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Abstract

Motivated by the work of Karper [27], we propose a numerical scheme to compressible Navier–Stokes system
in multi-spatial dimensions, based on finite differences. The backward Euler method is applied for the time dis-
cretization, while a staggered grid, with continuity and momentum equations on different grids, is used in space.
The existence of a solution to the implicit nonlinear scheme, strictly positivity of the numerical density, stability
and consistency of the method are proved. The theoretical part is complemented by computational results that are
performed in two spatial dimensions.

Key words: compressible Navier-Stokes, finite difference method, positivity preserving, energy stability, consis-
tency

1 Introduction

The compressible Navier–Stokes system as a set of balance laws for mass and momentum, describes the flow of isentropic
viscous gas, where the thermal effects are neglected. Let %, u be the density and velocity field, the governing equations
read

∂t%+ divx(%u) = 0, (1)

∂t(%u) + divx(%u⊗ u) +∇xp(%) = divxS + f . (2)

Unlike the incompressible case, pressure in here is a function of density, assumed as

p(%) = a%γ , a > 0, γ > 1, (3)

where the important features of the pressure are its convexity and asymptotic behaviour. Discussions about weakening
this assumption can be found in [10]. For the consistency formulation, we need γ > 3

2 for three-dimensional flow,
which covers the case of a monatomic gas.

For the sake of easing the computation, the viscous stress tensor is assumed to take the form S = µ∇xu, µ > 0 is
the viscosity coefficient, and divxS = µ∆xu. We also omit the external forces, i.e. we set f ≡ 0, bearing in mind that
including them would not bring any insurmountable difficulties.

The system is complemented with initial conditions

%|t=0 = %0 > 0, u|t=0 = u0, (4)

and homogeneous Dirichlet boundary condition for velocity

u|∂Ω = 0, (5)

where Ω ⊂ Rd is assumed to be a bounded Lipschitz domain, for space dimension d = 2 or 3. The time interval is
[0, T ], without any assumptions on its size. More over, we expect the regularity %0 ∈ Lγ(Ω), u0 ∈W 1,2

0 (Ω).
The existence of strong solutions to (1–5) for sufficiently smooth initial data was proved in [37], however only

for a possibly small time interval [0, T ?). Therefore, it was welcome, when the unconditional existence of weak
solution was proved by Lions [32] and further developed in [18]. However, the existence result still requires γ > 3

2 ,
which does not cover the case of a diatomic gas. There are results on full system describing compressible flow, i.e.
considering also the balance law of energy. Numerical schemes can be found in the framework of finite difference, finite

∗The research of the authors leading to these results has received funding from the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013)/ ERC Grant Agreement 320078. The Institute of Mathematics of the Academy
of Sciences of the Czech Republic is supported by RVO:67985840.
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volume, finite element, discontinuous Galerkin, gas kinetic BGK or mixtures of them. Representative examples are
[31, 24, 3, 30, 6, 29, 35, 36, 38]. While considering the isentropic case, L2-stable scheme has been studied in [1, 19],
where upwind and pressure projection are the main technique. All speed asymptotic-preserving scheme can be found
in [25] especially for low Mach number limit. Error estimates for the isentropic case was studied in [12, 23, 33].
The convergence of the compressible Navier-Stokes to its incompressible limit was numerically measured by a relative
entropy at low Mach regime in [17]. Recently, Gallouët et al. proposed a MAC scheme similar to ours, for which they
prove convergence results for (semi)stationary flows [20, 22], and error estimates for compressible Navier–Stokes [21].

Concerning the convergence of the numerical methods, to our best knowledge there is only one result in [27],
where the scheme is based on finite element combined with discontinuous Galerkin method and uses also upwind
flux. For linear problems, stability and consistency is enough to ensure convergence.In [27], Karper mimicked the
proof of existence of weak solution for compressible Navier–Stokes system by Lions [32] and then showed for vanishing
discretization parameter the convergence of the numerical solution, up to a subsequence, to a weak solution. This
work had been further extended for smooth domains using non-fitted mesh [15] and to a heat conducting case [13, 14].

The scheme in [27] did not obtain a grateful acceptance, being labeled as too academic within the computational
community. Therefore, an effort to prove convergence of a simpler numerical scheme motivated our result. In [28],
Karper suggests a finite difference scheme for one dimensional compressible Navier–Stokes and shows its convergence.
Moreover, it is suggested there to extend the result to multi-dimension, which we bring in this paper. Our result can
be viewed as a starting point for two possible directions. One of them is continuation in the spirit of [27] in order to
prove convergence of the (subsequence of) numerical solution to a weak solution. The other direction could be proving
a convergence to measure-valued solution, which, in a suitable setting, coincides with a strong solution on its (possibly
short) life span, see [11, 16].

In this paper we present the theoretical results of stability and consistency followed by numerical experiments.
The paper is organized as follows. We explain the detailed scheme in Section 2. Then comes the proofs of positivity
preserving of density, existence of the solution at any time level, energy stability and derivation of uniform estimates
in Section 3, the consistency formulation in Section 4 and finally, numerical tests of the method in Section 5.

2 The numerical method

2.1 Time discretization

We discretize the time step equidistantly using ∆t (T = Nt∆t) and define function only at these time instants
fk := f(k∆t). The time derivative is approximated by the backward Euler method,

(∂thf)n :=
fn − fn−1

∆t
, n = 1, 2, . . . , Nt.

2.2 Spatial grids

2.2.1 Primary and dual grids

For convenience, the domain in our problem is set as QT = I × Ω = [0, T ]× (0, Lx)d. A staggered grid is used in our
spatial discretization. The domain Ω is uniformly discretized with mesh size h = Lx/Nx, i.e. Ω :=

⋃
QK where the

element QK is given by

QK = ((i− 1)h; ih)× ((j − 1)h; jh)× ((k − 1)h; kh), ∀i, j, k ∈ {1, . . . , Nx},

for example in three dimensions. The primary grid T is built by the centers K of these elements. Boundary of each
element QK is created by faces Fσ, whose centers σ build the secondary grid E , cf. Figure 1 which depicts the simpler
two-dimensional case. Points σ ∈ E belonging to ∂Ω form Eext, while Eint = E \ Eext. We denote E(K) as the set of
points that are at the center of the faces of element QK ,

E(K) :=

{
σ = K ± h

2
es,K ∈ T , s = 1, . . . , d

}
,

where es is a unit basis vector in one of the space directions (i.e. either e1, e2 or e3). Note that σ is linked with the
direction of its normal vector es, we denote it also as

σ,s± = K ± h

2
es.

On the other hand, any σ ∈ Eint adjacent to the elements K and L ∈ N (K) of the primary mesh, where N (K) is the
collection neighbouring elements of K, we write σ = K|L if L = K + hes for some s = 1, . . . , d.
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Figure 1: Space discretization: Blue circles o and red crosses × are the points of primary mesh and dual mesh,
respectively.

2.2.2 Transferring quantities between grids

For any quantity fh defined on the primary mesh T we denote its value at K as fK . It can be interpolated to the
dual one for σ = K|L ∈ Eint with

{f}σ =
1

2
(fK + fL).

Mainly vector quantities are defined on dual grid. We define only the s-th component gsσ of vector quantity gh on
each face σ ∈ E , if es is the normal vector to the face Fσ. Then the projection to the primary grid reads

ḡK =
1

2

d∑
s=1

(
gsσ,s+ + gsσ,s−

)
es. (6)

2.2.3 Extending discrete quantities

We will compute numerical solutions using decreasing discretization parameter and investigate the weak limit of the
numerical solutions, considering these being Lp functions. For this purpose we interpret discrete quantities defined in
primary mesh T as piecewise constant functions with respect to this mesh, defined by

fh(x) = fK , for x ∈ QK .

We denote the space of piecewise constant functions with respect to the grid T by

X(T ) = {f ∈ L∞(Ω); f |K ≡ fK ∈ R}.

Discrete vector quantity defined component-wise on dual mesh (gsσ) can be also identified with piecewise constants,
which is

gsh(x− h

2
es) = gsσ,s−, for x ∈ QK . (7)

for all σ ∈ E . Note that the s-th component of g is constant in the neighbourhood Qσ of σ, which is the center of the
face Fσ. The space of such functions is denoted by X(E)d, we also define

X(Eint)
d =

{
g ∈ X(E)d; g|Eext = 0

}
.

To indicate the mesh-dependence of these functions, here and hereafter we equip them with subscript h. This subscript
will be omitted any time where values at particular points of the mesh are considered. Then, for all fh ∈ X(T ),
gh ∈ X(Eint)

d we have

hd
∑
K∈T

fK =

∫
Ω

fh dx, hd
∑
σ∈Eint

gsσes =

∫
Ω

gh dx. (8)

Besides the piecewise constant extension gh ∈ X(Eint)
d, we will need also an extension to the space of functions

with piecewise constant first order derivatives, i.e. piecewise linears with respect to primary cells,
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ĝ(x) =

d∑
s=1

(
(gsσ,s+ − gsσ,s−)

(xs
h
−
⌊xs
h

⌋)
+ gsσ,s−

)
es, for x = (x1, . . . , xd) ∈ QK ,

where b·c is the floor rounding operator. The values of discrete quantities outside Ω that we use, will be extrapolated
according to the boundary conditions, see Section 2.5.

2.2.4 Projection of continuous quantities to the grid

We will also need to project smooth quantities to our grids. We define the projection operators ΠP : L1(Ω)→ X(T )
and ΠD : W 1,1

0 (Ω;Rd)→ X(Eint)
d with

(ΠPφ)K =
1

hd

∫
QK

φdx, (ΠDv)σ =
es
hd−1

∫
Fσ

vs dSx.

Note that v ∈ (W 1,1(Ω))d is the minimal requirement so that v has bounded traces and the projection ΠD is well
defined. The zero trace at ∂Ω guarantees that ΠDv|σ = 0 for σ ∈ Eext.

The projection to the primary grid satisfies∑
K∈T

(ΠPφ)K =

∫
Ω

φdx, (9)

and using Taylor expansion and (7), one can derive the following estimates,

‖ΠPφ− φ‖Lp(Ω) ≤ h‖∇φ‖Lp(Ω), ‖ΠDv − v‖Lp(Ω;Rd) ≤ h‖∇v‖Lp(Ω). (10)

2.3 Standard Difference Operators

2.3.1 Definitions

In this paper we use two basic difference operators

(∂shf)σ =
fL − fK

h
, for fh ∈ X(T ), (11)

(∂shg
s)K =

gsσ,s+ − gsσ,s−
h

, for gh ∈ X(Eint)
d. (12)

A property worth noticing is that the discrete derivatives and therefore also all first order differential operators
can be viewed as mappings between the grids. The mixed derivative is defined as

(∂rhg
s)K+h

2 es±
h
2 er

= ∓
gs
K+h

2 es
− gs

K+h
2 es±her

h
, for gh ∈ X(Eint)

d and every K ∈ T . (13)

Notice that (13) can cover (12) if r = s and K + h
2 es ± h

2 er ∈ Ω.
We can naturally define the discrete divergence operator with

(divhg)K =

d∑
s=1

(∂shg
s)K ,

and Laplace operators by

(∆hf)K = (divh∂
sf)K =

1

h2

∑
L∈N (K)

(fL − fK), (∆hg
s)σ =

1

h2

d∑
r=1

(gsσ−er − 2gsσ + gsσ+er ).

2.3.2 Calculus for the discrete operators

From the definition of differential operators one deduces the following two properties that are a discrete counterpart
of the integration by parts.

Lemma 2.1. Let fh ∈ X(T ),gh ∈ X(Eint)
d,vh ∈ X(Eint)

d. Then∑
K∈T

(divhg)KfK = −
∑
σ∈Eint

gsσ(∂shf)σ. (14)

−
∑
σ∈Eint

(∆hv
s)σg

s
σ =

∑
K∈T

d∑
s=1

(
(∂shg

s)K(∂shv
s)K +

1

2

d∑
r=1
r 6=s

2∑
i=1

(∂rhg
s)K+h

2 es+(−1)i h2 er
(∂rhv

s)K+h
2 es+(−1)i h2 er

)
. (15)
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The proof can be found in the Appendix A. Taking vh = gh in (15) we obtain

−
∑
σ∈Eint

(∆hg
s)σg

s
σ =

∑
K∈T

d∑
s=1

|∂shgs|2K +
1

2

d∑
r=1
r 6=s

(
|∂rhgs|2K+h

2 es+
h
2 er

+ |∂rhgs|2K+h
2 es−

h
2 er

) =:
∑
K∈T

d∑
s=1

d∑
r=1

|∂̃rhgs|
2
K .

(16)

2.3.3 Inverse estimates

Inverse estimate is a typical powerful tool for obtaining compactness result for a sequence of numerical solutions. We
introduce its analogue for our finite difference setting in the following two lemmas.

Lemma 2.2. Let fh ∈ X(T ) and gh ∈ X(Eint)
d. Then we have

‖∂shf‖Lp(Ω) ≤ c(p)h−1‖f‖Lp(Ω), ‖divhg‖Lp(Ω) ≤ c(p)h−1‖g‖Lp(Ω),

with a positive constant c(p), independent of h.

Proof. We observe, by virtue of the generalized triangle inequality, that

hd
∑
σ∈Eint

|(∂shf)σ|p = hd−p
∑
σ∈Eint

|fL − fK |p ≤ c(p)hd−p
∑
K∈T

|fK |p,

hd
∑
K∈T

|(divhg)K |p = hd−p
∑
K∈T

|gsσ,s+ − gsσ,s−|p ≤ c(p)hd−p
∑
σ∈Eint

|gsσ|p.

Using (8) concludes the proof.

Lemma 2.3. Let p > q ≥ 1 and fh ∈ X(T ),gh ∈ X(Eint)
d. Then we have the estimate

‖f‖Lp(Ω) ≤ c(p, q)hd( 1
p−

1
q )‖f‖Lq(Ω), ‖g‖Lp(Ω) ≤ c(p, q)hd( 1

p−
1
q )‖g‖Lq(Ω).

Proof. We show the proof for f ∈ X(T ) only, leaving the other part to the kind reader. By definition, ‖f‖pLp(K) =

hd|fK |p, which implies ‖f‖Lp(K) = hd( 1
p−

1
q )‖f‖Lq(K). Then from the inequality

m
√
Sm + 1 ≤ S + 1, S ≥ 0,m ≥ 1, setting S =

aq

bq
,m =

p

q
,

we deduce p
√
Ap +Bp ≤ q

√
Aq +Bq and using induction also p

√∑
i

api ≤ q

√∑
i

aqi , which implies

‖f‖Lp(Ω) = p

√∑
K∈T

‖f‖pLp(K) ≤ c(p, q)h
d( 1
p−

1
q )

p

√∑
K∈T

‖f‖pLq(K) ≤ c(p, q)h
d( 1
p−

1
q )

q

√∑
K∈T

‖f‖qLq(K) = c(p, q)hd( 1
p−

1
q )‖f‖Lq(Ω).

Remark 1. Analogously one would show that for any quantity f that is piecewise constant in time with respect to
∆t-equidistant discretization of [0, T ] and any p > q ≥ 1 it holds that

‖f‖Lp(0,T ) . (∆t)( 1
p−

1
q )‖f‖Lq(0,T ), (17)

2.4 Upwind discretization and upwind derivative

The ‘upwinding’ or ‘upstreaming’ is a method vastly used in finite volume schemes for discretizing flow quantities.
For its locally conservative properties (see [9, Section 1.1]), it appears useful in wider set of methods. First, we set
f+ = max{0, f}, f− = min{0, f}. Then, we can write f = f+ + f−, f+ = 1

2 (f + |f |) and f− = 1
2 (f − |f |).

Let uh ∈ X(Eint)
d and σ = K|L,L = K + hes, s = 1, . . . , d. Then we define the upwind flux of the quantity

f ∈ X(T ) with respect to velocity u by

Up[f,u]σ = fK(usσ)+ + fL(usσ)−,

and the upwind discrete derivative and the upwind divergence with

∂Up
s [f,u]K =

Up[f,u]σ,s+ −Up[f,u]σ,s−
h

, divUp[f,u]K =

d∑
s=1

∂Up
s [f,u]K .

The following lemma is then a simple corollary of Lemma 2.1.
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Lemma 2.4. Let fh ∈ X(T ),vh = [v1, · · · , vd] ∈ X(Eint)
d, then

∑
K∈T

divUp[f,v]K = 0.

The next lemma shows the difference between upwinding and averaging. It can be obtained by direct calculation.

Lemma 2.5. Let f ∈ X(T ),v = [v1, v2, v3] ∈ X(Eint)
d. Then,

Up[f,v]σ = {f}σ(vs)σ −
h

2
|vsσ|(∂shf)σ.

2.5 The Method

We introduce the following implicit scheme,

∂th%
n
K + divUp[%n,un]K − hα(∆h%

n)K = 0, (18)

∂th({%ū}σ)n + {divUp[%nūn,un]}σ +
(
∂shp(%

n)
)
σ
es − µ(∆hu

n)σ − hα
d∑
r=1

{
∂rh
(
{ūn}∂rh%n

)}
σ

= 0, (19)

for all K ∈ T , σ ∈ Eint and n = {1, . . . , Nt}, with initial values

%0
K = ΠP %0, ū0

K = ΠPu0. (20)

and boundary conditions

unσ = 0, (n · ∇hρn)σ = 0, for σ ∈ Eext, n = 0, . . . Nt, (21)

To be more specific, the boundary conditions are implemented as ρσ−h2 es
= ρσ+h

2 es
and uσ+h

2 er−
h
2 es

= −uσ+h
2 er+h

2 es

for any σ ∈ Eext and r 6= s.
The way of projecting the initial velocity is motivated by the fact that nothing like (9) holds true for ΠD and also

that we do not need the initial velocity on the faces σ ∈ E .

Remark 2. There is no boundary condition for density on the continuous level. However we need to equip the scheme
with the no flux boundary condition for the density due to the additional artificial diffusion term in the scheme, which
regularizes the continuity equation.

3 Existence, stability and energy estimates

We start with showing the stability of the numerical method and deriving energy estimates. Prior to that we introduce
two auxiliary results.

3.1 Renormalized continuity equation

Under certain regularity assumptions, density and velocity that satisfy continuity equation are known to satisfy its
renormalized form (see DiPerna, Lions [5] or [10, Proposition 4.2]). Here we introduce its discrete counterpart.

Lemma 3.1. Let (%h,uh) satisfy the discrete continuity equation (18). Then for any B ∈ C2(R), (%h,uh) satisfy the
discrete renormalized equation,

hd
∑
K∈T

(
∂thB(%nK) + (B′(%nK)%nK −B(%nK))(divhu

n)K + PK
)

= 0, (22)

where

PK = ∆t
B′′(%ηK)

2
|%nK |2 +

1

2

d∑
s=1

(
(hα + hus +

σ,s−)B′′(%n,?σ,s−)|(∂sh%)σ,s−|2 + (hα − hus −σ,s+)B′′(%n,?σ,s+)|(∂sh%)σ,s+|2
)
. (23)

The intermediate values %ηK , %
n,?
σ,s± are from the Lagrangian remainders of Taylor expansions.

Proof. We multiply (18) with B′(%nK) and handle the uprising terms.
Step 1. Using the Taylor expansion for the discrete time derivative of B(%nK) we get

∂thB(%nK) =
B(%nK)−B(%n−1

K )

∆t
= B′(%nK)∂th%

n
K −

∆t

2
B′′(%ηK)|∂th%nK |2,

i.e. the time derivative term yields the first terms in both (22) and (23).
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Step 2. We omit the time index n which is constant along the whole rest of the proof.
As divUp[%,u]K =

∑d
s=1(∂shUp[%,u])K , we will prove it for one component only, leaving the summation over s as

the very last step of the proof. Using the notation σ, s− = J |K and σ, s+ = K|L, we can write

B′(%K)(∂shUp[%,u])K =
B′(%K)

h

(
%Ku

s +
σ,s+ + %Lu

s −
σ,s+ − %Jus +

σ,s− − %Kus −σ,s−

)
=
B′(%K)

h

(
%K(usσ,s+ − usσ,s−) + us −σ,s+(%L − %K) + us +

σ,s−(%K − %J)
)
.

(24)

Taylor expansion gives

B(%L)−B(%K) = B′(%K)(%L − %K) +
1

2
B′′(%?σ,s+)(%L − %K)2

B(%K)−B(%J) = B′(%K)(%K − %J)− 1

2
B′′(%?σ,s−)(%K − %J)2,

(25)

which, having used the definition of discrete derivative, yields

1

h
B′(%K)(%L − %K) = (∂shB(%))σ,s+ −

1

2h
B′′(%?σ,s+)(%L − %K)2,

1

h
B′(%K)(%K − %J) = (∂shB(%))σ,s− +

1

2h
B′′(%?σ,s−)(%K − %J)2.

(26)

Substitution from (26) into (24) yields

B′(%K)∂shUp[%,u]K = B′(%K)%K(∂shu
s)K + us −σ,s+(∂shB(%))σ,s+ + us +

σ,s−(∂shB(%))σ,s−

− 1

2h
us −σ,s+B

′′(%?σ,s+)(%L − %K)2 +
1

2h
us +
σ,s−B

′′(%?σ,s−)(%K − %J)2.
(27)

The last two terms are a contribution to P, while the first three are rewritten as

B′(%K)%K(∂shu
s)K + us −σ,s+(∂shB(%))σ,s+ + us +

σ,s−(∂shB(%))σ,s−

=
(
B′(%K)%K −B(%K)

)
(∂shu

s)K

+
B(%K)

h

usσ,s+ − us −σ,s+︸ ︷︷ ︸
us +
σ,s+

+us +
σ,s− − usσ,s−︸ ︷︷ ︸
−us −σ,s−

+
B(%L)

h
us −σ,s+ −

B(%J)

h
us +
σ,s−

=
(
B′(%K)%K −B(%K)

)
(∂shu

s)K + ∂Up
h [B(%),u]K .

(28)

Let us substitute (28) to (27), sum over s and over K ∈ T . Thanks to Lemma 2.4 , we obtain (22).
Step 3. To conclude the proof we show that the artificial diffusion term will contribute to (23) only. By virtue of

(25), we get

− hαB′(%K)(∆h%)K = −hα−2B′(%K) ((%L − %K)− (%K − %J))

= −hα(∆hB(%))K +
1

2
hα−2B′′(%?σ,s+)(%L − %K)2 +

1

2
hα−2B′′(%?σ,s−)(%K − %J)2.

(29)

Summing (29) over s and over K ∈ T , the first term on the right-hand side vanishes due to Neumann boundary
condition of the density, while the other two terms contribute to the pollution term (23).

Note that PK ≥ 0 provided B is convex.

Remark 3. One can weaken the assumptions on B in Lemma 3.1 and allow jumps of its second derivatives, paying
the price that all B′′(ξ), ξ ∈ (a, b) in (23) are replaced by some B2(ξ) ∈ co{B′′−(z), B′′+(z)}, which are the one-sided
second derivatives of B at ξ. Anyway, PK ≥ 0 as long as B is convex. The proof of such assertion remains the same
as in Lemma 3.1, with one exception. Instead of the standard Taylor’s Theorem one just uses its generalized version,
see [26].
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3.2 Positivity of density

We show that the discrete density is positive. Motivated by Karper [27], we present a complete proof of the following
lemma. The lemma plays a role of an induction step, where the initial step is 0 < %0

K = h−d
∫
K
%0 dx for all K ∈ T ,

since %0 > 0 by assumption.

Lemma 3.2. Suppose that %nh ∈ X(T ) and unh ∈ X(Eint)
d satisfy (18), where %n−1

h > 0 in Ωh. Then

%nh > 0, in Ωh.

Proof. The proof is stated in two steps, and the first being its nonnegativity. We use the renormalized continuity
equation (22) with the one-parametric family of functions

Bη(z) =

{
(−z)η for z < 0,

0 for z ≥ 0,

for η > 1. Notice that every Bη satisfies the weakened assumptions of Lemma 3.1 in the sense of Remark 3, i.e.
Bη ∈ C1(R) and B′′η is a continuous function, with an exception in the form of a jump discontinuity at 0, but since
Bη is convex, we have PK > 0. Moreover, η → 1+ yields Bη(z)→ B(z) = max{−z, 0} and

B′η(z)z −Bη(z) = (η − 1)(−z)η → 0, as η → 1+, for z < 0, (30)

while for z ≥ 0 the convergence is satisfied trivially. Since by assumption %0
K > 0, it remains to show the induction

step. Then (22) together with PK > 0 and Bη(%n−1
K ) = 0 for all K ∈ T (since we assume %n−1

K > 0) yields∑
K∈T

Bη(%nK) ≤ −∆t
∑
K∈T

(
B′η(%nK)%nK −Bη(%nK)

)
(divhu

n)K . (31)

Sending η → 1+ in (31), one gets by virtue of (30) that∑
K∈T

max{−%nK , 0} ≤ 0,

from which we conclude %nK ≥ 0 for any K ∈ T .
Next we show that the density is strictly positive. Choose K ∈ T such that %nK ≤ %nL for all L ∈ T . Then we have

%nK − %n−1
K = −∆tdivUp[%n,un]K + ∆thα(∆h%

n)

≥ −∆t

h

d∑
s=1

(
%nKu

s
σs,+ − %

n
Ku

s
σs,− + (%nK+hes − %

n
K)us −σs,+ + (%nK − %nK−hes)u

s +
σs,−

)
≥ −∆t%nK(divhu

n)K ≥ −∆t%nK |(divhu
n)K |,

(32)

where we have used the minimality of %nK to estimate the last term on the first row and last two terms on the second
row from below with 0. Then, from (32) we get

%nL ≥ %nK ≥
1

1 + ∆t|(divhun)K |
%n−1
K > 0, for any L ∈ T ,

which concludes the proof.

3.3 Energy estimates

For the upcoming energy estimates we will need to handle the convective term, where we use the following identity.

Lemma 3.3. For the convective term from (19), the following identity holds,

hd
∑
K∈T

divUp[%nūn,un]K · ūK = −hd
∑
σ∈Eint

Up[%n,un]σ

(
∂sh
|ūn|2

2

)
σ

+N , (33)

where N , the numerical diffusion term reads

N =
hd+1

4

∑
σ∈Eint

|Up[%n,un]σ||(∂shūn)σ|2.

8



Proof. We omit the time index n for the sake of brevity. Applying Lemma 2.1, the left hand side L of (33) equals

L = −hd
∑
σ∈Eint

Up[%ū,u]σ · (∂shū)σ := hd−1
∑
σ∈Eint

Lσ.

Considering σ = K|L, we can write

Lσ = −
(
%K ūKu

s +
σ + %LūLu

s −
σ

)
· (ūL − ūK)

= %Ku
s +
σ

(
|ū|2K

2
+
|ū|2K

2
− ūK · ūL +

|ūL|2

2
− |ūL|

2

2

)
+ %Lu

s −
σ

(
|ūK |2

2
− |ūK |

2

2
+ ūK · ūL −

|ūL|2

2
− |ūL|

2

2

)
= (%Ku

s +
σ + %Lu

s −
σ )

(
|ūK |2

2
− |ūL|

2

2

)
+ (%Ku

s +
σ − %Lus −σ )

∣∣∣∣ ūK − ūL
2

∣∣∣∣2
= −hUp[%,u]σ

(
∂sh
|ū|2

2

)
σ

+
h2

4
|Up[%,u]σ||(∂shū)σ|2.

Summation over σ concludes the proof.

Now we can deduce the following energy estimates on the numerical solution.

Theorem 3.4. Let (%h,uh) be the numerical solution obtained through the scheme (18–20). For any time step
m = 1, . . . , Nt the following stability estimate holds,

hd
∑
K∈T

(
%mK
|ūmK |2

2
+

1

γ − 1
p(%mK)

)
+ ∆thdµ

m∑
n=1

∑
K∈T

d∑
r=1

d∑
s=1

|∂̃rhus,n|
2
K +

4∑
j=1

Nm
j ≤ hd

∑
K∈T

(
%0
K

|ū0
K |2

2
+

1

γ − 1
p(%0

K)
)
,

(34)
where

Nm
1 = ∆thd

m∑
n=1

∑
K∈T

d∑
s=1

1

2

(
(hα + h2(us,nσ,s−)+)p′′(%n,?σ,s−)|(∂sh%n)σ,s−|2 + (hα − h2(us,nσ,s+)−)p′′(%n,?σ,s+)|(∂sh%n)σ,s+|2

)
,

Nm
2 = (∆t)2hd

m∑
n=1

∑
K∈T

p′′(%ηK)

2
|(∂th%K)n|2,

Nm
3 = (∆t)2hd

m∑
n=1

∑
K∈T

%n−1
K

2
|(∂thūK)n|2,

Nm
4 = ∆thd+1 1

4

m∑
n=1

∑
σ∈Eint

|Up[%n,un]σ||(∂shūn)σ|2.

Proof. We take the scalar product of the discrete momentum equation (19) and hd(us)nσes, sum over σ ∈ Eint and
handle term by term.

Time difference term. We use the notation σ = K|L and the definition of projection to primary grid (6) to get

hd

2

∑
σ∈Eint

∂th(%K ūK + %LūL)nus,nσ · es = hd
∑
K∈T

∂th(%K ūK)n · ūnK . (35)

Convective term. Using the projection into primary grid (6), Lemma 3.3, summation by parts (14) and the
continuity equation (18), we can write

hd
∑
σ∈Eint

divUp[%nūn,un]K + divUp[%nūn,un]L
2

· (us)nσes = hd
∑
K∈T

divUp[%nūn,un]K · ūnK

= −hd
∑
σ∈Eint

Up[%n,un]σ

(
∂sh
|ūn|2

2

)
σ

+N = hd
∑
K∈T

(divUp[%n,un])K
|ūnK |2

2
+N

= −hd
∑
K∈T

(∂th%K)n
|ūnK |2

2
+ hd+α

∑
K∈T

(∆h%
n)K
|ūnK |2

2
+N .

(36)

Pressure term. Using (14), one gets

hd
∑
σ∈Eint

(∂shp(%
n))σes · (us)nσ = −hd

∑
K∈T

p(%nK)(divhu
n)K .

9



Then, we apply Lemma 3.1 with B(z) = 1
γ−1p(z) to deduce

−hd
∑
K∈T

p(%nK)(divhu
n)K =

hd

γ − 1

∑
K∈T

(∂thp(%K))n + hd
∑
K∈T

(PK)n. (37)

Viscosity term. Direct application of (16) gives

−hdµ
∑
σ∈Eint

(∆hu
n)σ · (us)nσes = µhd

∑
K∈T

d∑
s=1

d∑
r=1

|∂̃shus|
2
K . (38)

Additional term. Using (6) and summation by parts (14), we can write

−hd+α
∑
σ∈Eint

d∑
r=1

{
∂rh
(
{ūn}∂rh%n

)}
σ
·(us)nσes = −hd+α

∑
K∈T

d∑
r=1

∂rh
(
{ūn}∂rh%n

)
K
·ūnK = hd+α

∑
σ∈Eint

{ūn}σ(∂sh%
n)σ·(∂shūn)σ,

Then, employing

{ūn}σ · (∂shūn)σ =
1

2h
(ūnL + ūnK) · (ūnL − ūnK) =

|ūnL|2 − |ūnK |2

2h
=

(
∂sh
|ūn|2

2

)
σ

,

to the chain of equalities above and using (14) with the no-flux boundary condition for density (21), we obtain

−hd+α
∑
σ∈Eint

d∑
r=1

{
∂rh
(
{ūn}∂rh%n

)}
σ
· (us)nσes = hd+α

∑
σ∈Eint

(
∂sh
|ūn|2

2

)
σ

(∂sh%
n)σ = −hd+α

∑
K∈T

(∆h%
n)K
|ūnK |2

2
. (39)

Final step. We observe the identity

∂th(%K ūK)nūnK − ∂th%nK
(
|ūnK |2

2

)
= ∂th

(
%K
|ūK |2

2

)n
+ %n−1

K

|ūnK − ūn−1
K |2

2
. (40)

Finally, we collect the right-hand sides of (35–39), employ (40), multiply by ∆t and sum over time to obtain the
desired result. Notice that the artificial diffusion terms get canceled out.

3.4 Existence of the numerical solution

As the numerical scheme (18-19) is implicit and nonlinear, the existence of its solution (i.e. of the quantities in the
next step) is not a priori known. We prove it in the upcoming section using Schaeffer’s fixed point theorem, see e.g.
[8, Theorem 9.2.4]. Note that nothing about the uniqueness of the solution is claimed.

Theorem 3.5 (Schaeffer’s fixed point theorem). Let S : Z → Z be a continuous mapping defined on a finite-
dimensional space Z and let the set

{z ∈ Z, z = κS(z), κ ∈ [0, 1]} ,

be nonempty and bounded. Then there exists z ∈ Z such that

z = S(z).

Before stating the existence theorem, we prove an auxiliary lemma concerning the viscosity term.

Lemma 3.6. Let L : X(Eint)
d → X(Eint)

d be a linear mapping given by

(L(v))σ := (∆hv)σ. (41)

Then its inverse operator L−1 is bounded with constant depending on the discretization parameter h.

Proof. Note that for fixed h X(Eint)
d is a finite-dimensional space and thus all norms are equivalent. Therefore, we

aim at proving

‖L(v)‖∞ ≥ c(h) > 0, for all v = (v1, v2, v3) ∈ X(Eint)
d, ‖v‖∞ = 1. (42)

From ‖v‖∞ = 1 we have that |vsσ| = 1 for some σ ∈ Eint. Without loss of generality we may assume that vsσ = −1.
And as vsσ′ = 0 when σ′ ∈ Eext, there exist K1,K2 ∈ T such that

(∂svs)K2
≥ h

Nx
=
h2

Lx
, and (∂svs)K1

≤ − h
2

Lx
,

10



where K1,K2 differ only in the s-component and hNx = Lx. Therefore, using the same argument as before, there
exists σ̃ ∈ Eint such that

‖(∆hv)‖∞ ≥ |(∂sh∂shv)σ̃| ≥
(∂svs)K2

− (∂svs)K1

Lx
≥ 2h2

L2
x

,

which is (42) with c(h) = 2h2

L2
x

.

Theorem 3.7. Let p(%) = a%γ and %n−1
h ∈ X(T ), un−1

h ∈ X(Eint)
d be given; %n−1

K > 0 for all K ∈ T . Then the
numerical scheme (18-19) admits a solution

%nh ∈ X(T ), %nK > 0 for all K ∈ T ,unh ∈ X(Eint)
d.

Moreover, is satisfies the discrete conservation of mass∑
K∈T

%nK =
∑
K∈T

%n−1
K . (43)

Proof. We show the existence in two steps. We treat the continuity equation first.
Step 1. We claim, that for %n−1

h given, the continuity scheme (18) provides a unique solution depending continu-
ously on the parameter unh ∈ X(Eint)

d.
In fact, for all K ∈ T (18) builds a system of Ne linear equations with Ne unknowns, where Ne denotes the number

of points in the primary mesh, where %n−1
K represents the (known) right-hand side and unh is a parameter.

The associated homogeneous problem

%nK + ∆tdivUp[%n,un]K −∆t hα(∆h%
n)K = 0, (44)

admits a unique solution and hence the trivial one. It is easy to verify that %nh ≡ 0 indeed solves (44). To show
uniqueness one uses the same procedure as in the proof of Lemma 3.2 to get∑

K∈T
max{−%nK , 0} ≤ 0,

and hence %nK = 0 for all K ∈ T .
Therefore, for given %n−1

h , the continuity scheme (18) supplies us with a unique solution %nh = %nh(unh), where the
mapping

unh 7→ %nh(unh),

is continuous in X(Eint)
d. Moreover, Lemma 3.2 gives %nh > 0. The discrete conservation of mass (43) can be obtained

by simple summation of the discrete continuity equation (18) over all K ∈ T .
Step 2. We rewrite the momentum scheme (19) as follows,

µ(∆hu
n)σer = κFσ(unh), σ ∈ Eint, (45)

where

Fσ(unh) := −{%
n[unh]ūn}σ − {%n−1ūn−1}σ

∆t
− {divUp[%n[unh]ūn,un]}σ − (∂shp(%

n[unh]))σ + hα
d∑
r=1

{∂rh({ūn}∂rh%n[unh])}σ.

Note that ūn−1 was determined in the previous step and ū0 is given by the initial conditions (20). We define
F := (Fσ){σ∈Eint} together with unσ′ = 0 for σ′ ∈ Eext.

We are searching for unh being a fixed point of the mapping F ◦ L−1, with L defined by (41). We verify the
assumptions of the Schaeffer’s fixed point theorem (Theorem 3.5). As F is clearly continuous and L−1 is linear and
bounded, their composition is continuous in the finite dimensional space X(Eint)

d. Any possible solution unh,κ of (45)
is indeed a solution of the momentum scheme with the diffusion constant enlarged to µ

κ , i.e. the energy estimate (34),
with µ replaced by µ/κ, implies that F(unh,κ) is bounded in X(Eint)

d, independently of κ. The boundedness of L−1

further implies that also {
unh,κ ∈ X(Eint)

d, unh,κ = κF ◦ L−1(unh,κ)
}
, (46)

is bounded independently of κ. Note that the set in (46) is nonempty, as zero obviously solves (45) with κ = 0.
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3.5 Uniform bounds

The convergence proof requires some compactness results which are usually gained through uniform bounds of ap-
proximate quantities. In sequel, the notation A . B means A ≤ cB, where c > 0 is a constant that does not depend
on the discretization parameter h. A ≈ B means A . B and B . A.

The energy estimate (34) allows us to establish the following uniform bounds.

Proposition 3.8. Let (%h,uh) be a numerical solution obtained through the scheme (18)–(20) and let the total initial
energy D be defined by

D =

∫
Ω

1

2
%0u

2
0 +

1

γ − 1
p(%0) dx. (47)

Then

‖%h‖L∞(Lγ(Ω)) . D, ‖p(%h)‖L∞(L1(Ω)) . D, ‖√%hūh‖L∞(L2(Ω)) . D. (48)

Note that the constant D depends solely on the initial data (%0,u0).

Proof. Due to the convexity of p(z), all the terms in the left hand side of (34) are non-negative, hence every single
one can be estimated by the right-hand side of (34).

Further, it is the definition of initial conditions to the numerical scheme (20), property (9) and the inequality
‖%0‖L1(Ω) ≤ ‖%0‖Lγ(Ω) that guarantee

hd

γ − 1

∑
K∈T

p(%0
K) ≤ 1

γ − 1

∫
Ω

p(%0) dx.

Then we apply the Jensen’s inequality on each cell twice to get also

hd
∑
K

%0
K |ū0

K |2 ≤
∑
K∈T

%K

(∫
QK

|u0|2 dx

)
≤
∑
K∈T

h−d
∫
QK

∫
QK

%0|u0|2 dxdy =
∑
K∈T

∫
QK

%0|u0|2 dx =

∫
Ω

%0|u0|2 dx.

The reader can observe a slight abuse of notation, concerning the Bochner spaces. Since we have not defined the
extension of our discrete quantities to integrable functions in time, keep in mind that the equiintegrability of some vh
in a Bochner space Lq(0, T ;X) should be understood as(

∆t

Nt∑
n=1

(‖vn‖X)q

) 1
q

≤ c,

which corresponds to the standard Bochner norm for the piecewise constant extension in time.
Using Hölder inequality one deduces from (48) also

‖%hūh‖
L∞

(
L

2γ
γ+1 (Ω;Rd)

) . D. (49)

3.6 Discrete inequality of the Sobolev type and velocity estimates

Similarly to the continuous case, we would like to obtain information about better (equi)integrability of uh. For this
purpose we introduce a version of the discrete Sobolev embedding theorem. Both the claim and its proof are inspired
by an analogous assertion from [2, Lemma 1]. Prior to that, we introduce the following auxiliary algebraic inequality.

Lemma 3.9. For any a, b ∈ R and any p > 2 the following inequality holds,∣∣|a|p−1a− |b|p−1b
∣∣ ≤ p

2

(
|a|p−1 + |b|p−1

)
|a− b|. (50)

Proof. Without loss of generality we can assume that a ≥ b, then it holds, that

|a|p−1a− |b|p−1b ≥ 0. (51)

It can be shown through discussing the signs of a and b:

1. Let a ≥ 0, b ≥ 0. Then the left-hand side of (51) equals ap − bp ≥ bp−1(a− b) ≥ 0.

2. Let a ≥ 0, b < 0. Then ap − |b|p−1b ≥ 0.
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3. Let a < 0, b < 0. Then (−b)|b|p−1 − (−a)|a|p−1 ≥ |b|p−1(a− b) ≥ 0.

Therefore, it remains to show that |a|p−1a− |b|p−1b ≤ p
2 (|a|p−1 + |b|p−1)(a− b). We will use Taylor expansion of the

function f(x) := |x|p−1x, notice that f ′(x) = p|x|p−1 and f ′′(x) = p(p− 1)|x|p−3x is increasing.
Then

|x|p−1x = |a|p−1a+ p|a|p−1(x− a) +
1

2
f ′′(ζa)(x− a)2,

|x|p−1x = |b|p−1b+ p|b|p−1(x− b) +
1

2
f ′′(ζb)(x− b)2.

(52)

We take x = 1
2 (a+ b) and subtract the equations in (52) to obtain

|a|p−1a− |b|p−1b = p(|a|p−1 + |b|p−1)
a− b

2
+ (f ′′(ζb)− f ′′(ζa))

(a− b)2

4
. (53)

As ζa ≥ ζb and f ′′ is increasing, the last term on the right-hand side of (53) is negative which, together with (51),
recovers (50).

Now we can prove the Sobolev-type inequality for discrete quantities.

Proposition 3.10. Let w = (w1, · · · , wd) ∈ X(Eint)
d, then the following inequality holds

hd

( ∑
σ∈Eint

|wsσ|q
) 2
q

. hd
d∑
r=1

d∑
s=1

∑
K∈T

|∂̃rhws|
2 =: ‖∇̃hwh‖22 for

{
d = 2, q ∈ [1,∞),
d = 3, q ∈ [1, 6].

Proof. We start with d = 3, v ∈ X(Eint)
d, v|∂Ω = 0, whose relation to w will be specified later. Any component vs of

v can be expressed, by virtue of the definition (13), as

vsσ(x) = h
∑
K∈T

(∂rvs)Kχ
r,s
K (x), (54)

for any r = 1, . . . , d, where the characteristic function χr,sK equals one at x ∈ σ, for which K participates on creating
the value vσ and zero otherwise. In particular, if r = s, we define

χs,sK (x) =

{
1 if x ∈ Qσ : (σ −K) · es ≥ 0 ∧ (σ −K) · ep = 0,∀p ∈ {1, . . . , d} \ {s},
0 otherwise,

(55)

and for r 6= s

χr,sK (x) =

{
1 if x ∈ Qσ : (σ −K) · es = 1

2 ∧ (σ −K) · er ≥ 0 ∧ (σ −K) · ep = 0, p ∈ {1, . . . , d} \ {r, s},
0 otherwise.

(56)

We comment on the definitions (55–56), that since every x belongs to three distinct cubes Qσ, we pick always the one,
whose face Fσ has the normal vector es, where s is indicated by the second item at the upper index of χ.,sK and was
fixed at the beginning of the proof.

Integrating (54) over Ω and estimating the characteristic functions χs,sK from above yields∫
Ω

|vsσ|dx ≤ h
∑
K∈T

|∂svs|Khd−1 ≤ hd
∑
K∈T

|∂svs|K . (57)

Further, denoting K̇ = K + h
2 es − h

2 er1 and K̈ = K + h
2 es − h

2 er2 , we can express

|vsσ(x)|2 =
∑
K∈T

(∂r1vs)K̇hχ
r1,s
K (x)

∑
K∈T

(∂r2vs)K̈hχ
r2,s
K (x) ≤

(∑
K∈T

|(∂r1vs)K̇ |hχ
r1,s
K (x)

)(∑
K∈T

|(∂r2vs)K̈ |hχ
r2,s
K (x)

)

with three mutually distinct indices r1, r2, s, where

χri,sK (x) =

{
1 if x ∈ Qσ : (σ −K) · es = h

2 ∧ (σ −K) · ep = 0, p ∈ {1, . . . , d} \ {ri, s},
0 otherwise,

(58)

which is a dominating function to χri,sK , independent of ri. In particular, χr1,sK (x), χr2,sK (x) depend only on (xr2 , xs),
(xr1 , xs), respectively. Thus we can compute
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∫
R

∫
R

(vsσ)2 dxr1 dxr2

≤
∑
K∈T

h|(∂r1h v
s)K̇ |

∫
R
χr1,sK (xr2 , xs) dxr2

∑
K∈T

h|(∂r2h v
s)K̈ |

∫
R
χr2,sK (xr1 , xs) dxr1

= h4
∑
K∈T

|(∂r1h v
s)K̇ |

∑
K∈T

|(∂r2h v
s)K̈ |(1K−h2 es(xs))

2,

(59)

where we used the fact that after integrating with respect to xr1 , xr2 , the functions χr1,sK (x), χr2,sK (x) leave their
projections to the line xs, which are in both cases equal to 1K−h2 es

(xs). Integrating (59) over the remaining variable
xs, we get ∫

Rd
|vsσ|2 dx =

∫
Ω

|vsσ|2 ≤ h6
∑
K∈T

|(∂r1h v
s)K̇ ||(∂

r1
h v

s)K̈ |. (60)

Having all the ingredients, we enter the main part of the proof. We start with the standard interpolation inequality
and substitute from (57) and (60) to obtain

‖vsh‖
3
2
3
2

≤ ‖vsh‖
1
2
1 ‖vsh‖2 ≤ h

9
2

(∑
K∈T

|∂shvs|K
∑
K∈T

|∂r1h v
s|K̇

∑
K∈T

|∂r2h v
s|K̈

) 1
2

. (61)

Using the AG-inequality ABC ≤ 1
33 (A+B + C)3, (61) becomes

‖vsh‖
3
2
3
2

≤ 3−
3
2h

9
2

(∑
K∈T

|∂shvs|K +
∑
K∈T

|∂r1h v
s|K̇ +

∑
K∈T

|∂r2h v
s|K̈

) 3
2

. h
9
2

(∑
K∈T

d∑
r=1

|∂rhvs|K

) 3
2

. (62)

Now we set vsh = |wsh|3wsh and apply Lemma 3.9 to (62), to get

‖wsh‖66 ≤

(
2

3
hd

d∑
r=1

∑
K∈T

|∂̃rhws|K{|w
s|3}?rK

) 3
2

. (63)

where {vs}?rK is rather unusual interpolation. In particular,

{vs}?rK :=

{
1
2

(
vK+h

2 es
+ vK+h

2 es−er

)
+ 1

2

(
vK+h

2 es
+ vK+h

2 es+er

)
for r 6= s,

vK+h
2 es

+ vK−h2 es
for r = s.

However, all we care about is its estimate
∑
K∈T {|vs|}?K ≤ 2

∑
σ∈Eint |v

s|. With that and Cauchy-Schwarz inequality,
(63) remains

‖wsh‖66 .

∥∥∥∥∥
d∑
r=1

|∂̃rhws|

∥∥∥∥∥
3
2

2

∥∥|wsh|3∥∥ 3
2

2
,

i.e., after summation over all components

‖wsh‖
6− 9

2
6 . ‖∇̃hwsh‖

3
2
2 .

The proof for d = 2 follows the same step and is a bit simpler. We have

|vsσ(x)|2 ≤

(∑
K∈T

(∂rhv
s)K̇hχ

r,s
K (x)

)(∑
K∈T

(∂shv
s)Khχ

s,s
K (x)

)
, (64)

where r = s ∈ {1, 2}, r 6= s and K̇ = K + h
2 es − h

2 er. We recall the definition of χr,sK (58) and introduce χs,sK , a
dominating function to χs,sK , with

χs,sK (x) =

{
1 if x ∈ Qσ : (σ −K) · ep = 0, p ∈ {1, . . . , d} \ {ri, s},
0 otherwise.

Similarly as before, χr,sK (x) = χr,sK (xs) and χs,sK (x) = χs,sK (xr). Therefore, the integration of (64) yields∫
Ω

|vs(x)|2 dx ≤ h4
∑
K∈T

(∂rhv
s)K̇

∑
K∈T

(∂shv
s)K . (65)
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Then we set v = |w|λ−1w, with w ∈ X(Eint)
2 and λ > 2. Substituting into (65) and applying Lemma 3.9 one gets

‖ws‖λ2λ .

(
h2
∑
K∈T
{|ws|λ−1‖?r

K̇
(∂rhw

s)K̇

) 1
2
(
h2
∑
K∈T
{|ws|λ−1}‖?sK (∂shw

s)K

) 1
2

. ‖|ws|λ−1‖p‖∂rhws‖
1
2

p′‖∂
s
hw

s‖
1
2

p′ , (66)

where we applied Hölder’s inequality in the last step. Now we fix p with 2λ = p(λ− 1) (and therefore p′(λ+ 1) = 2λ)
and divide both sides of (66) with the norm of ws and apply the Young inequality to get

‖ws‖2λ .
2∑
r=1

‖∂rhws‖p′ . (67)

The final step is the chain of inequalities build on (67) and standard Lebesgue embeddings

‖ws‖q . ‖ws‖2λ . ‖∇̃hws‖ 2λ
λ+1

. ‖∇̃hws‖2,

as p′ = 2λ
λ+1 < 2 for any admissible λ.

Remark 4. To prove discrete Sobolev inequality we use the cross derivatives of the velocity, which are, in the finite
difference scheme, employed in a rather awkward way. It is interesting that in the three-dimensional case, thanks to
the interpolation (61), we do not need to use all 3 × 3 derivatives, but only 3 × 2, as we could alternatively use the
same derivative twice in the inequality in (61).

Due to the positivity of the density we can deduce from (34) that

‖∇̃huh‖L2(L2(Ω)) . D. (68)

and using Proposition 3.10 we get also that

‖uh‖L2(Lq(Ω)) . D, ‖ūh‖L2(Lq(Ω)) . D, (69)

with q ∈ [1, 6] for d = 3 and q ∈ [1,∞) for d = 2.

4 Consistency of the numerical method

One step towards the convergence to a weak solution is the consistency of numerical solutions, i.e. verifying that the
numerical solution satisfies the weak formulation of the problem up to a residual term R(%h,uh) which satisfies

R(%h,uh)→ 0, as h→ 0.

In this section we formulate the results both for d = 2, d = 3. The difference in these cases occurs only in the inverse
estimates and the discrete Sobolev inequality (Proposition 3.10) and its consequences, mainly the velocity integrability
(69).

We want to emphasize that our result on consistency is not the only possibility. Our goal was to enable as large
set of admissible values for γ as possible. Stronger assumptions on the integrability properties of test functions is the
price to pay.

4.1 Preliminary material for proving consistency

First, we show some useful estimates on projections and artificial diffusion terms in order to shorten the proofs of
consistency. First let us recall the estimates (10).

Lemma 4.1. Let φ ∈W 1,p(Ω). Then

‖∂hΠPφ‖Lp(Ω) . ‖∇φ‖Lp(Ω), ‖∂hΠPΠDv‖Lp(Ω) . ‖∇v‖Lp(Ω), (70)

‖ΠPΠDv − v‖Lp(Ω) . h‖∇v‖Lp(Ω), (71)

‖ΠP∇hΠPΠDv −∇v‖Lp(Ω) . h‖∇2
xv‖Lp(Ω). (72)
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Proof. Estimates (70) are the direct consequences of the mean value theorem, with its double application in the latter
case,

|(∂sΠPφ)σ| = h−1|φ(ξL)− φ(ξK)| . |∇hφ|, with some ξK ∈ QK , ξL ∈ QL,

|(∂sΠPΠDv)σ| = h−1|v(ξ̃L)− v(ξ̃K)| . |∇hv|, with some ξ̃K ∈ QK , ξ̃L ∈ QL.
Similarly, to get (71) we can write

|(ΠPΠDv − v| ≤ |ΠPΠDv −ΠDv|+ |ΠDv − v| . h|∇xΠ̂Dv|+ h|∇xv| . h|∇xv|.
To prove (72) we show using Taylor expansion that

|(ΠP∂shΠPΠDvr)(x)− ∂svr(x)| . h|∇2
xv
r|, (73)

where x ∈ K. Let us denote L = K + hes, J = K − hes, then

(ΠP∂shΠPΠDvr)(x) =
1

2h

(
(ΠPΠDvr)L − (ΠPΠDvr)J

)
. (74)

Expressing the Taylor expansion of vr at each cell K gives

vr(x) = vr(xK) +∇xvr(xK)(x− xK) +
1

2
(x− xK)T∇2

xv
r(ξ(x))(x− xK),

where xK is its center. Further, as the affine function with zero mean belong to the kernel of the combined projection
PiPD := ΠPΠD, we have

(ΠPΠDvr)K = vr(xK) +
1

4h2

(∫
Fσ,r+

∇2
xv
r(ξ(x))(x− xK)2 dSx +

∫
Fσ,r−

∇2
xv
r(ξ(x))(x− xK)2 dSx

)
. (75)

Combining (74) and (75), we can write∣∣∣∣ 1

2h

(
(ΠPΠDvr)L − (ΠPΠDvr)J

)
− ∂svr(x)

∣∣∣∣ . ∣∣∣∣ 1

2h
(vr(xL)− vr(xJ))− ∂svr(x)

∣∣∣∣+ h|∇2vr|. (76)

Further we use the Mean Value Theorem to express

∂svr(x) = ∂svr(xK) +∇x∂svr(ξK)(x− xK), (77)

for x ∈ K. The combination of (74, 76, 77) finally yields (73), which proves (72).

We introduce the following lemma that will simplify the treatment of the artificial viscosity term.

Lemma 4.2. Let %h be obtained through the scheme (18–19) with γ > 1. Then it holds that

hα‖∂sh%h‖L2(0,T,L2(Ω)) . hβc(D),

with β = α
2 + min{0, d( 1

4 −
1
γ )} and D is defined by (47).

Proof. First let γ ≥ 2. We use the renormalized equation (22) with B(z) = z2. Thanks to the fact that PK ≥ 0, we
obtain

hα
T∫

0

∫
Ω

(∂h%h)2 ≤
∫

Ω

%2
0 dx−

∫
Ω

%2(T ) dx+

T∫
0

∫
Ω

|%h|2|divhuh|dx . D2 + ‖%h‖2L∞(0,T ;L4(Ω))‖divhuh‖L2(0,T ;L2(Ω)),

(78)
where we used the Hölder inequality and energy estimate (48). Applying the inverse estimate to the latter term in
(78), one gets

‖%h‖2L4(Ω) . hmin{0,2d( 1
4−

1
γ )}‖%h‖2Lγ . D2hmin{0, d(γ−4)

2γ }. (79)

Combining (78)–(79)) together with the energy estimates (48) and (68), one gets

hα‖∂sh%h‖L2(L2) = h
α
2 ‖hα2 ∂sh%h‖L2(0,T,L2(Ω)) ≤ hα/2D1/2 + h

α
2 +min{0,d( 1

4−
1
γ )}D

3
2 .

For γ ∈ (1, 2), one just uses one more inverse estimate to get ‖%h‖γ . hd( 1
2−

1
γ )‖%h‖γ , but this term will be dominated

by hβc(D) for low values of h, anyway.
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Let us write out explicitly the assumptions on α and γ that ensure β > 0 in Lemma 4.2.

β > 0 if we have d = 2 :

{
γ ∈ (1, 4), α > 4

γ − 1,

γ ≥ 4, α > 0,
or d = 3 :

{
γ ∈ (1, 4), α > 6

γ −
3
2 ,

γ ≥ 4, α > 0.
(80)

The two following lemmas find their use in the proof of consistency of the momentum scheme.

Lemma 4.3. For any fh ∈ X(T ), gh ∈ X(Eint)
d,v ∈W 2,q(Ω) we have∫

Ω

fhdivxv dx =

∫
Ω

fhdivh(ΠD
h v) dx, (81)

Proof. The proof of both identities is based on the Divergence theorem and decomposition of the domain Ω to cells
QK , where fh and (∇hg) are constant. The chain of equalities

∫
Ω

fhdivxv dx =
∑
K∈T

fK

∫
QK

divxv dx =
∑
K∈T

fK

∫
∂QK

v · n dSx

= h2
∑
K∈T

fK

d∑
s=1

(
(ΠDv)σ,s+ − (ΠDv)σ,s−

)
= hd

∑
K∈T

fK(divhΠD
h v)K =

∫
Ω

fhdivh(ΠD
h v) dx,

recovers (81).

Next, let us define the extension for (∂rhg
s)K+h

2 es±
h
2 er

for r 6= s and g ∈ X(Eint)
d to be piecewise constant in its

neighbourhood. In particular we define

(qr,s)(x) = (qr,s)K+h
2 es±

h
2 er

, when x− h

2
es ∓

h

2
er ∈ QK ∧ x ∈ Ω, (82)

with

qr,s = ∂rhg
s
h or qr,s = ∂rhg

s
h∂

r
hv
s
h, (83)

where g ∈ X(Eint)
d and v ∈ X(E)d.

As a consequence of (82) we have also

hd
∑
K∈T

(
1

2
(qr,s)K+h

2 es+
h
2 er

+
1

2
(qr,s)K+h

2 es−
h
2 er

)
=

∫
Ω

(qr,s) dx,

and thus also

hd
∑
K∈T

d∑
s=1

(qs,s)K +

d∑
r=1
r 6=s

(
1

2
(qr,s)K+h

2 es+
h
2 er

+
1

2
(qr,s)K+h

2 es−
h
2 er

) =

∫
Ω

d∑
r=1

d∑
s=1

qr,s dx, (84)

where qr,s satisfies (83). The core of the argument is that all nonzero qr,s
K̇

are covered twice with one-half, beside the

border ones, whose intersection with Ω is of the size hd/2.
The extension (82) might be viewed as another mesh, and that is the reason why Gallouet at al. define it at

the beginning in [20]. We prefer to state it here at the only place where we use it. Notice that for r = s we have
∂shg

s ∈ X(T ), for which the extension is defined in Section 2.2.3.

Lemma 4.4. Let g ∈ X(Eint)
d and v ∈W 1,1

0 (Ω). Then it holds that

∑
K∈T

d∑
s=1

(∂shg
s)K(∂shΠDv)K +

1

2

d∑
r=1
r 6=s

2∑
i=1

(∂rhg
s)K+h

2 es+(−1)i h2 er
(∂rhΠDv)K+h

2 es+(−1)i h2 er


=

∫
Ω

d∑
s=1

d∑
r=1

˜∂rhgsh∂rxvs(x) dx+R =

∫
Ω

∇̃hgh : ∇xv dx+R,

(85)

where |R| ≤ h‖∇̃hgh‖2‖∇2
xv‖2.
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Proof. Let K̇ := K + h
2 es + (−1)i h2 er for i ∈ {1, 2}, no matter whether r 6= s or not. If we extend v with zero outside

Ω, we can express

(∂rh(ΠDv)s)K̇ =
1

h

[
1

hd−1

∫
Fσ+

vs dSx −
1

hd−1

∫
Fσ−

vs dSx

]
, (86)

where σ± := K̇ ± h
2 er.

Similarly as in the proof of Lemma 4.1, we use Taylor theorem to express

vs(x) = vs(σ) +∇xvs(σ)(x− σ) +
1

2
∇2
xv
s(x− σ), (87)

for x ∈ Fσ Substituting (87) into (86) yields

(∂r(ΠDv)s)K̇ ≤
1

h
(vs(σ+)− vs(σ−)) + h(|∇2

xv
s(σ+)|+ |∇2

xv
s(σ−)|),

as the affine function with zero mean belongs to the kernel of the projection ΠD. Then we use the mean value theorem
twice to get for x ∈ QK̇ (we apologize for an abuse of notation)

(∂r(ΠDv)s)K̇ − ∂
r
xv
s(x)

≤ 1

h
(vs(σ+)− vs(σ−))− ∂rxvs(x) + h(|∇2

xv
s(σ+)|+ |∇2

xv
s(σ−)|)

= ∂rxv
s(ξ)− ∂rxvs(x) + h(|∇2

xv
s(σ+)|+ |∇2

xv
s(σ−)|)

≤ h
√

2∇x∂rxvs(ξ′) + +h(|∇2
xv
s(σ+)|+ |∇2

xv
s(σ−|).

Now we have for any K̇

(∂rhg
s)K̇(∂r(ΠDv)s)K̇ ≤ (∂rhg

s)K̇h
−d
∫
QK̇

∂rxv
s dx+ (∂rhg

s)K̇h
1−d

∫
QK̇

|∇2
xv
s(x)|dx. (88)

Finally we apply (84) to (88) and Cauchy-Schwarz inequality to obtain (85).

4.2 Consistency of the continuity scheme

The weak formulation of the continuity method reads as follows.

Theorem 4.5 (Consistency formulation for the continuity). Let %h, ûh be piecewise constant and piecewise affine
representations, respectively in space and piecewise constant in time, of the solution to the numerical scheme (18–19),

with the following parameters: γ > 2d
d+2 , α > max

{
d(4−γ)

2γ , 0
}

, i.e.

d = 2 : γ > 1, α > max

{
4

γ
− 1, 0

}
,

d = 3 : γ >
6

5
, α > max

{
6

γ
− 3

2
, 0

}
.

(89)

Then for any φ ∈ C2(Ω) it holds that∫
Ω

∂th%
n
hφdx−

∫
Ω

%nhûnh · ∇xφdx = hθ1〈rh,∇xφ〉+ hθ2〈Qh,∇2
xφ〉,

where θ1, θ2 > 0 and ‖rh‖L1(0,T,Lp′ (Ω)) . 1, ‖Qh‖L1(0,T ;Lq′ (Ω)) . 1 for p′ = p
p−1 and q′ = q

q−1 satisfying

d = 2 :


p ≥ 2

q > 2γ
3γ−2

q ≥ 1

or d = 3 :


p ≥ 2

p > 6γ
5γ−6

q > 6γ
7γ−6

q ≥ 1

.

Proof. We multiply (18) with hd(ΠPφ)K and sum over K ∈ T . Then we handle the product term by term as following.
Time derivative. We use (9) to get

hd
∑
K∈T

(∂th%K)n(ΠPφ) =
∑
K∈T

(∂th%K)n
∫
K

φ(x) dx =

∫
Ω

(∂th%h)nφ dx.
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Convective term. Using the definition of the projection and standard integration by parts we get

hd
∑
K∈T

divUp[%n,un]K(ΠPφ)K

=

∫
Ω

divUp[%nh,u
n
h]φ dx

= −
d∑
s=1

∫
Ω

Up[%nh,u
n
h]
φ(.+ h

2 es)− φ(.− h
2 es)

h
dx

= −
d∑
s=1

∫
Ω

{%nh}u
s,n
h ∂shφ dx+

d∑
s=1

∫
Ω

h

2
|us,n|(∂sh%nh)∂shφ dx =: I1 +R1,

where the equality on the last row follows from the application of Lemma 2.5. Further

I1 = −
∫

Ω

{%nh}unh · ∇hφdx = −
∫

Ω

%nhunh · ∇hφdx−
∫

Ω

(
%nh(x+ h

2 es)− %nh(x)

2
−
%nh(x)− %nh(x− h

2 es)

2

)
unh · ∇hφdx

=: I2 +R2.

Then, using standard integration by parts together with uh|∂Ω = 0, the identities

∂shv
s
h|K = ∂shv̂

s
h|K ≡ ∂sv̂sh|K ,

for any v = (v1, v2, v3) ∈ X(Eint)
d and divxû being constant on each cell, we get

I2 =

∫
Ω

divh(%nhunh)φ dx =
∑
K∈T

%nK

∫
K

divhu
n
hφ =

∑
K∈T

%nK

∫
QK

φdivxû
n
h dx

=
∑
K∈T

∫
QK

φdivx(%nhûnh) = −
∫

Ω

%nhûnh · ∇xφdx.

We need to show that the residual terms R1, R2 contribute to rh,Qh. To see that, we perform summation by parts
to R1, R2 to obtain

|R1|+ |R2| . h

∣∣∣∣∫
Ω

∂h(unh∇xφ)%nh dx

∣∣∣∣ ≤ h∫
Ω

|∇hunh||∇xφ||%nh|dx+ h

∫
Ω

|unh||∂h∇xφ||%nh|dx =: R′1 +R′2.

Using Hölder inequality with exponents p1, p2, p, where 1
p1

+ 1
p2

+ 1
p = 1, and using inverse estimates we can estimate

|R′1| = h

∫
Ω

|∇hunh||∇xφ||%nh|dx . h‖∇hunh‖p1‖%nh‖p2‖∇xφ‖p,. hθ1‖∇hunh‖2‖%nh‖γ‖∇xφ‖p, (90)

where θ1 > 0 as long as p > 2dγ
γ(2+d)−2d , which implies the restriction on γ such that γ > 2d

2+d , see also Remark 5.

Similarly we deduce

|R′2| . hθ‖unh‖q1‖%nh‖γ‖∇2
xφ‖q, (91)

where θ > 0 if q ≥ 1 and q > dq1γ
(q1+dq1−d)γ−dq1 , γ >

dq1
q1+dq1−d , q1 ≥ 1. More specifically, the lower bounds read

d = 3 : q >
6γ

7γ − 6
with q1 = 6, or d = 2 : q = q(q1) >

2γ

3γ − 2
with q1 arbitrarily large.

We recall also the basic constraint γ ≥ 1 which is crucial for stability of the method.
Then, summing over time one gets

∆t

Nt∑
n=1

(|R1|+ |R2|) . hθ1c(D)‖∇xφ‖p + hθc(D)‖∇2
xφ‖q,

after using the energy estimates (48), (69) and (68).
Artificial viscosity term. We perform integration by parts (14) to get
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hd+α
∑
K∈T

(∆h%
n)K(ΠPφ)K = hd+α

∑
σ∈Eint

(∇h%n)σ(∂shΠPφ)σ,

which can be further estimated using Hölder inequality to obtain

hd+α
∑
K∈T

(∆h%
n)K(ΠPφ)K ≤ hα

(∫
Ω

(∂h%
n
h)2 dx

) 1
2
(∫

Ω

(∂hΠPφ)2 dx

) 1
2

. hα‖∂h%nh‖2‖∇φ‖2, (92)

where we used Lemma 4.1 in the last inequality. Then the summation over time and Lemma 4.2 supply the estimate
hβc(D) as well as the lower bound on α, see (80). Moreover, p ≥ 2 is required.

The existence of rh,Qh with properties stated in the Theorem is a consequence of appropriate boundedness of
terms on the right-hand sides of (90), (91), (92), the Riesz representation theorem and θ2 = min{θ, β}.

Remark 5. In the above computation, we can formally apply the inverse estimate to smooth functions as well. For
instance in (90), since 1

p1
+ 1

p2
+ 1

p = 1, we have

0 < θ1 = 1 + d

(
1

p1
− 1

2

)
+ d

(
1

p2
− 1

γ

)
= 1 + d

(
1− 1

2
− 1

γ
− 1

p

)
= d

(
γ(2 + d)− 2d

2dγ
− 1

p

)
,

which indicates

p >
2dγ

γ(2 + d)− 2d
, γ >

2d

2 + d
.

4.3 Consistency of the momentum scheme

Theorem 4.6 (Consistency formulation for the momentum). Let (%nh,u
n
h) be piecewise constant representations of the

solution to numerical scheme (18–19) with ∆t ≈ h and the following parameters

γ >
d

2
, α > max

{
d(4− γ)

2γ
, 0

}
. (93)

Then for any v ∈ C2(Ω)3, it holds that

∫
Ω

∂th(%hūh)n · v dx−
∫

Ω

%nhūnh ⊗ ūnh : ∇xv dx−
∫

Ω

p(%nh)divxv dx+ µ

∫
Ω

(∇hunh) : ∇xv dx

= hθ1〈rh,∇xv〉+ hθ2〈Qh,∇2
xv〉,

(94)

with ‖rh‖L1(0,T ;Lp′ (Ω) . 1 and ‖Qh‖L1(0,T ;Lq′ (Ω) . 1, where p′ = p
p−1 and q′ = q

q−1 which satisfy:

d = 2 :


p ≥ 3,

p > 2γ
γ−1 ,

q > 2γ
γ−1 ,

or d = 3 :

{
p > 6γ

2γ−3 ,

q > 6γ
4γ−3 .

(95)

Proof. We multiply momentum scheme (19) by hdΠDv and handle term by term. We would like to point out, that
the values of exponents θi may vary throughout the proof. To find the proper values of θi for (94) should be obtained
as the minima of θi, i = 1, 2 throughout their occurrences in the proof.

Time difference term. Using the transition between grids (6) one gets

hd
∑
σ∈Eint

∂th{%ū}nσ ·ΠDv = hd∂th

(∑
K∈T

(%ū)K · (ΠPΠDv)K

)n
=

∫
Ω

∂th(%hūh)n · v +R1 +R2,

where

R1 = hd
∑
K∈T

√
%n−1
K

√
%n−1
K

ūnK − ūn−1
K

∆t

∫
QK

(ΠPΠDv − v) dx

≤ ‖%n−1
h ‖

1
2
γ h‖∇xv‖ 2γ

γ−1

(
(∆t)

∫
Ω

%n−1
h

(
ūnh − ūn−1

∆t

)2

dx

) 1
2

(∆t)−
1
2

=: hθ1‖%n−1
h ‖

1
2
γ ‖∇xv‖ 2γ

γ−1
Un
h, θ1 =

1

2
.
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By virtue of (34) we have ∆t
∑Nt
n=1(Un

h)2 . c(D), which implies, together with (48), that ∆t
∑Nt
n=1 |R1| . h

1
2 ‖∇xv‖ 2γ

γ−1
c(D).

The other residual term reads

R2 = hd
∑
K∈T

ūnK
%nK − %

n−1
K

∆t
(ΠPΠDv − v). (96)

From energy estimates (34) we have

∆t2hd
Nt∑
n=1

∑
K∈T

(%ηK)γ−2

(
%nK − %

n−1
K

∆t

)2

. c(D). (97)

Using the properties of Legendre remainder points of strictly convex functions, formulated e.g. in [7, Lemma 2.1], (97)
implies also

(∆t)γhd
Nt∑
n=1

∑
K∈T

(
%nK − %

n−1
K

∆t

)γ
. c(D, γ). (98)

Thus, applying Hölder inequality and estimate (71) to (96), one gets

|R2| ≤ ‖un‖6h‖∇xv‖ 6γ
5γ−6

(∆t)−
γ−1
γ

(
(∆t)γ−1hd

∑
K∈T

(
%nK − %

n−1
K

∆t

)γ) 1
γ

≤ h
1
γ ‖unh‖6‖∇xv‖ 6γ

5γ−6
Hn
h ,

where (98) yields ∆t
∑Nt
n=1(Hn

h )γ . c(D). This together with (69) implies

∆t

Nt∑
n=1

|R2| . h
1
γ c(D, γ)‖∇xv‖ 6γ

5γ−6
, for d = 3,

For d = 2 we can estimate analogously

|R2| ≤ h
1
γ ‖un‖p1‖∇xv‖pHn

h , with
p1γ

(p1 − 1)γ − p1
,

and thus we get a lower bound p = p(p1) > γ
γ−1 , as p1 can be arbitrarily large.

In both choices of d we have θ2 = 1
γ . It is possible, but not effective to lower the integrability exponent of ∇xv by

inverse estimates, since this constraint on integrability is not active.
Notice that we used the relation ∆t ≈ h in this part of the proof.
Convective term. We use the transition between grids, summation by parts (14) and Lemma 2.5 to obtain

∆thd
Nt∑
n=1

∑
σ∈Eint

{divUp[%nūn,un]}σ · (ΠDv)σ = −∆thd
Nt∑
n=1

∑
σ∈Eint

Up[%nūn,un] · (∂shΠPΠDv)σ

= −∆thd
Nt∑
n=1

∑
σ∈Eint

us,nσ {%nhūnh}σ · (∂shΠPΠDv)σ + hd+1
∑
σ∈Eint

|us,nσ |∂sh(%nūn)σ · (∂shΠPΠDv)σ

= −hd∆t
Nt∑
n=1

∑
K∈T

%nūn ⊗ ūn : {∇hΠPΠDv}K +R3 = −∆t

Nt∑
n=1

∑
K∈T

∫
QK

%nK ūnK ⊗ ūnK : ∇xv +R3 +R4.

We need to estimate the residual terms. Before starting that, we perform summation by parts (14) to R3 and we
split the discrete derivative of the product,

R3 =− hd+1
∑
K∈T

(%nūn)K ·
d∑
s=1

(∂sh(|us,n|∂shΠPΠDv))K

=− hd+1
∑
K∈T

(%nūn)K ·
d∑
s=1

(∂shu
s,n)K(∂shΠPΠDv)σ,s− − hd+1

∑
K∈T

(%nūn)K ·
d∑
s=1

(∂sh∂
s
hΠPΠDv)Ku

s,n
σ,s+

= : R3,1 +R3,2.

Then we use Hölder inequality using p, p1, p2 : 1
p + 1

p1
+ 1

p2
= 1, the inequality

|∂sh|g|| ≤ |∂shg|,
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relation (70) and inverse estimate (Lemma 2.3) twice to get

|R3,1| ≤ hd+1
∑
K∈T

|%nK ūnK |
d∑
s=1

|(∂shus,n)K ||(∂shΠPΠDv)σ,s−| ≤ h‖∇hu‖p1‖%nhūnh‖p2‖∂hΠPΠDv‖p

. hθ1‖∇hunh‖2‖%nhūnh‖ 2γ
γ+1
‖∇xv‖p,

where the exponent θ1 remains positive as long as p > 2dγ
2γ−d , γ >

d
2 , i.e.,

d = 2 : p >
2γ

γ − 1
, γ > 1, or d = 3 : p >

6γ

2γ − 3
, γ >

3

2
.

Similarly, for R3,2 we use the same tools and Mean Value Theorem to obtain

|R3,2| ≤ hd+1
∑
K∈T

|%nK ūnK |
d∑
s=1

|us,nσ,s+||(∂sh∂shΠPΠDv)K | . h‖unh‖q1‖%nhūnh‖q2‖∂h|∇xv|‖q

. hθ2‖unh‖q1‖%nhūnh‖ 2γ
γ+1
‖∇2

xv‖q,

where θ2 is positive as long as

d = 2 : q = q(q1) >
2γ

2γ − 1
, or d = 3 : q >

6γ

4γ − 3
,

since q1 can be arbitrarily large for d = 2 and q1 = 6 for d = 3.
Applying summation over time, uniform estimates (49, 69) and the assumptions on test function v one gets that

∆t
∑Nt
n=1 |R3,1|+ |R3,2| = c(D)

(
hθ1‖∇xv‖p + hθ2‖∇2

xv‖q
)
.

Pressure term. By virtue of summation by parts (14) and Lemma 4.3 we write the following chain of equalities:

hd
∑
σ∈Eint

(∂shp(%
n))σes · (ΠD

h v)σ = −hd
∑
K∈T

p(%nK)divh(ΠD
h v)K = −

∫
Ω

p(%nh)divxv dx.

Viscosity term. We apply summation by parts (Lemma 2.1) and Lemma 4.4 to get

hd∆t
∑
σ∈Eint

(∆hu
n
h)σ · (ΠDv)sσ = hd∆t

∫
Ω

∇̃hunh : ∇xv +R4,

where ∆t
∑Nt
n=1 |R4| . h‖∇̃huh‖2,2‖∇2

xv‖2 . C(D)hθ‖∇2
xv‖q, with θ2 = 1 + min

{
0, d( 1

2 −
1
q )
}

, thus θ2 > 0 as long

as q > 2d
2+d , i.e.,

d = 2 : q > 1, or d = 3 : q >
6

5
.

Artificial viscosity term. Finally we treat the last term using summation by parts and transition between grids
to get

R5 := hd+α
∑
σ∈Eint

d∑
r=1

{∂rh({ūn}∂rh%n)}σ · (ΠDv)σ = hd+α
∑
K∈T

d∑
r=1

d∑
s=1

∂rh({ūs,n}∂rh%n)K(ΠPΠDvs)K

= hd+α
∑
σ∈Eint

d∑
r=1

{ūr,n}σ(∂sh%
n)σ(∂shΠPΠDvr)σ,

where in the last inequality we interchanged the role of r and s in order to get the standard summation over σ, which
is associated with s. Applying the Hölder inequality we get

|R5| ≤ hα‖ūnh‖6‖∂sh%nh‖2‖∇xv‖3.

Summation over time together with applying the uniform bounds gives

∆t

Nt∑
n=1

|R5| ≤ hα‖uh‖2,6‖∇xv‖3‖∂sh%h‖2,2 ≤ hθ1c(D)‖∇v‖3,

where θ1 = β > 0 is ensured by the assumptions on the lower bounds of α, see (80). Moreover, p ≥ 3 is required.
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5 Numerical experiments

In this section we perform two numerical experiments for the scheme in two dimensional space, one with Dirichlet
boundary condition and the other is periodic type. Our computational domain is always Ω = [0, 1]2, and some
constants are chosen as µ = 0.01, a = 1.0, γ = 1.4. α = 1.86 is chosen to satisfy the restriction (80).

Implementation – fix point iteration for the implicit scheme We solve the implicit nonlinear scheme by
fix-point iteration. Given the data

(
%nh,u

n
h

)
at time tn, let

(
%n,0h ,un,0h

)
=
(
%nh,u

n
h

)
, then for ` = 0, 1, · · · , we linearize

the nonlinear system and solve

%n,`+1
K − %n,0K

∆t
+ divUp[%n,`,un,`]K − hα(∆h%

n,`)K = 0,

{%n,`+1ūn,`+1}σ − {%n,0ūn,0}σ
∆t

+ {divUp[%n,`ūn,`,un,`]}σ +
(
∂shp(%

n,`)
)
σ
es

− µ(∆hu
n,`+1)σ − hα

d∑
r=1

{∂rh(ûn,`∂rh%
n,`+1)}σ = 0,

until ‖wn,`h − wn,`+1
h ‖ < ξ‖wn,`h ‖, for wh ∈ {%h,uh}, where ξ is a very small positive parameter, e.g. ξ = 1.0e − 6.

Then the solution at next time step tn+1 is obtain by wn+1
h = wn,`+1

h . As we solve the above iterative steps explicitly,
a CFL condition is required for preserving the stability ∆t = CFL hmin

|u|max
with CFL = 0.6.

5.1 Cavity flow

In this experiment we simulate the two dimensional cavity flow supplied with Dirichlet data u = (16x2(1 − x)2, 0)T

on the top boundary, and zero otherwise. Starting with the initial values u = 0, and % = 1 we show in Figure 2 the
evolution of the contour mapping for density and velocity components till time T = 1 with mesh parameter h = 1/128.
In order to present the Experimental Order of Convergence(EOC), we calculate the errors in relative norms for different
mesh sizes till t = 0.1 while the reference solution is computed at the fine mesh h = 1/512. From Table 1 we observe
first order convergence.

Table 1: Convergence results of cavity flow

h ‖e∇u‖l2(L2) EOC ‖eu‖l2(L2) EOC ‖e%‖l1(L1) EOC ‖e%‖l∞(Lγ) EOC
1/32 9.22e-03 – 2.84e-01 – 6.08e-05 – 1.79e-03 –
1/64 4.46e-03 1.05 1.37e-01 1.05 2.79e-05 1.12 9.15e-04 0.97
1/128 2.06e-03 1.11 7.14e-02 0.94 1.45e-05 0.95 4.79e-04 0.93
1/256 9.03e-04 1.19 3.09e-02 1.21 5.98e-06 1.27 2.11e-04 1.18

5.2 Gresho-vortex

This experiment is an example of rotating vortex, that has been studied in [4, 17, 34] and reference therein for the
isentropic flow. Initially, a vortex of radius R = 0.2 is prescribed at location (x0, y0) = (0.5, 0.5) with the velocity field
given by {

u1(0, x, y) = ur(r) ∗ (y − 0.5)/r,

u2(0, x, y) = ur(r) ∗ (0.5− x)/r.

where r =
√

(x− 0.5)2 + (y − 0.5)2 and the radial velocity of the vortex ur is

ur(r) =
√
γ

 2r/R if 0 ≤ r < R/2,
2(1− r/R) if R/2 ≤ r < R,
0 if r ≥ R.

By setting the periodic boundary condition, we show in Figure 3 the evolution of the flow with mesh parameter
h = 1/128, from which we see obvious diffusion effects. Analogous to the settings of the previous cavity test, EOC
Table 2 indicates similarly first order convergence in the related norms.
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(a) density % (b) velocity component u1 (c) velocity component u2

Figure 2: Time evolution of cavity flow, from top to bottom are t = 0.01, 0.1, 0.5, 0.75, 1, from left to right are densities
and velocity components
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Table 2: Convergence results of Gresho vortex test

h ‖e∇u‖l2(L2) EOC ‖eu‖l2(L2) EOC ‖e%‖l1(L1) EOC ‖e%‖l∞(Lγ) EOC
1/32 1.10e-02 – 3.74e-01 – 4.40e-04 – 1.35e-02 –
1/64 5.57e-03 0.98 1.88e-01 1.00 2.22e-04 0.99 6.72e-03 1.00
1/128 2.69e-03 1.05 8.71e-02 1.11 1.02e-04 1.12 3.10e-03 1.12
1/256 1.15e-03 1.22 3.37e-02 1.37 3.86e-05 1.40 1.16e-03 1.42

25



(a) density % (b) velocity component u1 (c) velocity component u2

Figure 3: Time evolution of gresho vortex, from top to bottom are t = 0.01, 0.05, 0.1, 0.15, 0.2, from left to right are
densities and velocity components
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A Appendix: Proof of Lemma 2.1

Before proving Lemma 2.1, let us introduce a simplified version in one dimension.

Lemma A.1. Let the computational domain Ω degenerate to one dimensional interval I = [a, b] and be equally divided
into M intervals of the size h = b−a

M . Assume that the functions f, ψ, v are discretized at the interval centres, while
g, φ are located at the division points. Moreover, we assume homogeneous Dirichlet boundary conditions for g, v, e.g.

g1/2 = 0, gM+1/2 = 0, v0 = −v1, vM+1 = −vM .

Then the following equalities hold

M∑
i=1

fi
gi+1/2 − gi−1/2

h
= −

M−1∑
i=1

fi+1 − fi
h

gi+1/2 (99a)

M−1∑
i=1

φi+3/2 − 2φi+1/2 + φi−1/2

h2
gi+1/2 = −

M∑
i=1

φi+1/2 − φi−1/2

h

gi+1/2 − gi−1/2

h
. (99b)

−
M∑
i=1

ψi+1 − 2ψi + ψi−1

h2
vi =

1

2

M∑
i=1

ψi+1 − ψi
h

vi+1 − vi
h

+
1

2

M∑
i=1

ψi − ψi−1

h

vi − vi−1

h
(99c)

Proof. By using the boundary conditions g1/2 = gM+1/2 = 0 we directly obtain (99a)

M∑
i=1

fi
gi+1/2 − gi−1/2

h
=

1

h

( M∑
i=1

figi+1/2 −
M∑
i=1

figi−1/2

)
=

1

h

( M∑
i=1

figi+1/2 −
M−1∑
j=0

fj+1gj+1/2

)

=
1

h

(M−1∑
i=1

figi+1/2 −
M−1∑
j=1

fj+1gj+1/2 + fMgM+1/2 − f1g1/2

)
= −

M−1∑
i=1

fi+1 − fi
h

gi+1/2,

and (99b)

M−1∑
i=1

φi+3/2 − 2φi+1/2 + φi−1/2

h2
gi+1/2 =

1

h2

 M∑
j=2

(φj+1/2 − φj−1/2)gj−1/2 −
M−1∑
i=1

(φi+1/2 − φi−1/2)gi+1/2


= −

M∑
i=1

φi+1/2 − φi−1/2

h

gi+1/2 − gi−1/2

h
− (φ3/2 − φ1/2)g1/2 − (φM+1/2 − φM−1/2)gM+1/2

= −
M∑
i=1

φi+1/2 − φi−1/2

h

gi+1/2 − gi−1/2

h
.

Applying the Dirichlet boundary condition for v we can show (99c)

1

2

M∑
i=1

ψi+1 − ψi
h

vi+1 − vi
h

+
1

2

M∑
i=1

ψi − ψi−1

h

vi − vi−1

h

=
1

2h2

(M+1∑
j=2

(ψj − ψj−1)vj −
M∑
i=1

(ψi+1 − ψi)vi +

M∑
i=1

(ψi − ψi−1)vi −
M−1∑
j=0

(ψj+1 − ψj)vj
)

=
1

2h2

(
− 2

M∑
i=1

(ψi+1 − 2ψi + ψi−1)vi + (ψM+1 − ψM )(vM+1 + vM )− (ψ1 − ψ0)(v1 + v0)

)

= − 1

h2

M∑
i=1

(ψi+1 − 2ψi + ψi−1)vi.

Lemma 2.1 is to show for f ∈ X(T ),g ∈ X(Eint)
d the following equalities.∑

K∈T
(divhg)KfK = −

∑
σ∈Eint

gsσ(∂shf)σ.

−
∑
σ∈Eint

(∆hv
s)σg

s
σ =

∑
K∈T

(
(∂shg

s)K(∂shv
s)K +

1

2

d∑
r=1,r 6=s

2∑
i=1

(∂rhg
s)K+h

2 es+(−1)i h2 er
(∂rhv

s)K+h
2 es+(−1)i h2 er

)
.
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Proof. It is obvious to obtain the first equality by using (99a) for s = 1, . . . , d and summing them up. The second
equality can be done with same strategy by applying (99b) for the first term on the right hand side and (99c) for the
latter term on the right hand side. Summing them up concludes the proof.
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[19] T. Gallouët, L. Gastaldo, R. Herbin, and J.-C. Latché. An unconditionally stable pressure correction scheme for
the compressible barotropic Navier-Stokes equations. ESAIM: M2AN, 42:303–331, 3 2008.
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