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Abstract

We deal with a suitable weak soluti¢m, p) to the Navier—Stokes equations{inx (0, T'),
whereQ is a domain ifR3, T > 0 andv = (vq,vq,v3). We show that the regularity ¢f, p)
at a point(xg, tg) € 2x(0,T) is essentially determined by the Serrin—type integrability of the
positive part of a certain linear combination«f, v3, v andp in a backward neighborhood
of (xo, o). An appropriate choice of coefficients in the linear combination leads to the Serrin—
type condition on one component ofor, alternatively, on the positive part of the Bernoulli
pressurel [v|? + p or the negative part qf, etc.
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1 Introduction

1.1. The Navier—Stokes systemLet 2 be either the whole spa@ or a half-space or a bounded
or exterior domain with the boundary of the clas$t (¢ > 0) and letT” > 0. We deal with the
Navier—Stokes problem

Ov+v-Vv = —Vp+ vAv inQ x (0,7), (1.1)
divv = 0 in Q x (0,7), (1.2)
vV = Vo inQ x {0} (1.3)

for the unknown velocitw = (v1, v, v3) and pressure. Symbolv denotes the coefficient of
viscosity, which is supposed to be a positive constanfi{if# () then we consider the problem
(1.1), (1.2), (1.3) with the homogeneous Dirichlet boundary condition

v=0 onof x (0,7). (1.4)

1.2. Weak and suitable weak solution, regular and singular points. The definition of a
weak solution to the system (1.1), (1.2) and its basic properties are explained e.g. in the books by
Ladyzhenskaya [8], Temam [21], Sohr [19] and in the survey paper [6] by Galdi. Here, we only
recall that the weak solution satisfies (1.1), (1.2) in the sense of distributidns<ir{0, 7') and
belongs tal.> (0, T; L2(Q)) N L2(0,T; W2 (52)).

The existence of a weak solution to (1.1), (1.2), (1.5) is known on an arbitrarily long time
interval (0,7") (provided that the initial velocity, is an appropriate space, see [8], [19], [21]



or [6]), but its regularity and uniqueness are generally open problems. Since, roughly speaking,
regular solutions are unique, the question of uniqueness also leads to the question of regularity.

The definition of the so called suitable weak solution to the system (1.1), (1.2), with many
related results, can be found e.g. in papers [1], [9], [10] and [22]. Recall that a weak solution
v of system (1.1), (1.2) is calledsuitable weak solutioif an associated pressupebelongs to
L32(92 x (0,T)) and the pai(v, p) satisfies the so callegeneralized energy inequality
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2y/0 /QIVV ¢ dxdt < /0 /Q[|v| (0 + vAP) + (I[P +2p) v- Vo] dxdt  (1.5)

for every non—negative functiopfrom C5°(€2 x (0,7)). (Some authors use different conditions
on the pressure in their definitions. Our clds¥?(Q x (0,7)) is the same as in [9], [10] and
[22].) By the definition from [1], the pointxg,ty) € Q x (0,7 is said to be aegular point

of weak solutionv if there exists a neighborhodd of (xg, ty) such thatv € L>°(U). Points

in Q x (0,7) that are not regular are callesihgular. It is shown in [1] that the set of singular
points of a suitable weak solution has thalimensional parabolic measure (which dominates the
1-dimensional Hausdorff measure) equal to zero.

1.3. On some local regularity criteria. There exist many so called local regularity criteria, saying
that if a suitable weak solution a posteriori satisfies certain conditions in a backward neighborhood
of point (xg, tg) then(xo, t9) is a regular point. (See e.g. papers [1], [4], [9], [10], [15], [22], etc.

In this paper, we use a criterion from [22] (by Wolf). The criterion is formulated more generally,
but it particularly says that there exists> 0 such that if

I
—2/ / lv|? dxdt < ¢ (1.6)
6 t0752 B(g(xo)

holds for at least oné > 0 then (xo, o) is a regular point of the solution. (Here, Bs(xo)
naturally denotes the ball of radidsand centex.)

Let us also note that Takahashi [20] proved that if the norm of a weak sohatiori, (tg —
p?,to; L¥(B,(x0)) (WhereL!, denotes the weak"—space an@/r + 3/s < 1,3 < s < o) is
less than or equal tothen(xq, ty) is a regular point of. Takahashi’s criterion has been refined
in [16] and [17]. In [17],v is supposed to be integrable with powers [3,c0) (in time) and
s € (3,00) (in space) not necessarily in some backward neighbourhotxhofy ), but only in the
intersection of such a neighbourhood with the exterior of the space—time paraboloid

P,: a(to—1t) = |x — x|~ 1.7)

Exponents- ands are required to satisfy the conditi@rir 4+ 3/s < 1 and numbet is supposed to
satisfy the inequalitie8 < a < 4vAg(B), where\s(B;) is the least eigenvalue of the Dirichlet—
Stokes operator in the unit ball; in R3.

1.4. More on one—component regularity criteria. The studies of regularity of a suitable weak
solutionv in dependence on one componentvoivere started by paper [12] (Neustupa, Penel),
where the authors proved the regularityvofn D x (¢1,t2) (where D was a sub—domain dd

and0 < t; < to < T) under the assumption that the componentvas essentially bounded in

D. The condition orw; has been successively improved in a series of further papers: 1) [14]
(by Neustupa, Penel and Nov§tnhere,v; is only assumed to be if" (¢1,t2; L*(D)) where
2/r+3/s < %), 2) [7] (by Kukavica and Ziane; the cage = R3, v; is assumed to be in
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L"(0,T; L*(R®)) where2/r +3/s = 2 forr € [£,00) ands € (%, 0]), 3)[2] (by Cao
and Titi); here the authors consider the spatially periodic problei®’imnd use the condition
2/r+3/s < % +2/(3s), s > %), 4)[23] (by Zhou and Pokogn the exponents, s are supposed
to satisfy the conditiong/r + 3/s < 2 +1/(2s), s > %0). One can observe that none of
these papers reaches the natural Serrin I2¢eH 3/s < 1. This level was in a certain sense
reached by Chemin, Zhang and Zhang [3], where the regularity of solutioas been proven
under the assumption that € L7 (0,T; H'/>*2/7(R3)), wherer € (4,00). The homogeneous
Sobolev spacéi!/2t2/7(R3) is continuously imbedded t63"/("=2)(R3). Hence the condition
vy € L7(0,T; HY?**2/7(R3)) implies thatv; € L7(0,7; L*/("=2)(R?)), and the exponents
ands := 3/(r — 2) now satisfy Serrin’s conditio@/r + 3/s < 1. Nevertheless, the requirement
vy € L7(0,T; H'Y?t2/7(R3)) includes the condition on the fractional derivativergfand it is
stronger than just the conditien € L7 (0, T; L37/("=2)(R3)). Thus, we may conclude that, to our
best knowledge, the question whether the conditiopr L"(t1,t2; L*(D)) for r ands, basically
satisfying the conditio/r 4+ 3/s < 1, is sufficient for regularity of solutiowr in D x (t1,t2), is
still open.

1.5. On the results of this paper. We provide a partial answer to the question formulated at the
end of the previous subsection. Our answer concerns the regularity of a suitable weak solution
at a chosen poinxg, tp) €  x (0,T). Forp € (0,+/t9) anda > 1, we denote

Qp = {(x,1); |x —x0| < p, to —p2 <t <t}
Upa = {(x,1); 0(t) < |x —x0| < p, to — p*Ja <t <ty},

where

0(t) == a(tyg—t). (1.8)

Q, is a p—backward parabolic neighborhood of poiy,ty). SetU, , is separated from the
interior of @, \. U, , by the space—time parabolak, see (1.7). It should be noted that parameter
a can be chosen arbitrarily large. Consequently, parabalichay be arbitrarily wide and set
U, can be proportionally an arbitrarily small part@f,.
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We suppose that satisfies Serrin’s integrability condition iti, , and the component; of v
satisfies Serrin’s condition i, ~\ U, ., which is the major part of),. We show that these
assumptions imply thafxo, tg) is a regular point of solutiov (see Theorem 1). Theorem 2
generalizes Theorem 1 so that the assumption;ds replaced by an assumption on the positive
part of a certain linear combination of, v3, v andp. Our method is especially based on the



transformation of the system (1.1), (1.2) to new coordinates (subsection 2.3), application of
the generalized energy inequality in the, t')—space (subsection 2.7), estimates of appropriate
guantities and on the precise evaluation of critical integrals, where the directions of the velocity
at various points also play an important role (subsections 3.6 and 3.7). Although we still need the
assumption on the Serrin—type integrability of all componentsiofsetU,, ,, we believe that the
presented results shed (in addition to the papers [2], [3], [7], [12], [14], [23]) another light on the
mechanism how the behavior of just one component @r more generally, a linear combination
of v2, v3, v2 andp) influences the regularity of solution

Forr > 1, s > 1, we abbreviatd"*(Q,) := L"(to — p*, to; L*(B,(x0)) and we denote by
I lls; , the corresponding norm. More generally)if is a measurable setiax (0,77, (M)
is the orthogonal projection df/ into thet—axis andM; := {x € Q; (x,t) € D} then we denote
by L™%(D) the space of functiong with the finite norm

|Hf|”r,s;M = [A(M) </M ’f(X,t)|s dX)S dt:| T.

We also denote bl."*(D) the corresponding space of vector functions.

The next theorem shows that the local regularity of a suitable weak sontb@a space—time
point (xo, to) is essentially determined just by one component:of

Theorem 1. Letv = (v1,v9,v3) be a suitable weak solution of the system (1.1), (1.2)ir
(0,7, (x0,t0) € 2 x (0,T),a > 1andp € (0,+/ty). Suppose that

(a) there existr € [3,00) ands € (3, c0) satisfying2/r + 3/s = 1, such thatv € L™*(U, ,)
and

(b) there existr* € [2,00) and s* € (3,00] satisfying2/r* + 3/s* = 1, such thatv; €
L™ % (Qp~Upa).
Then(xg, tp) is a regular point of solutiorv.

Denote
Flv,p,v1,72,78] = [(147)v7 + (14+72)v5 + (1+73)v3 + (11 + 72 +73)p] |

for v1, 72, v3 € R. (The subscript 4" denotes the positive part.) The next theorem is a general-
ization of Theorem 1:

Theorem 2. Letv = (v1,v2,v3) be a suitable weak solution of the system (1.1), (1.2pir
(0,T), p be an associated pressure, to) € Q x (0,7),a > 1 andp € (0, /tp). Assume that
v satisfies condition (a) of Theorem 1 and also the condition

(c) there exist* € [1,00), s** € (2, oc] satisfying2/r** + 3/s™ = 2 andy1, 72, 73 € R,
such that

5T 157
l——Mm+r+m)+-— =1 :
198 ('yl Y2 ")/3) 198 Ve > 0 (fOf k ,2,3) (1 9)

and F[v,p,71,72,73] € L7 (Qp N Up,a)-

Then(xg, tp) is a regular point of solutiorv.



Observe that ify;, = 2 andy, = v3 = —1 then condition (c) reduces to condition (b). On the
other hand, ify; = 72 = 73 = —1 then condition (c) requires-3p]. € L™ 5 (Q, \ U, 4).
Itis equivalent to the conditiop_ € L™ " (Q, \ U,.4), which has already been used in paper
[11]. (Here,p_ denotes the negative part@) Thus, our Theorem 2 generalizes Theorem 1 from
[11]. Finally, if vy = v9 = 3 = 2 then condition (c) just requires that the positive part of the so
called Bernoulli pressurg|v|? +pisin L™ (Q, \ Up,q).

As Theorem 1 is a special case of Theorem 2, we will further prove Theorem 2.

2 Proof of Theorem 2 — part |

2.1. The used regularity criterion. We will show that

li 3 2.1
5—0+ 02 //UM vl dxdi = @D
and there exists a sequenes, }, such thab,, \, 0 for n — oo and
lim 52 // |v|® dxdt = 0, (2.2)
V6n a

where
%,a = {(X,t); ’X - X0| < 9(15), to — (52/61 <t < to}.

We will show in subsection 2.8 that (2.1) and (2.2) imply (1.6).
2.2. The proof of (2.1). Applying Holder’s inequality, we get

3
) \ 1 [to (/ )s 4r3\1-2
Lo L vl® dx ( _) dt
52 H| |H3,3,Ué,a 52 to—62/a 0(t)<‘X*XO|<6‘ | 3

1-3 to 5 3
< (4_7T> g [/ (/ v)* dx) dt}
3 to—62 /a \JO(t)<|x—x0| <6

Sincev belongs tal.”*(U,,4), the right hand side tends to zerodas- 0+. Hence (2.1) holds.

2.3. Transformation to the new coordinatesx’,t’. In order to prove (2.2), we transform the
system (1.1), (1.2) to the new coordinat€sandt’, which are related t and¢ through the
formulas

t 2
, X —Xp , dr 1 p
0(t) /tOpQ/a 02(t)  a a(tg—t) (2:3)
Then
p2 ’ 1 47
t = to— o e and  0(t) = pe 2", (2.4)

The time interval(ty — p*/a,t) on thet—axis now corresponds to the intery@l, oo) on the
t'—axis. Equations (2.3) represent a one—to—one transformation of the paraboliciiggiornthe
x, t—space onto the infinite stripe

V! = {(x,t)eRY ¢ >0and[x| < 1}

a
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in thex’, t’—space. Similarly, (2.3) is a one—to—one mapping of thé/sgtin thex, t—space onto
U, = {(x,t) eRY ¢ > 0andl < x| < e%“t'}

in thex’, t'—space. We denote

2. p
t/
2. p
t'=th==In<
- -4 - - - NPT _ _ §=5
(corresponds to
Fig. 2: 1% ) 1 t =tg— 62/a)
The setdJ, andV//. | = ez
X/
0 1

Thent’ = ¢ corresponds to = ¢, — 6% /a. Numberss and¢; are also related through the formula
0= pe‘%“té andd — 0+ corresponds t¢f; — oo. (The transformation (2.3) has also been used
in [17]. However, whilea was supposed to satisfy certain condition of smallness in [17], here it
can be arbitrarily large.) If we put

2

1 x—=x0 1 P
vt = @"( 0(t) ’Elna(to—t))’

1 Xx—xg 1 p?
1) = ’( , — 1 )
p(x) 26 P\ o) T a alte — 1)
then the functions’, p’ represent a suitable weak solution of the system of equations
oV +v V'V = -V +vAV —tav - Jax' - V'V, (2.6)
div'v: = 0 (2.7)

in any bounded sub—domain &, := {(x/,t') € R*; ¢’ > 0 and|x| < e%”t'}. (The symbolsv’

andA’ denote the nabla operator and the Laplace operator with respect to the spatial wdr)able
One can simply calculate that condition (a) implies #lat L"™*(U/) and condition (c) implies

that F[v/, p/, v1,v2,v3] € L™ 57 (V).

2.4. Notation. Let0 < d; < do. We denote bydy, 4, and A}, , the annuli{x € R?; d; <

[x —xo| < dp} and{x’ € R?; d; < x| < dp}, respectively. We also denote 1, the ball

{x' € R3; |x| < di}. The mapping — x’ = (x — x¢)/0(t) is a one—to—one transformation of

Ag(t)dy,0(t)d, OMO Ay, 4, aNdBy(y)4, (x0) Onto By at each time instarite (¢ — p%/a,ty).

2.5. The cut—off functionsy and ¢. Letd > 1. (Numberd will be finally specified to be

“sufficiently large” in subsection 3.8.) Let be an infinitely differentiable function in the interval
(—00, 00), such that



=1 foré<d,
vie) =0 for 2d < ¢,

1 is non-increasing ifd, 2d] and there exists; > 0 (independent of]) such that

BOI<S  and PO < 5 (28)

ford < ¢ < 2d. Put
o = Vi

We will further usey(£) andy (&) with £ =
P(|x|) or p(]x]|), respectively.

2.6. The first estimate of6~? || v||3 3.1, . Recall thatt’ = t5 = 2a~" In(p/d) corresponds to
t = to — 0°/a (see formulas (2.3)—(2.5)). Transformifig? [|v|[3 . v, to the variables<’, ', we
get

1 3 n3 3o/ —at' A 2 " —at’ 34/
2 v dxdt = (52 [V/[° dx’ e dt' < ﬁ Hv lg. g IV'll5. 5 @ dt
Vé a B/ T !

P —at’ 4/ p2 > / / 3 / 2 —at’ 14
< 52/ lev' H6 By, llpY' ||ZB, e dt < o 52/ ||V(<,0v)||22;Béd loV'll3, g, e dt
t t

P2 - N2 2at’ 14/ 1 > 1116 2at’ 341 i
o s (I v B, e at ) ([T ey, e )
1, ,

. .
- < [ IV 1By e 3<t’-t%>dt') ( / |sov’|rS;B;de‘g““"*)dt’) @9
th tg

)

[\

IN

Here,cs is an absolute constant, coming from Sobolev’s inequality. (See e.g. [5, p. 54].) In order
to estimate the integrals on the right hand side of (2.9), we use the generalized energy inequality
in thex’, t'—space.

2.7. The generalized energy inequality in the, t’—space. Sincev’, p’ is a suitable weak solu-
tion to the system (2.6), (2.7), it satisfies (by analogy with (1.5)) the generalized energy inequality

ZU/ TV g dx! dt’ < / (VP (906 + vAS) + (V2 +2) v - V'
a Qa
+ 3a Iv/|2 ¢ + ta(x'-V'e) |V’|2] dx’ dt’ (2.10)

for every non—negative functionfrom C5°(QY,).

Consider functiom in the formg(x’, ¢') = [Ry ,, ] (|x']) e*t %) [Ry ., x](¥'), wherex € R,
x s the characteristic function of the interv#}, ¢') andR , /,,, is a one—dimensional mollifier with
the kernel supported if--1/m, 1/m). Then the ternd a (x’ - V'¢) |v/|? on the right hand side of
(2.10) can be omitted, because V'¢ < 0. The limit form — oo yields

t/
v ), g, <) 20 [V oV (IR, e dr

ts



t/

a 4t

< oV B s, + (5 +) [ oI gy, o0 ar
t

t/
+ / / 20 |V'o2 V)2 + (VP +20) (V- V)] "7 7%) dx! dr. (2.11)
ts /Al

(A similar limit procedure has been used in [17].) Inequality (2.11) holds fortaza.t;, where
ts is for technical reasons supposed to be greaterthaa 2a~! In2d. Choosings = —%a, we
get
2 141 a ¢ 2 /
v (1 g, o3 4§ eV T g, e H e
y

y Paq 17 2d
)

2

t/
+21// Hv/(@vl(.,T))H%.B/ efga(‘rft:;) dr
t/

’2d
9
< v (5115, gy, + K7 (0) + K1), (2.12)
where

K(9) ::/ / v Ve V2 + |V V- V) dx’ e 5471 dr,
ts JAG2a

K1(5) = /t’ /, }Qp’ (v V'd))‘ dx’ e=3590—5) dqr.
S

d,2d

The next lemma is proven in [17]:

sk ok

Lemma 1. Assume that’ € L™ =" (U.),0 < a <7, 0< 3 <s, R>1, ty >2a ' InR,
and at least one of the two conditions &)=1r, w >0, 2) a <r, w > 0 holds. Then

J: U

/
6

% / /
Iv'|° dx’) e W=t g — 0 as ts — oo. (2.13)

/
1L,R

Applying Lemma 1, we can show thaf!(5) — 0 for § — 0+. (Note that in the case of the
integral containingv’|? [v/ - V/¢?|, we apply Lemma 1 withy = 3 = 3 andw = 2. Here, we
use the assumptian> 3.) As to the termi 1 (5), we refer to [17], wherd< ! (§) is estimated as
follows:

K(8) < es(0) lov' (- t9)ll; gy, + ca(8), (2.14)

wherec3(0) — 0 andcy(d) — 0 for § — 0+. (In [17], the author considers an infinitely
differentiable functiony with values in[0, 1] such thatp = 1 in Bj andy = 0 outsideB) instead

of our ¢, but this difference plays no role.) The proof of (2.14) is relatively laborious especially
because it requires to estimate the transformed pregéuidote that bothes(5) andc4(d) also
depend on parameter Thus, inequalities (2.12) and (2.14) yield

t/
lov' ()13 gy, €307 4+ 2 / [ v/ (T3, gy, 050 dr
ts

t/
2 [V IR gy, e B ar
t ’

1



< [+ es(0)] lev' ()13 g, + c5(0), (2.15)
wherec;(6) — 0 for § — 0+.

2.8. A conditional completion of the proof of Theorem 1. Suppose that
(i) there exists a sequen¢é, } such thatd,, \, 0 and lim |[¢v/(. ,tgn)||2;Béd =0.
n—oo

Then the proof of Theorem 1 can be completed as follows: the identity (2.1) is proven in subsection
2.2. The inequalities (2.9), (2.15) and condition (i) imply that

> 2 a(t'—t5) i 6 2a(t/—t, ) 1
. ! / —3zalt’'— 5n / / , —za(t — 5n /
< nlglgo c2 (/t/ |V (pv )HQ;Béd e 3 dt> </t/ llpv HQ;BQde dt>

on on

® e INTP 2a(t'—t ) 34 1
. | o 2alt'—t;,

dn

1
! o0 ’ ! Z
(s Bl 3 ) ([ vl S ar )

A
Ny
g

t5, <t'<oo ts,
: 1y3/6\3 N
< e lim (32)" (2)" (11 +ea)] v/ (ot I gy, + es(0n) " = 0.

This proves (2.2).

For allm € N andn € N such that,, > \/ad,,, we haveQs,, C (Us,.o U Vs,,4). Denote by
n,, the maximum of al € N such thav,,,, > /ad,,. Thend,, — oo impliesd,,, — oo (for
m — 00). Hence, using also (2.1) and (2.2), we have

lim // v[3dxdt < lim // v[3dxdt = 0.
m—0oo 52 | ’ m—oo 52 UspypraYVsn,, ’ ’

This implies (1.6), which means th@ty, ¢() is a regular point of the solutlom, D..

3 Proof of Theorem 2 — part Il

The purpose of this section is to show that condition (i) holds, provided that assumption (c) of
Theorem 2 is satisfied. Recall thgt = 2a~! In(p/é,). We observe thaf, \, 0 is equivalent
tot; " oo. In order to simplify the notation, we further write onlj; instead oft; . The
existence of a sequen¢€, } such that;, " co and|[¢v'(.,t},)|l2; B, — 0 (for n — oc) will be
established in this section.

3.1. The integrals of(v}, 24 ) (k= 1,2,3). Here, we show that the mtegrals(oi’ + ')
in B, are equal to certaln integrals omeg 5q- Assume, for example, that= 1. Let us multiply

equation (2.7) by (3 ’Qw) (4,0,0) ¢+ 32 ’2 V4 and integrate irB),;. Sincev’ is a suitable
weak solution to the system (2.7), (2. 10) and the set of its smgular points has 1D-Hausdorff
measure equal to zero, the integral has a sense faf a:a,. We obtain

0 — /, [V"V,V'—i-V,p/]- [(.1‘1,0 O)lﬁ-i—l lsz]

9



, A5 Gprh)at + @1p) )0 + [ @5of) o V2o + ol dar Ofw} dx,
0= / [V 20 + vi) 2 Ol + pl b + pl 2 O + v vl Sl + i) Lot ® Dldly
2d
+p i O+ p L ’2A1/1] dx’.
Similar identities also hold fok = 2 andk = 3. Thus, we have

0= [ Werlax s [ Pk vV + o+ ety 9
2d d,2d

+9 %xi A'@b] dx’,

vi-x') . x’2 .
' //[U;CQerl]wdxur/A, [%2+p’]wdx’+/A/ [2@2372%1&4—2])/@1/;
! 1,2d ) od
wi VP (X)L (VXD et /
+ (’ x/| (& /|3 U+ |2 ¢)+P <‘ ,|¢+¢>} dx’ (3.1)

for k = 1,2,3. (One does not sum ovérin (3.1). Moreover, the second integral is considered
only in A ,;, because the derivatives gfare supported in the closure 4f; ,,;.)

3.2. The integral of |v/|> + 3p’ in B]. In this subsection, we express the integral|ef|? + 3p’)
in B} by means of some other integrals ov&r,, ;. Define functionp in the interval(—oo, co) by

the formulas
=1 for¢ <1,
?(§) 1 4
{ = (——+ @) @b(f) for £> 1.

¢ is continuous and piecewise continuously differentiable. More@\(€y, = 0 for ¢ > 2d and

EHE) +30(¢) = =1 forl<&<d. (3.2)

By analogy with functiong) andyp, ¢ will further mostly meany(|x’|). We multiply equation (2.7)
by x ¢(|x’|) and integrate ilR3. Sincex ¢(|x|) = V'®(|x'|), where®(¢) is an antiderivative to
£¢(§), we get

O:/ [I-V/V,~X/¢+V/p/-xl¢]dx/

2d

o:/ []v| ¢+%¢+p(3¢+\xl¢)}

B2d

Using the concrete form of functiomhand applying (3.2), we further obtain

1 4 4(v' - x')?
_ 2 n2 (_ = _ r_ / /
O—/ (\v[ —|—3p)dx +/1d[lv\ ( 3+3]x’\3) P }dx /lldp dx

+/A PLEE 5 ) (V/\%T/)z (-5+ 3&3) 4(‘(;4?/)2 v] ax’
/A |X 332) dx’. (3.3)

10



3.3. Condition (i) — the beginning. In order to fulfill condition (i), we need an information
on the behavior ofjov/( . 165)H2 B, for t5 — oco. Therefore we multiply formula (3.1) by,

sum overk = 1,2,3 and add the sum to the equatlﬂxyzlv’||2 B, = = [lev'||3, .+ ||g0V’H2 AL

Furthermore, we multiply formula (3.3) by := a1 + a2 + a3 and also add the product to
||g0v’||2 B, . (The real numbers;, a9, a3 will be specified later, see (3.5).) Due to the choice of

3, the factora1 + ag + az — gin front of fA, p'z/J dx’ is equal to zero. Thus, we obtain

lev'lI3, 5, = +Z/ (1+ a)vi” + agpp/) dx' + 8 B/(Iv’!2+3p’) dx’
1

1,2d

4(V"X,)2

2 /

+ E // akvk dx’ +ﬁ/ |v| 3|x’|3) mE ]dx
/2

= <'|Z£'T i %;7@”2 b (VL;/T?Q i)+ % (o) o
wo [ R (L) M by L

X\ 3 3P [x'|?

ﬂ dx’

Subtracting]gov’Hg,A, from both sides and taking into account that 1 in B}, we get
»431,2d

||V/H§;Bi = WUy + Wy + U3+ Uy + U5, (3.4)

where

Uy = / [(1 + 201 + ag + as) v’12 + 1+ a1 +2a2+ 043)U§2
B/

1+041+042+2043)1)3 +4(a1 + ag + az) /}@Z)dxl,
12 / 2 1 4 4(V/'X/)2 /
Uy = Z/, vy, dx —l—ﬁ/Alld[]v| (_§+3\x’\3> T }dx,
"2

/ / ’2 12 /
2 v X - €T |V| . (V X) (V X) .
\113 = E ak// |: ;g ¢+2U;€a};€ |X/| w-i- —126 ( ‘X’| w— |X/|3 1/14- |X/|2 w)} dx’
k=1

d,2d
e ( ¥ A v x4 4(v' - x)? /
w8 [, VP54 o) T o) e e
3
U, = 27/14
k=1
/‘ .

o / ’X 4¢ /
Vs = —5/, /(5 ‘3|X/|2)dx'
Ad,2d

2 . 6 .
) l‘z p/ <¢ + m 1/)) dX/,
d,2d

11



Let us now choose, as, ag sothat2a; + as +as = v1, a3 +2as+ a3 = v and a; +as +
203 = 3. Then

1
ap = Yk — Z('Yl + 72 4+ 73) (fork =1,2,3). (3.5)

Thus, function¥; satisfies

Ui= [0 () 4 () 4 (4 e+ 02w X
By
< CI}I = f[V/ap/771a’>’27’73]¢dX/7
By

where

ok

Y " i
/ < F[v/7p/>71772573]s dx/) dt/
t Bi

* %k
s =1

e sk 4 s*
/ Wy |" dt’ < (—W)
¢ 3

!
*

/
*

ok
*

47'(' S:*:l ¥ to ok s¥F
= <?) / (/ Fv,p, 1,72, 73)° dX) dt < oo (36)
ta |x—x0|<6(t)

due to assumption (c), provided that ., 3 satisfy the restrictions formulated in this condition.
(Here, we denote, := t; — (p?/a) e~ — compare with (2.4).) Hencg;, € L™ (¢\, ). Since

0 T o0 % o0 2
/ |Uylz dt) < C </ Kds dx’) dt’ < C(d)/ (/ V| dx’) dt/
¢ v \Ja ¢ A

/ / /
* * 1,d

N

’
1,d

to g
= C(d)/ (/ |v]® dx) dt < oo (3.7)
ty 0(t)<|x—x0|<dO(t)

(due to condition (a)), we observe thig € L™/%(t., c0). Function¥'; can be treated in the same
way, with a small difference, i.e. that we integrate4fy ,, instead of4! , in the x'—space and
in the regiondf(t) < |x — xp| < 2d6(t) instead ofe(t) < |x — x¢] <7d9(t) in the x—space.
However, we also deduce thitg € L'/3(t.,, o).

3.4. The estimates ofy. The functions¥, and ¥5 need a special treatment, because they
contain the pressugg and we not have an explicit additional information on the integrability of

in Ajwd (in contrast tov’, which is due to assumption (a) of Theorem Liiv¥ (U )). Nevertheless,

if  is an appropriate cut—off function iR? theny’ satisfies the obvious identity

n(x") p'(x,t') = —i /R . ﬁ (A (np)] (v, 1) dy’ (3.8)

for x’ € R3. Concretely, we assume that< x < 1 and choose so that it is infinitely differen-
tiable and satisfies
=1 for |x/| < K ezt
nx') { €10,1] forrxez® < |x/| <29,

=0 for ez9 < Ix'|,

12



_ Lo
sat

Vgl < e

1—

Integrating by parts in (3.8) and using the formilg’ =

n(x)p'(x,t) = pl

where
1 02

8 /
and |V < —at

(1—r)2"°

—0,0;(vjv}), we derive that

(X', t) + (X', ') + p5(x', 1),

n.t) =

, 1

/

dm Jp; Oy; Oy;

() il £ ay'

82

ty = —
p2(X7 ) 47_[_

1

27T A’ eat’/2,

/

P3 (X,’ t/) =

4+ /
4m Al atl/2

+1
2
+1
47

/x;llveatl/Q 0

A at'/2

A at'/2

: )
[nuii](y', t') dy’,
y; 0y (IX’ -y,

Tp — Y In Iy ’
= (g )0y

1 ( 0%n
e [ X =Y \Oy; Oy;

/'U;'> (y/’ t/) dy/

37; - y§ ( on /) !y /
—r =t — ,t)d
x —y'? ! p )y, t) dy

1
w—y| [A'p'](y', 1) dy'.

so |
e(17:/2

so |
Cat/2

We can now splitl4 to the sunWy; + U4y + Py3, Where

/2/
k:pl

Z“’“/

3.5. Estimates ofl45 and ¥43. Let us at first deal with the “easy” termis, andW 43.

"\ N+

‘f,| (D) ax' for 1=1,2,3

the Calderon—Zygmund theorem, we obtain

/ Py, t)E dy < C / VL) dy.
A} at'/2 "I eat’/2

Using also (2.8), we can show thét, € L'/3(#/,

° T o0 % 00 s %
JTwntar <o [T() i) o <o [T(] i ax)
t; t; / t; ’

d,2d

IN

o/
t, '

160t /2
)

=C

Ak dx’>s dt' < C (/
. '
to g
</ |v|® dx)

ty 0(t)<|x—xo|<p

In order to derive an analogous information g, we estimate as follows: ifx’ € A/, , then

*,OO):

d,2d

v'|® dx’)s dt’

100t /2
)

dt < oo.

o< ot [ R
! at’/2 _at'/2

13

(3.9)

. Applying

(3.10)

-2 7

s 2 dt/

(3.11)

(3.12)



(Note that the generic constafitin (3.11) and (3.12) depends eon, a2, az andd.) Since the
set of possible singular points of solutisnhas thel—dimensional Hausdorff measure equal to
zero, we can assume without loss of generality th@éespectively: € (0, 1)) are chosen so small
(respectively close ta) thatv has no singular points in the regiap — o < |x — x¢| < p + o,

to — p? — 0% < t < tg + o for somes > 0. Thenv, with all its spatial derivatives, is essentially
bounded in{(x,t) € R* kp < |x — xo| < p, tg — p*> < t < tp}. The known results on the
interior regularity of pressure (Lemma 2 from [17] or Theorem 4 from [18]) imply th@t# R3
thenp (together with all its spatial derivatives) is also essentially bounded in the same region. If
() satisfies the assumptions from Section 1, but it differs flRfn thenp (together with all its
spatial derivatives) is only ii* (tg — p?,to; L°(Axp,,) for eachA € (1,2). (See Lemma 2 in
[13] or Theorem 2 in [18]). Denote, for a while, by, () (respectivelyv(t)) the L>°—norm of
p(.,t) (respectively (., 1)) in Ay, ,. Putt’, := (2/a) In(2d/k) andt.. := to — (p*/a) e~ %=,
(Then2d < ke®/2fort’ > t.,.) Sincer > 3, we haver/(r — 1) < 3. Chooseu and so that
1< pu<A<2 Then

/ [Wyg|t dt’ < C/ (/
¢ v, \Ja

!/
*ok

m
|p5] dX’> dt’

’
d,2d

o0 p
C <e_%“t / (V1> +1P)) dx’> dt/
o A

weat! /2 gat!/2

to o
::opﬁu/ </ (wF+¢m)¢§ 6282 (1) dt
tax Kkp<|x—xq|<p

Cr [ 020 + phlo) 20 a

IN

IN

“w

to £ to
o | [M@@oriwyal | [Cer P al
t** t**

whereC = C(aq, az,a3,d). The first integral on the last line is finite because< A < 2
and the second integral is finite because the expofi&nt- 2) ﬁ is greater than-2. Hence
Uy3 € LM(t,,,00) for eachu € (1,2).

IN

3.6. The function¥4;. Here, we deal with the “most difficult” part of 4, which is the termb;.
Functionp] satisfies:

1 (zh —yi) (2! — ) i
/ AT AN 1 1 J J 2 ) !4l /
pl(x’t) N E B’ (3 |X,_y/‘5 - ’X/_y/‘3) [Ulvj](Y’t)dy
1
1 [V(y/7t/) ) (Xl B yl)]2 ’V/(y/7t/)’2 /! ! 4! /
- E B/ (3 ‘X/ — y”5 B |Xl _ y/‘3 ) [v’lv]](y 7t ) dy M
1

One can calculate that
V) =Y VLR ) X V)P
X' —y'|° X' —y'? x| /|3

+O0(d vy, )P)

3

forx € B} andy € A, ,,. Hence

) =L [ (LR WP o

- E |x’|5 |x’|3
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1
+ - O(d*v(y',t)|*)dy’. (3.13)
T Bi

The contribution of the second term on the right hand sidesto(let us denote it by 415) satisfies

3
C Qay, 9 - 6 .
Waol < 5 S IV [ ok [ + g o) ax
k=1 Ad,2d
< SV (3.14)
= d ° 2731 .

The contribution of the first integral on the right hand side of (3.13)tp (we denote it byl 1)

can be split to the sum:
3

«
Uy = Z 7k Yat1k, (3.15)
=1

where

Vg = /A 2’ (&(\X’\) + Xilb(lx’l)) L/B/ (3 VL8 X V/(y,’tw) dy’ dx'.

x| Am [x'[? [x'[?
d,2d

The term®¥ 411 will be finally (after we substitute fow, ..., U5 to (3.4)) compared with the left
hand side of (3.4), i.e. With'HS;Bi- Hence we cannot just estimalg;; by a constant times
||V/H§;Bg= but we must evaluate it precisely. Assume at first that 1. The integral overd;, ,,
(with respect tax’) can be split (by Fubini’'s theorem) to the iterated integlfafi fsg .. dSgdg,
whereS; is the sphere ifR3 with the center at the poirit and radiust. Furthermore, the surface
integral overS; is equal to the iterated integrﬁf5 fcg (@) di da, whereCe(z)) is a circle on
Se, corresponding to fixed,. (Hence the radius of C¢(z}) is h = (£2 — 2,%)'/2.) Finally, the
line integral ovelC¢ (« ) can be expressed as the integral froto 27 with respect tar, using the
parametric equations, = h cos o, 24 = h sino. (Then the Cartesian coordinates of pothbn
Ce(2)) are(z}, h cos o, h sino) andd! transforms tch do.) Thus,

V11 = /jd /i /o27r x’12 w(f) + 91/}(5)} = /B/ <3 V'(y',t') - (z}, hcos o, hsino)]?

£ 4 &

- 4‘V/(y§,§ "OFY dy' o asf ag
_ 2 e 6 . h T Wy, t) - (2, hcosa, hsino))?
—/i/d /_gxl o +goe] 1= [ &

- —‘V/(yglé t/>2) do da} dg dy'.

Sincev’ = v/(y’,t’) is independent of, the inside integral can be explicitly calculated:

V- (xh,hcoso,hsing)]?  |v/|?
0 (3 = -5 ) do

o [ e L R G
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7r 3x/12 ’2 12 12
:?(52 —1)(2U1 — Uy —U3).

(We have used the formulg = ¢2 — 2/ %.) Hence, calculating also the integral frong to £ with
respect toc):

¢ h 322 1 /€ 322
12 ™ L r_ 12 9 2 T
/g‘”l rele 1>dw1‘@/g"“ Ve -a* (T

we get
Vi = / (/ '(5)} 5dg>( 2~ 0?) dy’
1) [ Cuf® ok =’y ay = 1w [ uf” VP

—1) dr| = g—i,

where
T 2d 6 . T 2d . 5
I = — — = B = ——.
W) = g | o+ gie]ea = & [T [Fe0©) +50©)] ae = -5
We obtain similarly the formulas
Uyp = om (v'|? —31;;2) dy’  for k=2,3.
64 Jp;
Substituting now fol 4115 (K = 1,2, 3) to (3.15), we get
5
Uy = % (1 + s +ag) [V -3 (v} + agvh” + agvf)} dy’. (3.16)
By

3.7. The function V5. By analogy with¥,, we writeWs = U5, + U5 + V53, Where

_ /\ 4N _
_ _5/ 3|X,’2> dx'  (forl=1,2,3)

and similarly as in the cases df;s and 43, we can also prove thakbs, € LT/Q(t;,oo) and
\1153 e L\ (t,,,00) forall u € (1,2). The most difficult part ofl'5 is again¥s;;, which contains
p}. If we expres®)| by formula (3.13), we ge¥5; = U511 + U519, Where

x' 4 i v /,tl . x2 v/ /,t/ 2
AG,24 1

4r 37 32 x/|5 x’|3

U512 = s (‘X|¢— i )/ O(d~*v(y',t)*)dy’ dx'.
Al,2a B

4 3|x'|?

— i 4¢ [V ) X/]2 |V,‘2 / /
U511 = __// // 3’X/’2) (3 =P — \x’|3) dx' dy’, (3.17)

d,2d
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Q

|Ws12| < a ||V/”§;Bia (3.18)
wherev’ = v(y’,t'). Transforming the inside integral in (3.17) to the spherical coordinates
R, ¢, ¥, we calculate:

’| . ]2 /‘2

x| 4d ) (VY
Pl - 3 - )d = I I,
/ (5 32/ PP T ) T T

d,2d

where

e [ )

2 /2
I, = / / [3[v" - (cos¢ cosd, sin( cos, sin))? — |v'|2] cos ¥ dv d¢
0 —7/2

2r  pm/2
= / / [31}12 cos® ¢ cos® 9 + 31)52 sin? ¢ cos® 9 + 3v§2 sin® ) cos ¥
0 Jon/2
"/ + 60} vh cos ¢ sin cos> ) + 6v] vy cos cos? 9 sin ¥
+ 6uhh sin ¢ cos 9 sin g — (1/12 + v’22 + v:’f) cos Y] dd¢
/2 .
- 7r/ [30}% cos® 9 + 3vh? cos® ¥ + 6v4” sin? ) cos V)

—m/2
/ -2 (vi2 + véZ + véQ) oS 19} dd.

The last integral equals zero. Hengg;; = 0. (This is in fact not surprising, because for each
x on the spheré&x(0), the differences [v - x/12/|x/|> — |v/|? is equal to the second power of the
component ok in the direction ofx (multiplied by 2) minus the second power of the component
of v in the direction perpendicular to, and when one integrates with respecktover the sphere
Sr(0), ityields zero.)

3.8. Condition (i) — the completion. If we now use formulas (3.4), (3.16) and the identity
P11 = 0, we obtain
”V/H%;Bi < Wy + Wy + Ug + Wagy + Tagp + Tap + Uz + Ugpp + Uy + Usg

51
128 B,

3
Wy + U2 + W + [(041 +ag+az) VP -3 Z OékU;gQ} dy’,
k=1

where U = Uy + Wy + Uy + gy + Uys + Usy + Uss. Hence

J

Substituting fora;, as and ag from (3.5), we obtain exactly the same inequality, only with
Y1, Y2, V3 instead Ofal, a9, O3:

J

3

15 ~
i Z akvff} dx’ < W9 + U510 + 0.
k=1

5%
I ) 112 -
[( Tog (@1 H a2t as) J VT4 o0

/
1

b 157
1 o ) /12
[( Tog (T2 +78) ) VI + o0

’ykv;f} dx’ < Uyp9 + Us1o + 0.
1 k=1
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Due to inequalities (1.9), there exists> 0 such that the left hand side is greater than or equal to

€ ||v’H; B Due to (3.14) and (3.18), one can chods® large that¥ 415 + U512| < %e HV,H%;B;-

Then we havée ||v/|2. 5 < |W|, which implies that
» 1

€ 2 T . € 2

MoV, < T+ SV a

¥ is a sum of terms which are either If™" (.., 00) (like Uy), or in L"/2(t., 0) (this concerns

Uy, U3 andWy,), orin LH(t,,, oo) (like Y43 andW¥s3). Moreover, by analogy witl¥, or U3, one

can show thafjev'||2. ,, € L"/2(t,,0), too. Consequently, there exists a sequeff;¢ such
» 441, 2d

thatt!, / oo and¥(t,) + sellev' ()2 4 o 0 (for n — o0). This verifies condition (i)
)41 2
from Section 2.
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