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ON THE STRUCTURE OF RANDOM HYPERGRAPHS

BORISA KUZELJEVIC

Abstract. Let Hn be a countable random n-uniform hypergraph for
n > 2 and let P(Hn) = {f [Hn] : f : Hn → Hn is an embedding}. We
prove that a linear order L is isomorphic to the maximal chain in the
partial order 〈P(Hn) ∪ {∅} ,⊂〉 if and only if L is isomorphic to the order
type of a compact set of reals whose minimal element is non-isolated.

1. Introduction

1.1. Background and the statement of the result. The purpose of
this note is to completely characterize chains of isomorphic substructures
of the Fräıssé limit of finite n-uniform hypergraphs for each n > 1, thus
generalizing some results from [10] to higher dimensions. Fräıssé theory, the
systematic study of ultrahomogeneous universal structures, was initiated in
the mid 1950’s by Roland Fräıssé [3]. Typical examples of Fräıssé limits
are the rational line 〈Q, <〉 and the countable random graph (i.e. Rado
graph). A particularly active research area is the investigation of the auto-
morphism groups of these structures (see [5] for the most notable example).
Besides that, there has been great interest in considering the embeddings
of an ultrahomogeneous structure into itself (for a relational structure X,
denote Emb(X) = {f : X→ X : f is an embedding}). For example, see
[2] for some results on the self-embeddings of ultrahomogeneous n-uniform
hypergraphs or [13] for one of the most prominent result concerning self-
embeddings of ultrahomogeneous structures. In this context, one usually
investigates the set of isomorphic substructures of a structure X, denoted
P(X) = {f [X] : f ∈ Emb(X)} = {A ⊂ X : A ∼= X}.

The set P(X) is naturally ordered by inclusion, and we will be interested in
order types of chains in these partial orders where X is the countable random
n-uniform hypergraph (for all n ≥ 2). By a well-known Hausdorff maximal
principle (also known as the Kuratowski lemma, one of the equivalents of
the AC), each chain is contained in a maximal one, so the characterization
of maximal chains will give a complete answer. Maximal chains in various
partial orders were extensively investigated in the literature. The first result
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2 B. KUZELJEVIC

related to ours is a theorem of Kuratowski [7] from 1921. which states that
if κ is a regular cardinal, then a linear order L is isomorphic to a maximal
chain in P (κ) if and only if it is isomorphic to the order of all initial segments
of some linear order of size κ. This result of Kuratowski was followed by
results of Day [1], Koppelberg [6], Monk [12] and others. Besides in [10],
some recent results related to the ones in this paper can be found in [9, 11].
The main result of this paper is the following.

Theorem 1.1. Let Hn, n > 1, be a countable random n-uniform hypergraph.
Then a linear order L is isomorphic to a maximal chain in the partial order
〈P(Hn) ∪ {∅} ,⊂〉 if and only if it is isomorphic to the order type of a compact
set of reals whose minimum is non-isolated.

Note that results in [10] claim that the same characterization of maximal
chains of isomorphic substructures holds for Henson graphs, while for dis-
joint unions of complete graphs L must be isomorphic to a compact nowhere
dense set of reals with minimum non-isolated. Also, we remark that we in
fact investigate chains in the poset 〈[ω]ω,⊂〉, and that already mentioned
Kuratowski’s result is the first result of this sort and that it claims that there
are no ’continuous’ maximal chains in 〈[ω]ω,⊂〉. This precisely means that
each maximal chain in 〈[ω]ω,⊂〉 must have dense jumps while on the other
hand, our result shows that when we add the structure of random n-uniform
hypergraph to the countable set then there are ’continuous’ maximal chains
in 〈P(Hn) ∪ {∅} ,⊂〉, for example there is a maximal chain of type [0, 1].

1.2. Preliminaries. In this paper n will be reserved for natural numbers
and |X| denotes the cardinality of a set X, in particular ω is the cardinality
of a countably infinite set. For a set X and n ≥ 1, by [X]n we denote
the set of all n-element subsets of X, i.e. [X]n = {y ⊂ X : |y| = n}. Also,
[X]<ω denotes the set of all finite subsets of X. If f maps A into B, then
f [A] = {f(x) : x ∈ A}. The power set of X is denoted by P (X)

A relational structure X = 〈X, {ρi : i ∈ I}〉 consists of a set X and rela-
tions ρi (i ∈ I). Often, when there can be no confusion, we do not make
distinction between denoting the structure X and the underlying set X. We
say that a structure Y = {Y, {σi : i ∈ I}} is a substructure of X if and only

if Y ⊂ X and for each i ∈ I we have σi = Y ar(ρi)∩ρi. A mapping f : X→ Y
is an embedding of a relational structure X into relational structure Y if and
only if f is 1-1 and it holds (ki = ar(ρi))

∀i ∈ I ∀ 〈a1, . . . , aki〉∈Xki 〈a1, . . . , aki〉∈ρi ⇔ 〈f(a1), . . . , f(aki)〉∈σi.
Notice that we make a distinction between embedding and a homomorphism
for relational structures (in this article, we will only be concerned with
embeddings).

We say that a relational structure X is ultrahomogeneous if and only if
any isomorphism φ between finite substructures of X can be extended to an
automorphism of X. Further, we say that a relational structure X is universal
for a class of structures K if and only if for each K ∈ K there is an embedding
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f : K→ X. We use the following characterization of ultrahomogeneity (see
[4, Theorem 12.1.2.]).

Lemma 1.2. Let X be a countable relational structure. Then X is ultraho-
mogenoeus if and only if for any finite substructure F of X and any embed-
ding f : F → X, and for any element a ∈ X \ F there exists an embedding
g : F ∪ {a} → X which is an extension of f .

Now we mention a few notions related to order theory. We say that
a linear order is complete if and only if it is Dedekind-complete and has
minimum and maximum (the reader may find this definition of completeness
non-standard, but we use it in order to shorten some statements). We say
that a linear order L is boolean if and only if it is complete and has dense
jumps, i.e. complete and for any x, y ∈ L if x < y then there are s, t ∈ L
such that x ≤ s < t ≤ y and (s, t)L = ∅.

We will also need the notions of a filter and a set dense in a partial order.
Let 〈P,≤〉 be a partial order, a set D ⊂ P is dense in P if for any p ∈ P
there is q ∈ D such that q ≤ p. A set G ⊂ P is a filter in P if and only
if for all x, y ∈ G there is q ∈ G such that q ≤ x, y (i.e. elements of G are
pairwise compatible in G) and for any x ∈ G if y > x, then also y ∈ G. The
following is a well-known fact.

Lemma 1.3 (Rasiowa-Sikorski). Let 〈P,≤〉 be a partially ordered set and
D = {Dn : n ∈ N} a countable family of sets dense in P . Then there is a
filter G in P such that G ∩Dn 6= ∅ for all n ∈ N.

1.3. Maximal chains. First note that the linear order L is isomorphic to
the order type of a compact (nowhere dense compact) set of reals whose min-
imum is non-isolated if and only if it is complete (boolean), R embeddable
and has a non-isolated minimum. For a proof of this fact see [8].

Recall that a positive family on a countable set X is a family P ⊂ P (X)
satisfying (see also [8]):

(P1) ∅ /∈ P;
(P2) A ∈ P ∧B ∈ [A]<ω ⇒ A \B ∈ P;
(P3) A ∈ P ∧A ⊂ B ⊂ X ⇒ B ∈ P;
(P4) ∃A ∈ P |X \A| = ω.

For example, each non-principal ultrafilter on ω is a positive family on ω.
Also, the family of all dense subsets of the rational line Q is a positive family
on Q. Positive families play an important role in investigation of maximal
chains in the posets of the form 〈P(X) ∪ {∅} ,⊂〉. Namely, Theorem 2.2. in
[11] states that if there is a positive family P on X such that P ⊂ P(X) then
for each countable, complete, R-embeddable linear order L whose minimum
is non-isolated, there is a maximal chain in 〈P(X) ∪ {∅} ,⊂〉 isomorphic to
L. This allows us to reformulate Theorem 3.2. from [10] in the following
slightly weaker manner.
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Theorem 1.4. Let X be a countable relational structure and 〈Q, <〉 the
rational line. If there exists a partition {Jm : m ∈ ω} of Q and a structure
with the domain Q of the same signature as X such that:

(i) J0 is a dense subset of 〈Q, <〉,
(ii) Jm (m ∈ ω) are coinitial subsets of 〈Q, <〉,
(iii) (−∞, x)J0 ⊂ A ⊂ (∞, x)Q implies A ∼= X for x ∈ R ∪ {∞},
(iv) (−∞, q]J0 ⊂ C ⊂ (∞, q]Q implies C 6∼= X for q ∈ J0,
(v) there is a positive family P on X such that P ⊂ P(X),

then for each R-embeddable complete linear order L with minL non-isolated
there is a maximal chain in 〈P(X) ∪ {∅} ,⊂〉 isomorphic to L.

Next result, proved in [11], shows that ultrahomogeneous structures pro-
vide a nice framework for investigating maximal chains of their isomorphic
substructures.

Theorem 1.5. Let X be a countable ultrahomogeneous structure of an at
most countable relational language which contains at least one non-trivial
isomorphic substructure, i.e. P(X) 6= {X}. Then for each linear order L the
implication (1)⇒(2) is true, where

(1) L is isomorphic to a maximal chain in the poset 〈P(X) ∪ {∅} ,⊂〉;
(2) L is a complete R-embeddable linear order with minL non-isolated.

2. Random hypergraphs

For n ≥ 2, a n-uniform hypergraph is a relational structure 〈X, ρ〉, sat-
isfying ar(ρ) = n and such that 〈x0, . . . , xn−1〉 ∈ ρ implies xi 6= xj for all
i 6= j in n and

〈
xπ(0), . . . , xπ(n−1)

〉
∈ ρ for all permutations π of n (see [4]).

Note that this is equivalent to saying that n-uniform hypergraph is a pair
〈X, ρ〉 where X is a set and ρ ⊂ [X]n, so we will sometimes refer to the first
formulation, and sometimes, when it is more convenient, to the second.

Recall that the class of countably many (up to isomorphism) finite struc-
tures is a Fräıssé class (see [4]) if it is hereditary, satisfies joint embedding
and amalgamation property and contains structures of arbitrary large finite
cardinality. It is well known that the class Kn of finite n-uniform hyper-
graphs (n ≥ 2) is a Fräıssé class, hence the famous Fräıssé’s theorem states
there there is a unique up to isomorphism countable ultrahomogeneous re-
lational structure whose age is exactly Kn (the age of a relational structure
is the class of all of its finitely generated substructures).

Definition 2.1. For n ≥ 2, the countable ultrahomogeneous n-uniform hy-
pergraph universal for all finite n-uniform hypergraphs is called the count-
able random n-uniform hypergraph.

The following lemma gives a useful reformulation of the definition of the
countable random n-uniform hypergraphs. Note also that Fräıssé’s theorem
states that the countable random n-uniform hypergraph is universal even
for the class of all countable n-uniform hypergraphs.
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Lemma 2.2. Suppose that n > 1 and that a countable n-uniform hypergraph
〈Hn,Γn〉 satisfies the following condition: for any A ∈ [Hn]<ω \

⋃
i<n−1[Hn]i

and any B ⊂ [A]n−1 there exists a ∈ Hn \A such that for all b ∈ B we have
{a} ∪ b ∈ Γn, while for all b ∈ [A]n−1 \B it holds {a} ∪ b /∈ Γn. Then Hn is
isomorphic to the countable random n-uniform hypergraph.

Proof. We have to prove that the n-uniform hypergraph 〈Hn,Γn〉 satisfying
the conditions of the lemma is ultrahomogeneous and universal for all finite
n-uniform hypergraphs. So let F be a finite substructure of Hn and f : F →
Hn an embedding. Pick an arbitrary a ∈ Hn \ F . If |F | < n − 1 then any
1-1 map g : F ∪ {a} → Hn with g � F = f is an embedding because in that
case Γn ∩ [F ∪ {a}]n = ∅ (hence the conclusion of Lemma 1.2 is fulfilled). If
|F | ≥ n−1, consider the set f [F ], and define B ⊂ [f [F ]]n−1 in the following
way:

b ∈ B ⇐⇒ {a} ∪ f−1[b] ∈ Γn. (2.1)

Next, pick an element x ∈ Hn \ f [F ] such that ∀b ∈ B {x} ∪ b ∈ Γn
and that ∀b ∈ [f [F ]]n−1 \ B ({x} ∪ b /∈ Γn). Note that the existence of
x follows from the assumption of the lemma. Finally, the mapping g :
F ∪ {a} → Hn given by g(y) = f(y) (y ∈ F ) and g(a) = x is an embedding
by construction (namely, the condition (2.1) ensures that g is an embedding)
so the conclusion of Lemma 1.2 is fulfilled.

In order to finish the proof it will be enough to prove that Hn is universal
for all countable n-uniform hypergraphs. Let A = 〈{a1, a2, . . . } , ρ〉 be an
arbitrary countable n-uniform hypergraph. Hence, ρ ⊂ [A]n. If |A| < n
then any 1-1 mapping h : A → Hn is an embedding because in that case
[A]n = ∅, and that implies ρ ∩ [A]n = Γn ∩ [h[A]]n = ∅. If |A| ≥ n, then we
define the embedding f recursively. First, pick any elements x1, . . . , xn−1 ∈
Hn and define fn−1(ai) = xi for 1 ≤ i ≤ n − 1 (fn−1 is an embedding
according to the previous considerations in this paragraph). Assume that
an embedding fl : {a1, . . . , al} → Hn (n − 1 ≤ l) is given. Define the set
B ⊂ [fl[{a1, . . . , al}]]n−1 in the following way:

b ∈ B ⇐⇒ {al+1} ∪ f−1l [b] ∈ ρ. (2.2)

Pick an element xl+1 ∈ Hn \ fl[{a1, . . . , al}] such that ∀b ∈ B {xl+1} ∪ b ∈
Γn and that ∀b ∈ [f [{a1, . . . , al}]]n−1 \ B ({xl+1} ∪ b /∈ Γn). Then, the
mapping fl+1 : {a1, . . . , al+1} → {x1, . . . , xl+1}, given by fl+1(y) = fl(y)
(y ∈ {a1, . . . , al}) and fl+1(al+1) = xl+1, is clearly an embedding which is an
extension of fl (again, the condition (2.2) ensures that fl+1 is an embedding).
If we proceed in the same way for all l ≥ n−1, then f =

⋃
l≥n−1 fl : A→ Hn

is an embedding and the lemma is proved. �

For the rest of the paper, we will denote the countable random n-uniform
hypergraph by Hn.
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3. Main theorem

In this section we prove the central result of this article by constructing
the specific representation of Hn in order to easily locate its isomorphic
substructures. We essentially plan to use Theorem 1.4 so pick any partition
(0, 1)∩Q =

⋃
m∈ω J

′
m into countably many pairwise disjoint dense sets. Now

define the sets Jm = J ′m + Z for every m ∈ Z. It is clear that the family
{Jm : m ∈ Z} is a partition of the rational line into pairwise disjoint dense
sets such that if x ∈ J0, then x+ k ∈ J0 for any k ∈ Z.

Let P be the partial order of all finite k-uniform hypergraphs p = 〈Hp,Γp〉
(i.e. Hp is a set and Γp ⊂ [Hp]

n) such that Hp ⊂ Q (Q is the rational line)
and that for all a, a− 1, . . . , a− n+ 1, b ∈ Q it holds:

∀A ∈ [{a, a− 1, . . . , a− n+ 1}]n−1 {b} ∪A ∈ Γp ⇒ b > a. (3.1)

For p, q in P, we put

p ≤ q ⇐⇒ Hp ⊃ Hq ∧ Γp ∩ [Hq]
n = Γq. (3.2)

Hence, p ≤ q if and only if q is a substructure of p.

Lemma 3.1. The set P with the relation ≤ on P is a partially ordered set.

Proof. The reflexivity is clear. For transitivity notice that if p ≤ q and q ≤ r
we have Hr ⊂ Hq ⊂ Hp and Γp ∩ [Hq]

n = Γq and Γq ∩ [Hr]
n = Γr, and it

is easy to see that Γp ∩ [Hr]
n = Γr. To see that ≤ is antisymmetric notice

that if p ≤ q and q ≤ p, then from Hp ⊂ Hq ⊂ Hp follows Hp = Hq and
then Γp = Γp ∩ [Hp]

n = Γp ∩ [Hq]
n = Γq, or equivalently p = q. �

Lemma 3.2. Let m ∈ N, A ∈ [Q]<ω \
⋃
i<n−1[Q]i and B ⊂ [A]n−1. Then

DA,m
B = {p ∈ P : ∃q ∈ (maxA,maxA+ 1

m) ∩ J0
∀b ∈ B ({q} ∪ b ∈ Γp) ∀b ∈ ([A]n−1 \B) ({q} ∪ b /∈ Γp)}

is a set dense in P.

Proof. Take any p ∈ P and assume that A ⊂ Hp (if not, define Hp2 = Hp∪A
and Γp2 = Γp and continue with p2 instead p). Because Q is a dense linear
ordering there is:

q ∈
(
(maxA,maxA+ 1

m) ∩Q
)
\
⋃
a∈Hp

⋃
k∈(−n,n)∩Z {a+ k} . (3.3)

Define p1 in the following way:

- Hp1 = Hp ∪ {q};
- Γp1 = Γp ∪ {{q} ∪ b : b ∈ B}.

It is clear that if p1 ∈ P, then p1 ∈ DA,m
B and p1 ≤ p. Now we prove that

p1 ∈ P. Assume the contrary, i.e. that for some a, a−1, . . . , a−n+1, b ∈ Hp1

we have:

∃A ∈ [{a, a− 1, . . . , a− n+ 1}]n−1 {b} ∪A ∈ Γp ∧ b ≤ a. (3.4)

There are three possibilities (regarding the position of q with respect to b
and A which exists by (3.4)):
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(1) q = a which is not possible because in that case q = (a− 1) + 1 with
a− 1 ∈ A ⊂ Hp. Contradiction with the choice of q.

(2) q = a − k (0 < k < n) which is impossible because in this case
q = (a − (k − 1)) − 1 with a − (k − 1) ∈ Hp. Again contradiction
with the choice of q.

(3) q = b (so q ≤ a). In this case we have that a ∈ A, but q > maxA
which is a contradiction.

Hence, p1 ∈ P and the lemma is proved. �

Since there are only countably many positive integers and only countably

many finite subsets of the rational line, there are countably many sets DA,m
B ,

and according to Lemma 1.3 there is a filter G in P such that G∩DA,m
B 6= ∅

for each A ∈ [Q]<ω \
⋃
i<n−1[Q]i, B ⊂ [A]n−1,m ∈ N. Define Γ =

⋃
p∈G Γp.

Because Γp ⊂ [Q]n for all p ∈ G, we have that Γ ⊂ [Q]n so 〈Q,Γ〉 is a
countable n-uniform hypergraph. Notice also that for each p ∈ G we have
that:

Γ ∩ [Hp]
n = Γp. (3.5)

It is clear that Γp ⊂ [Hp]
n ∩Γ (from the definition of Γ), so assume that for

some p ∈ G there is some a = {a1, . . . , an} ∈ (Γ∩ [H]n) \Γp. Because a ∈ Γ
there is some r ∈ G such that a ∈ Γr. Since G is a filter, there is some t ∈ G
such that t ≤ p, r, i.e. t is an extension of both p and r. Because a /∈ Γp,
from (3.2) we conclude that a /∈ Γt. However, because a ∈ Γr, again from
(3.2) we conclude that a ∈ Γt which is a contradiction so (3.5) holds.

Now, using Lemma 2.2, we prove that 〈Q,Γ〉 is isomorphic to the count-
able random n-uniform hypergraph Hn. Take any finite A ⊂ Q such that

|A| ≥ n − 1 and B ⊂ [A]n−1. The set DA,1
B is dense in P so there is some

p ∈ G ∩DA,1
B . According to the definition of Γ we have that Γp ⊂ Γ, hence

there is some q > maxA (which implies q /∈ A) such that for all b ∈ B we
have {q}∪ b ∈ Γp (which implies {q}∪ b ∈ Γ) and that for all b ∈ [A]n−1 \B
we have {q} ∪ b /∈ Γp (which, according to (3.5), implies {q} ∪ b /∈ Γ). So by
Lemma 2.2 we have 〈Q,Γ〉 ∼= Hn.

Lemma 3.3. If Hn, n > 1, is the countable random n-uniform hypergraph,
then there exists a positive family P on Hn such that P ⊂ P(Hn).

Proof. We will prove that

P =
{
Q \

⋃
m∈Z Fm : ∀m ∈ Z Fm ∈ [[m,m+ 1)]<ω

}
is a positive family in P(Q,Γ) (note that each element of P is given by
different choice of the collection {Fm : m ∈ Z}). Take any X ∈ P. We will
show that X satisfies the conditions of Lemma 2.2. Take any finite A ⊂ X
such that |A| ≥ n− 1 and any B ⊂ [A]n−1. First we find m0 ∈ Z such that
maxA ∈ [m0,m0 + 1)Q. This m0 clearly exists because A is a finite set.
Also, because Fm0 is a finite set and A ∩ Fm0 = ∅, there is an m ∈ N such
that (maxA,maxA+ 1

m)∩Fm0 = ∅, i.e. (maxA,maxA+ 1
m)∩Q ⊂ X. Now,
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because the set DA,m
B is dense in P there is some p ∈ G ∩ DA,m

B . Lemma
3.2 states that there is some q ∈ X such that ∀b ∈ B {q} ∪ b ∈ Γp ⊂ Γ and
∀b ∈ ([A]n−1 \B) {q} ∪ b /∈ Γp = Γ ∩ [Hp]

n. Hence for each X ∈ P we have
that X ∼= Hn.

To conclude the proof we should still show that P is a positive family on
Q. The condition (P1) is clearly satisfied because only finitely many points
are removed from each bounded interval in Q to obtain elements of P. For
the same reason (P2) and (P3) are also satisfied. The set Q \

⋃
m0∈Z {m0}

is in P and witnesses that the condition (P4) is true. �

In order to apply Theorem 1.4, we have to show that open intervals are
copies of Hn while closed intervals are not.

Lemma 3.4. It holds:

(1) (−∞, x)J0 ⊂ A ⊂ (∞, x)Q implies 〈A,Γ〉 ∼= 〈Q,Γ〉 for x ∈ R ∪ {∞};
(2) (−∞, q]J0 ⊂ C ⊂ (∞, q]Q implies 〈C,Γ〉 6∼= 〈Q,Γ〉 for q ∈ J0.

Proof. To prove (1) take any finite X ⊂ A such that |X| ≥ n − 1 and take
B ⊂ [X]n−1. There is some m ∈ N such that maxX + 1

m < supA = x
(this can be done because of the choice of A and J0). Now, because the

set DX,m
B is dense in P, there is some p ∈ G ∩ DX,m

B . In p there is some

q ∈ (maxX,maxX + 1
m)∩ J0 ⊂ A such that ∀b ∈ B ({q} ∪ b ∈ Γp ⊂ Γ) and

that ∀b ∈ [X]n−1 \ B ({q} ∪ b /∈ Γp = Γ ∩ [Hp]
n). So according to Lemma

2.2, A is isomorphic to Hn.
To prove (2) consider the set Y = {q, q − 1, . . . , q − n+ 1} ⊂ C (we have

that Y ⊂ C because of the choice of the partition {Jm : m ∈ ω}). Now,
if 〈C,Γ〉 is isomorphic to Hn, then there is an element b ∈ C such that
∀X ∈ [Y ]n−1 ({b} ∪ X ∈ Γ). According to the definition of Γ, for each
X ∈ [Y ]n−1 there is some pX ∈ G such that {b} ∪ X ⊂ HpX . Because G
is a filter there is some p ≤ pX for all X ∈ [Y ]n−1. In this p we have that
∀X ∈ [Y ]n−1 ({b} ∪X ∈ Γ) yet b ≤ maxC = q. But, this is a contradiction
to the definition of P (condition (3.1)). �

Now we can prove the main result of this article.

Theorem 3.5. For a linear order L, the following conditions are equivalent.

(1) L is a complete, R-embeddable linear order with minL non-isolated;
(2) L is isomorphic to a maximal chain in the poset 〈P(Hn) ∪ {∅} ,⊂〉;
(3) L is isomorphic to a compact set K of reals such that minK ∈ K ′.

Proof. The equivalence of (1) and (3) was shown in [9], while the implication
(2)⇒(1) follows from Theorem 1.5.

To prove implication (1)⇒(2) note that from the choice of partition
{Jm : m ∈ ω} and according to Lemma 3.4, conditions (i)-(iv) of Theorem
1.4 are satisfied. Also, Lemma 3.3 proves that the condition (v) of Theorem
1.4 is satisfied. Hence, Theorem 1.4 implies that (1)⇒(2) is proved. �
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[8] M. S. Kurilić. Maximal chains in positive subfamilies of P(ω). Order, 29(1):119–129,

2012.
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