

F2 6
∫ 1

0

[
(1− Log x)θ−1− 1

r

∫ 1

x

(1− Log s)
−1
p

(∫ s

0

fp∗ (y)dy

) 1
p ds

s

]r
dx

x
. (61)
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Since θ < 1, one may apply the Hardy inequality Theorem 2.2 (see [3] Theorem 6.5) to

derive

F2 6
∫ 1

0

[
(1− Log x)θ−

1
r
− 1
p

(∫ x

0

fp∗ (y)dy

) 1
p

]r
dx

x
. (62)

♦

Proposition 6.2.

For 0 < θ < 1, we have

F1 + F2 .
∫ 1

0

[
(1− Log x)θ−

1
r
− 1
p

(∫ 1

x

fp∗ (y)dy

) 1
p

]r
dx

x
.

Proof:

We start with F2. Since ∫ s

x

fp∗ (y)dy 6
∫ 1

x

fp∗ (y)dy,

the expression of F2 can be estimated as :

F2 6
∫ 1

0

[
(1− Log x)θ−1− 1

r

(∫ 1

x

fp∗ (y)dy

) 1
p
(∫ 1

x

(1− Log s)−
1
p
ds

s

)]r
dx

x
. (63)

By integration as for relation (44), one has∫ 1

x

(1− Log s)−
1
p
ds

s
=

p

p− 1

[
(1− Log x)1− 1

p − 1
]
. (64)

Therefore, we deduce from (63) and (64), the

F2 .
∫ 1

0

[
(1− Log x)θ−

1
p
− 1
r

(∫ 1

x

fp∗ (y)dy

) 1
p

]r
dx

x
. (65)

While for the second term F1, we deduce from Bennett-Rudnick’s Lemma ( [3] Lemma

6.1)

sup
0<s<x

(1− Log s)−
1
p

(∫ 1

s

fp∗ (y)dy

) 1
p

6 c

∫ x

0

[
(1− Log s)−

1
p
−1

(∫ 1

s

fp∗ (y)dy

) 1
p

]
ds

s
.

Setting temporarily ψ(s) = (1− Log s)−
1
p
−1

(∫ 1

s

fp∗ (y)dy

) 1
p

, we then deduce

F1 .
∫ 1

0

[
(1− Log x)θ−

1
r

(∫ x

0

ψ(s)
ds

s

)]r
dx

x
.
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By Hardy inequality Theorem 2.2 (see [3] Theorem 6.5).

F1 .
∫ 1

0

[
(1− Log x)θ−

1
p
− 1
r

(∫ 1

x

fp∗ (y)dy

) 1
p

]r
dx

x
.

. ♦

For the lower bound, we need few lemmas

The first lemma is a consequence of a general lemma given in Goldman Heinig and

Stepanov ([20], see also [19] Lemma 3.1).

Lemma 6.1.

Let tk = 21−2k , ∀ k ∈ IN, H a nonnegative locally integrable function on (0, 1), (q, λ) ∈
]0,+∞[2. Then

1.
∑
k∈IN

(∫ tk

0

H(x)dx

)q
2λkq ≈

∑
m∈IN

(
2λm

∫ tm

tm+1

H(x)dx

)q
,

2.
∑
k∈IN

(∫ 1

tk+1

H(x)dx

)q

2−λkq ≈
∑
m∈IN

(
2−λm

∫ tm

tm+1

H(x)dx

)q
.

Here IN =
{

0, 1, 2, . . .
}

the set of natural numbers.

The next Lemma can be obtained by straightforward computation

Lemma 6.2.

Let tk = 21−2k , k ∈ IN, λ 6= 0. Then, one has

1. For any s ∈ [tk+1, tk]

2k ≈ 1− Log s,

2. ∫ tk

tk+1

(1− Log t)λ−1dt

t
≈ 2kλ,

for all k ∈ IN.

As a corollary of the above lemmas we have:

Lemma 6.3.

Let tk = 21−2k , k ∈ IN, λ 6= 0, q > 0 and H a nonnegative locally integrable function

on (0, 1). Then
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• If λ > 0 then∑
k∈IN

(∫ tk

0

H(x)dx

)q
2λkq &

∫ 1

0

[
(1− Log t)λ

∫ t

0

H(x)dx

]q
dt

(1− Log t)t

and one has the equivalence if

∫ 1

0

H(x)dx .
∫ 1

2

0

H(x)dx (for instance H decreas-

ing).

• If λ < 0∑
k∈IN

(∫ 1

tk+1

H(x)dx

)q

2λkq ≈
∫ 1

0

[
(1− Log t)λ

∫ 1

t

H(x)dx

]q
dt

(1− Log t)t
.

Proof:

If λ > 0, we use statement 2.) of Lemma 6.2

2λkq ≈
∫ tk

tk+1

(1− Log t)λq−1dt

t
. (66)

Thus, we have∑
k∈IN

(∫ tk

0

H(x)dx

)q
2λkq ≈

∑
k∈IN

(∫ tk

0

H(x)dx

)q ∫ tk

tk+1

(1− Log t)λq−1dt

t
. (67)

Since for t < tk,

∫ t

0

H(x)dx 6
∫ tk

0

H(x)dx, then we derive from relation (67)

∑
k∈IN

(∫ tk

0

H(x)dx

)q
2λkq &

∑
k∈IN

∫ tk

tk+1

(∫ t

0

H(x)dx

)q
(1− Log t)λq−1dt

t
, (68)

and we have for any G nonnegative∑
k∈IN

∫ tk

tk+1

G(t)dt =

∫ 1

0

G(t)dt. (69)

This ends the proof of the lower bound of the first statement.

For the upper bound, we change the index of summation and use relation (66)

+∞∑
k=1

(∫ tk

0

H(x)dx

)q
2λkq ≈

∑
j∈IN

(∫ tj+1

0

H(x)dx

)q
2λjq

.
∑
j∈IN

∫ tj

tj+1

(∫ t

0

H(x)dx

)q
(1− Log t)λq−1dt

t

.
∫ 1

0

(1− Log t)λq−1

(∫ t

0

H(x)dx

)q
dt

t
. (70)
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Moreover, if

∫ 1

0

H(x)dx .
∫ 1

2

0

H(x)dx and since(∫ 1
2

0

H(x)dx

)q

.
∫ 1

1
2

(∫ t

0

H(x)dx

)q
(1− Log t)λq−1t−1dt

.
∫ 1

0

[
(1− Log t)λ

∫ t

0

H(x)dx

]q
dt

(1− Log t)t
. (71)

Then from the two relations (70) and (71), we obtain the upper bound for λ > 0.

Same argument holds for λ < 0 for having the second statement.

The above Lemma 6.3 holds for λ = 0, noticing that

∫ tk

tk+1

dt

(1− Log t)t
≈ 1. Then under

the same conditions as before, we have

∑
k∈IN

(∫ tk

0

H(x)dx

)q
≈
∫ 1

0

[∫ t

0

H(x)dx

]q
dt

(1− Log t)t

and ∑
k∈IN

(∫ 1

tk+1

H(x)dx

)q

≈
∫ 1

0

[∫ 1

t

H(x)dx

]q
dt

(1− Log t)t
.

♦To obtain the lower bound for F1, we first show the

Lemma 6.4.

One has

F1 &
∑
k∈IN

2k(θ− 1
p

)r

(∫ tk

tk+1

fp∗ (s)ds

) r
p

with tk = 21−2k , k ∈ IN.

Proof:

Let us set G(x) = sup
0<s<x

(1− Log s)−
r
p

(∫ x

s

fp∗ (y)dy

) r
p

, q =
r

p
and write

F1 =
∑
k∈IN

∫ tk

tk+1

G(x)(1− Log x)θr−1dx

x
.

Then, we derive from Lemma 6.2 and the definition of G

F1 &
∑
k∈IN

G(tk)

∫ tk

tk+1

(1− Log x)θr−1dx

x
≈
∑
k∈IN

G(tk)2
kθr. (72)

But G(tk) = sup
i>k

sup
ti+1<s<ti

(1− Log s)−q
(∫ tk

s

fp∗ (y)dy

)q
and Lemma 6.2 implies that for

ti+1 < s < ti, (1− Log s)−q ≈ 2−iq, so that

G(tk) ≈ sup
i>k

2−iq sup
ti+1<s<ti

(∫ tk

s

fp∗ (y)dy

)q
,
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that is

G(tk) ≈ sup
i>k

2−iq
(∫ tk

ti+1

fp∗ (y)dy

)q
(73)

and then

G(tk) ≈ sup
i>k

2−iq
(∫ tk

ti+1

fp∗ (y)dy

)q
> 2−kq

(∫ tk

tk+1

fp∗ (y)dy

)q

. (74)

Combining relation (74) and (72), we deduce

F1 &
∑
k∈IN

2kθr−k
r
p

(∫ tk

tk+1

fp∗ (y)dy

) r
p

.

This ends the proof. ♦
As a corollary of the above lemmas, one has

Theorem 6.3.

On has for f ∈ Zθ,r

1. If θ >
1

p
then

||f ||rZθ,r &
∫ 1

0

[
(1− Log t)θ−

1
p

(∫ t

0

fp∗ (x)dx

) 1
p

]r
dt

(1− Log t)t
.

2. If θ <
1

p
then

||f ||rZθ,r &
∫ 1

0

[
(1− Log t)θ−

1
p

(∫ 1

t

fp∗ (x)dx

) 1
p

]r
dt

(1− Log t)t
.

Proof:

Let us set q =
r

p
, λ =

∣∣∣∣θ − 1

p

∣∣∣∣ p.
If θ − 1

p
> 0, we may apply statement 1) of Lemma 6.1 with H(x) = fp∗ (x) to derive

from Lemma 6.4

F1 &
∑
k∈IN

(
2λk
∫ tk

tk+1

fp∗ (y)dy

)q

≈
∑
k∈IN

[∫ tk

0

fp∗ (x)dx

]q
2λkq. (75)

So that relation (75) gives with the help of Lemma 6.3

F1 &
∑
k∈IN

(∫ tk

0

fp∗ (x)dx

)q
2λkq &

∫ 1

0

[
(1− Log t)λ

∫ t

0

fp∗ (x)dx

]q
dt

(1− Log t)t
.
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This last inequality implies the first statement of Theorem 6.3, noticing that

||f ||rZθ,r & F1.

While for the second statement, we apply the statement 2) of Lemma 6.1 to derive from

Lemma 6.4:

F1 &
∑
k∈IN

(
2−λk

∫ tk

tk+1

fp∗ (y)dy

)q

≈
∑
k∈IN

[∫ 1

tk+1

fp∗ (x)dx

]q
2−λkq.

So that

F1 &
∑
k∈IN

(∫ 1

tk+1

fp∗ (x)dx

)q

2−λkq &
∫ 1

0

[
(1− Log t)−λ

∫ 1

t

fp∗ (x)dx

]q
dt

(1− Log t)t
.

The last inequality comes from the second statement of Lemma 6.3 and this ends the

proof of Theorem 6.3 since ||f ||rZθ,r & F1. ♦

It remains to investigate in the particular case θ =
1

p
. The lower bound for ||f ||Zθ,r

comes from Lemma 6.4. It is sufficient to show the

Lemma 6.5.

For any θ ∈]0, 1[, we have

max(F1;F2) 6
∑
k∈IN

2kr(θ−
1
p

)

(∫ tk

tk+1

fp∗ (s)ds

) r
p

.

Proof:

The estimates for F1 and F2 follow the same argument, nevertheless we detail both

estimates for clarity reason.

Following the notation in the proof of Lemma 6.4, we have

F1 =
∑
k∈IN

∫ tk

tk+1

G(x)(1− Log x)θr−1dx

x
.

Following the above argument as in Lemma 6.4, we have

F1 .
∑
k∈IN

G(tk)2
kθr .

∑
k∈IN

2kθr sup
i>k

2−iq
(∫ tk

ti+1

fp∗ (y)dy

)q
. (76)

Writing ∫ tk

ti+1

fp∗ (y)dy =
i∑

j=k

2j2−j
∫ tj

tj+1

fp∗ (y)dy,
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one deduces

sup
i>k

2−iq
(∫ tk

ti+1

fp∗ (y)dy

)q
6 sup

i>k
2−iq

(
i∑

j=k

2j

)q

sup
j>k

2−jq

(∫ tj

tj+1

fp∗ (x)dx

)q

Therefore, we have

F1 .
∑
k∈IN

2kθr sup
j>k

2−jq

(∫ tj

tj+1

fp∗ (x)dx

)q

.

So, setting Aj=̇

(∫ tj

tj+1

fp∗ (y)dy

)q

estimating the supremum term by a sum, one has

F1 .
∑
k∈IN

2kθr
+∞∑
j=k

2−jqAj =
∑
j∈IN

2−jqAj

j∑
k=0

2kθr.

F1 .
∑
j∈IN

2jθr−jqAj =
∑
j∈IN

2j(θ−
1
p

)r

(∫ tj

tj+1

fp∗ (y)dy

)q

.

For estimating F2, we set G0(x) =

[∫ 1

x

(1− Log s)
−1
p

(∫ s

x

fp∗ (y)dy

) 1
p ds

s

]r
and write

F2 =
∑
k∈IN

∫ tk

tk+1

(1− Log x)(θ−1)r−1G0(x)
dx

x
.

Then, using Lemma 6.2 and the fact that G0(x) 6 G0(tk+1) for tk+1 < x < tk, one has

F2 .
∑
k∈IN

G0(tk+1)2kr(θ−1). (77)

Writing G0(tk+1) as

G0(tk+1) =

 k∑
i=0

∫ ti

ti+1

(1− Log s)
−1
p

(∫ s

tk+1

fp∗ (y)dy

) 1
p
ds

s

r ,
and using Lemma 6.2, we then have

G0(tk+1) .

 k∑
i=0

(∫ ti

tk+1

fp∗ (y)dy

) 1
p

2(1− 1
p

)i

r . (78)
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Using Lemma 6.1 with an adequate step function H, the RHS of relation (78) can be

estimated as

k∑
i=0

(∫ ti

tk+1

fp∗ (y)dy

) 1
p

2(1− 1
p

)i =
k∑
i=0

2(1− 1
p

)i

(
k∑
j=i

∫ tj

tj+1

fp∗ (y)dy

) 1
p

≈
k∑
i=0

2(1− 1
p

)i

(∫ ti

ti+1

fp∗ (y)dy

) 1
p

.

Summarizing the above relations, we come to

F2 .
∑
k∈IN

2kr(θ−1)

[
k∑
i=0

2(1− 1
p

)i

(∫ ti

ti+1

fp∗ (y)dy

) 1
p

]r
,

using the second statement of Lemma 6.1, by taking H a step function on [0, 1] such

that

∫ ti

ti+1

H(x)dx = 2(1− 1
p

)i

(∫ ti

ti+1

fp∗ (y)dy

) 1
p

, we deduce from this last inequality

F2 .
∑
i∈IN

2i(θ−
1
p

)r

(∫ ti

ti+1

fp∗ (y)dy

) r
p

.

This ends the proof. ♦
Corollary 6.1. of Lemma 6.5 and Lemma 6.4

One has for any θ ∈] 0, 1 [ and f ∈ Zθ,r ||f ||rZθ,r ≈
∑
k∈IN

2kr(θ−
1
p

)

(∫ tk

tk+1

fp∗ (y)dy

) r
p

.

As a consequence of the above corollary, we have

Theorem 6.4.

One has

||f ||Zθ,r ≈

[∫ 1

0

(1− Log t)θr
(∫ t

0

(1− Log x)−1fp∗ (x)dx

) r
p dt

(1− Log t)t

] 1
r

.

Proof:

From the Lemma 6.2∫ tk

tk+1

2−kfp∗ (y)dy ≈
∫ tk

tk+1

(1− Log y)−1fp∗ (y)dy,
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and from the above Corollary 6.1

||f ||rZθ,r ≈
∑
k∈IN

2krθ

(∫ tk

tk+1

(1− Log x)−1fp∗ (x)dx

) r
p

≈
∑
k∈IN

2krθ
(∫ tk

0

(1− Log x)−1fp∗ (x)dx

) r
p

(using Lemma 6.1)

≈
∫ 1

0

(1− Log x)rθ
(∫ t

0

(1− Log t)−1fp∗ (x)dx

) r
p dt

(1− Log t)t
(using Lemma 6.3).

♦

Acknowledgement : This paper has been written during the visit of the third author

(A. Gogatishvili) at the University of Poitiers in April 2016; he wishes to thank all the

members of the department for their kind hospitality.

The research of A. Gogatishvili and T.Kopaliani was in part supported by the Grant no

DI/9/5-100/13 of the Shota Rustaveli National Science Foundation, and grant no 217282,

Operators of Fourier analysis in some classical and new function spaces.

The research of A.Gogatishvili was partially supported by the grant P201/13/14743S of

the Grant agency of the Czech Republic and RVO: 67985840.

The second author has been partially supported by the Gruppo Nazionale per l’Analisi
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