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A LONG CHAIN OF P-POINTS

BORISA KUZELJEVIC AND DILIP RAGHAVAN

ABSTRACT. The notion of a d-generic sequence of P-points is introduced in this paper.
It is proved assuming the Continuum Hypothesis that for each § < wsg, any J-generic
sequence of P-points can be extended to an wa-generic sequence. This shows that the
Continuum Hypothesis implies that there is a chain of P-points of length ¢t with respect
to both Rudin-Keisler and Tukey reducibility. The proofs can be easily adapted to get such
a chain of length ¢t under a more general hypothesis like Martin’s Axiom. These results
answer an old question of Andreas Blass.

1. INTRODUCTION
In his 1973 paper on the structure of P-points [1], Blass posed the following question:

Question 1.1 (Question 4 of [1]). What ordinals can be embedded into the class of P-
points when equipped with the ordering of Rudin-Keisler reducibility assuming Martin’s
Axiom?

Recall that an ultrafilter { on w is called a P-point if for any {a,, : n < w} C U there
isa € U such that a C* a,, for every n < w. All filters ¢ occurring in this paper are
assumed to be proper — meaning that 0 ¢ U/ — and non-principal — meaning that U extends
the filter of co-finite sets. It is not hard to see that an ultrafilter ¢/ is a P-point if and only
if every f € w“ becomes either constant or finite-to-one on a set in /. Recall also the
well-known Rudin-Keisler ordering on P-points.

Definition 1.2. Let J/ and V be ultrafilters on w. We say that Y <gx V, i.e. U is Rudin-
Keisler (RK) reducible to V or U is Rudin-Keisler (RK) below V, if there is f € w® such
that A € U & f~1(A) € V forevery A C w. We say that i =g V, i.e. U is RK
equivalent to V, if U <pp VandV <gx U.

It is worth noting here that the class of P-points is downwards closed with respect to
this order. In other words, if U/ is a P-point, then every ultrafilter that is RK below I/ is
also a P-point. It should also be noted that the existence of P-points cannot be proved
in ZFC by a celebrated result of Shelah (see [11]). Hence it is natural to assume some
principle that guarantees the existence of “many” P-points when studying their properties
under the RK or other similar orderings. Common examples of such principles include the
Continuum Hypothesis (CH), Martin’s axiom (MA), and Martin’s Axiom for o-centered
posets (MA (o — centered)).

Blass showed in [1] that the ordinal w; can be embedded into the P-points with respect
to the RK ordering, if MA (o —centered) holds. In particular under CH, the ordinal ¢ = 2%°
embeds into the P-points with respect to RK reducibility. Note that no ultrafilter } can have
more than ¢ predecessors in the RK order. This is because for each f € w, there can be
at most one ultrafilter I/ for which f witnesses the relation i/ <pgj V. Therefore there can
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2 B. KUZELJEVIC AND D. RAGHAVAN

be no RK-chain of P-points of length ¢t 4 1. Thus the strongest possible positive answer
to Question 1.1 is that the ordinal ¢ embeds into the P-points under the RK ordering.

Though there have not been many advances directly pertaining to Question 1.1 after
[1], several results have dealt with closely related issues. Rosen [9] showed assuming CH
that the ordinal w; occurs as an RK initial segment of the P-points. In other words, he
produced a strictly increasing RK chain of P-points of length w; that is downwards closed
under the relation <y up to RK equivalence. Laflamme [5] further investigated well-
ordered initial segments of the P-points under the RK ordering. For each countable ordinal
«, he produced a forcing notion PP, that generically adds an RK initial segment of the P-
points of order type «. He also gave combinatorial characterizations of the generics added
by these forcing notions.

Dobrinen and Todorcevic [2] considered the Tukey ordering on P-points. Recall that for
any X,) C P(w),amap ¢ : X — ) is said to be monotone if for every a,b € X,a C b
implies ¢(a) C ¢(b), while ¢ is said to be cofinal in Y if for every b € Y there is a € X
so that ¢(a) C b.

Definition 1.3. We say that i/ < V, i.e. U is Tukey reducible to V or U is Tukey below
V, if there is a monotone ¢ : V — U which is cofinal in /. We say thatUf =7 V, i.e. U is
Tukey equivalent to V,ifU <r Vand V <t U.

It is not hard to see that i <gy V implies!d <7 V, and it was proved by Raghavan and
Todorcevic in [8] that CH implies the existence of P-points I/ and V such that V <gx U,
but V =r U. Their result showed that the orders < and <gx can diverge in a strong
sense even within the realm of P-points, although by another result from [8], the two orders
coincide within the realm of selective ultrafilters. In [2], Dobrinen and Todorcevic showed
that every P-point has only ¢ Tukey predecessors by establishing the following useful fact.

Theorem 1.4 (Dobrinen and Todorcevic [2]). IfV is a P-point and U is any ultrafilter with
U <7V, then there is a continuous monotone ¢ : P(w) — P(w) suchthatp [V :V - U
is a monotone map that is cofinal in U.

They used this in [2] to embed the ordinal w; into the class of P-points equipped with
the ordering of Tukey reducibility assuming MA (o — centered). Question 54 of [2] asks
whether there is a strictly increasing Tukey chain of P-points of length ¢*. In [3] and [4],
Dobrinen and Todorcevic proved some analogues of Laflamme’s results mentioned above
for the Tukey order. In particular, they showed that each countable ordinal occurs as a
Tukey initial segment of the class of P-points, assuming MA (o — centered). Raghavan and
Shelah proved in [7] that MA (o — centered) implies that the Boolean algebra P(w)/ FIN
equipped with its natural ordering embeds into the P-points with respect to both the RK
and Tukey orders. In particular, for each a < ¢, the ordinal o embeds into the P-points
with respect to both of these orders.

In this paper, we give a complete answer to Question 1.1 by showing that the ordinal
¢t can be embedded into the P-points under RK reducibility. Our chain of P-points of
length ¢* will also be strictly increasing with respect to Tukey reducibility, so we get a
positive answer to Question 54 of [2] as well. The construction will be presented assuming
CH for simplicity. However the same construction can be run under MA with some fairly
straightforward modifications. We will try to point out these necessary modifications at the
appropriate places in the proofs below. We will make use of Theorem 1.4 in our construc-
tion to ensure that our chain is also strictly increasing in the sense of Tukey reducibility.
However the continuity of the monotone maps will not be important for us. Rather any
other fixed collection of ¢ many monotone maps from P(w) to itself which is large enough
to catch all Tukey reductions from any P-point will suffice. For instance, it was proved in
[8] that the collection of monotone maps of the first Baire class suffice to catch all Tukey
reductions from any basically generated ultrafilter, which form a larger class of ultrafilters
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than the P-points. So we could equally well have used monotone maps of the first Baire
class in our construction.

A powerful machinery for constructing objects of size N under < was introduced by
Shelah, Laflamme, and Hart in [13]. This machinery can be used to build a chain of P-
points of length wo that is strictly increasing with respect to both RK and Tukey reducibility
assuming . More generally, the methods in [13] allow for the construction of certain types
of objects of size A* from a principle called D1y, which is closely related to <>. Shelah’s
results in [12] imply that D1, follows from MA when ¢ > N; and is a successor cardinal.
Thus the methods of [13], when combined with the results of [12], can also be used to get
a chain of P-points of length ¢* when ¢ > Ny, ¢ is a successor cardinal, and MA holds.
However the techniques from [13] are inadequate to treat the case when only CH holds'.

2. PRELIMINARIES

2

We use standard notation. “V°°z ...” abbreviates the quantifier “for all but finitely
many z ...” and “3°°z ...” stands for “there exist infinitely many z such that ...”. [w]®
refers to the collection of all infinite subsets of w, and [w]<“ is the collection of all finite
subsets of w. The symbol C* denotes the relation of containment modulo a finite set:
a C* biff a \ b is finite.

Even though the final construction uses CH, none of the preliminary lemmas rely on
it. In fact, CH will only be used in Section 5. The results in Sections 2—4 are all in ZFC,
and CH is needed later on to ensure that these results are sufficient to carry out the final
construction and that they are applicable to it. So we do not need to make any assumptions
about cardinal arithmetic at the moment.

One of the difficulties in embedding various partially ordered structures into the P-points
is that, unlike the class of all ultrafilters on w, this class is not ¢-directed under <pgj. Itis
not hard to prove in ZFC that if {Uf; : i < c} is an arbitrary collection of ultrafilters on w,
then there is an ultrafilter I/ on w such that Vi < ¢ [U; <gj U]. However it is well-known
that there are two P-points / and V with no RK upper bound that is a P-point under CH
(see [1]). Even if we restrict ourselves to chains, it is easy to construct, assuming CH, an
RK chain of P-points (U; : i < w;) which has no P-point upper bound. The strategy for
ensuring that our chains are always extensible is to make each ultrafilter “very generic”
(with respect to some partial order to be defined in Section 4). The same strategy was used
in [7], but with one crucial difference. Only ¢ many ultrafilters were constructed in [7] and
so all of the ultrafilters in question could be built simultaneously in ¢ steps. But by the time
we get to, for example, the ultrafilter I{,,, in our present construction, all of the ultrafilters
U;, for © < wy, will have been fully determined with no room for further improvements.
Thus the ultrafilters that were built before should have already predicted and satisfied the
requirements imposed by U,,, , and indeed by all of the ultrafilters to come in future. This is
possible because there are only w; possible initial segments of ultrafilters. More precisely,
each of the wo many P-points is generated by a C*-descending tower A, = (C¥ : i < wy).
For each j < wy, the collection {A,, [ j : & < wa} justhas size wy. This leads to the notion
of a d-generic sequence, which is essentially an RK-chain of P-points of length & where
every ultrafilter in the sequence has predicted and met certain requirements involving such
initial segments of potential future ultrafilters and potential RK maps going from such
initial segments into it. The precise definition is given in Definition 2.10. Our main result
is that such generic sequences can always be extended.

Remark 2.1. In the rest of the paper we will use the following notation:

e For A C w, define A = Aand A' =w )\ A.
o For A € [w]“, A(m) is the mth element of A in its increasing enumeration.
e For A € [w|“ and k,m < wlet Alk,m) = {A(l) : k <1 < m}.

IPersonal communication with Shelah. The second author thanks Shelah for discussing these issues with him.
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For A € [w]¥ and m < w, let A[m] = {A(l) : I > m}.
For a sequence c=(c(§) : £ < av), let set(c) = U, ¢(§).
For a sequence c=(c(§) : { <o) and n<a, let set(c) [n] =U, <¢ <, ¢(§)-
Form € w,let s(m) =m(m +1)/2and t(m) = 3. ) <pcsmsn) (K +1).
A function f € w¥ is increasing if Vn € w [f(n) < f(n +1)].
We also consider, for an ordinal «, triples p = <D, f(,ﬁ> where D = (D, :n<a) is
a sequence of sets in P(w), K = (K n,:m <n <) is a sequence in w and 7 =
(Tn,m = m < n < ) is a sequence in w*. Then, for n < a, denote:
o A = Uy<n Hf, where HE, | is the set of all k € Dy, [Kp i, Konnt1) such
that 71 ({k}) O Dy [Kont s Konrni1) = 0 forallm < m’ < n;
o Lf=0andforeachn € w, L, | = L& + |AL].

Regarding the definition of A?, the reader should think of the sequence K as defining
an interval partition of Dy, for each m. Then for any m < n, Hf}, , consists of the points
in the nth interval of D,,, that do not have a preimage in the nth interval of D,/ for any
m<m’ <n.

Next we recall the notion of a rapid ultrafilter. All the P-points in our construction
will be rapid. This happens because the requirement of genericity forces our ultrafilters
to contain some “very thin” sets. However they cannot be too thin, lest we end up with a

Q-point. Rapidity turns out to be a good compromise.

Definition 2.2. We say that the ultrafilter I is rapid if for every f € w* there is X € U
such that X (n) > f(n) for every n < w.

Lemma 2.3. IfU is a rapid ultrafilter, then for every f € w“ and every X € U there is
Y €U suchthatY C X and Y (n) > f(n) for every n < w.

Proof. Let f € w* and X € U. Let Z be as in Definition 2.2,i.e. Z € U and Z(n) > f(n)
forn <w.LetY = XNZandnoteY € Y. SinceY C Z wehaveY(n) > Z(n) > f(n)
for every n < w. (]

Claim 24. Let (U, : n < w) be a sequence of distinct P-points and M a countable ele-
mentary submodel of H(Qc)+ containing (U, : n < w). Forn < w let A,, € U,, be such
that A, C* A foreach A € U, N M. Then |A, N Ap| <w for m<n<w.

Proof. Fix m < n < w and pick a set A,, ,, so that A,, , € U, andw \ A4, , € U, (this
can be done because U,,, # U,, for m # n). By elementarity of M, since U,,,U,, € M we
can assume that A,,, , € M. Now we have that A, C* A,, ,, and that A,, C* w \ Ay, .
So A,, N A,, C* 0implying |A,, N A4,| < w. O

Now we introduce one of the basic partial orders used in the construction. The definition
of (P, <) is inspired by the many examples of creature forcing in the literature, for example
see [10]. However there is no notion of norm in this case, or rather the norm is simply the
cardinality.

Definition 2.5. Define PP as the set of all functions ¢ : w — [w]<“ \ {0} such that Vn €
w [le(n)| < le(n + 1)| Amax(c(n)) < min(c(n + 1))]. If ¢,d € P, then ¢ < d if there is
I < wsuch that ¢ <; d, where ¢ <; d & ¥Ym > 1 3n > m [c(m) C d(n)].

Note that if d < ¢, then set(d) C* set(c). Each of our ultrafilters will be generated by
a tower of the form (set(c;) : ¢ < wy) where (¢; : i < wy) is some decreasing sequence of
conditions in P. This guarantees that each ultrafilter is a P-point.
Remark 2.6. Note that (P, <) is a partial order and has the following properties:
(1) For any ¢ € P we have min(c(n)) > n;
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2) Ifa <, band b <, ¢, then a <; ¢ for I = max{m,n}. To see this take any
k > 1. There is k' > k > I such that a(k) C b(k’). Thereis also k"' > k' > k > 1
so that a(k) C b(k') C ¢(k") as required.

(3) Let {d,,: n<w} C P be such that Vn < w [dy+1 <m, dn]. Then d,, 41 <; dp for
n < wand | = max{my : k < n}. The proof is by induction on n. For n =0,
di <mg do. Let n > 0 and assume the statement is true for all m < n. Then
dnt2 <y Anyr and dy 1 <g; do, where Iy = max {my, : k < n}. So, by (2),
dpyo <y dp forl = max{my : k <n+1}.

Definition 2.7. A triple (r, 1, ¢) is called a normal triple if 7, € w*, forevery [ <1’ <
w we have that (1) < 9 (l"), if ran(¢)) is infinite, and if ¢ € PP is such that for I < w we
have 7”¢(l) = {¢ (1)} and for n € w \ set(c) we have w(n) = 0.

The notion of a normal triple will help us ensure that when o < [ < ws, the RK
reduction from Uy to U, is witnessed by a function that is increasing on a set in /3. Thus
our sequence of P-points will actually even be a chain with respect to the order <},p.
Recall that for ultrafilters &/ and V on w, U SE g V if there is an increasing f € w® such
that A €U <= f~1(A) €V, forevery A C w. More information about the order SE B
can be found in [6]

Remark 2.8. Suppose that d < ¢ and (7, v, ¢) is a normal triple. There is N < w such
that for every k, [ € set(d) \ N if k <, then w(k) < = (I).

Lemma 2.9. Suppose that (w,1,b) is a normal triple, that a C 7"’ set(c) [no], and that
¢ <py b. Forn < wdenote F,, = {m <w:7"c(m)={a(n)}}. Then for n < w:
F,\ng #0, |F,| < wand max(F,) < min(F,4+1 \ ng) < max(Fy41).

Proof. Fix n < w. By the choice of the set a there are k& > ng and = € c(k) so that
m(x) = a(n). Since ¢ <,, b there is m > k so that c(k) C b(m) and because (7,1, b)
is a normal triple we know 7”’b(m) = {a(n)}. So k € F,, is such that k > ng, implying
F, \ng # 0. To show that each F, is finite take any k € F,,. As above, F,, 11 \ng # 0. Let
k' = min (F, 41 \ ng). We will show k < k’. If k < ng the statement follows. If k& > ng
then there are my, mo so that ¢(k) Cb(mq) and c¢(k’) C b(mz). Since 7”'b(m1) ={a(n)},
7"b(ma)={a(n + 1)} and (, 1, b) is a normal triple we have m; <ms and consequently
k <k'. Somax(F,) < k" implying both |F},| < w and max(F,) < min(F,41 \ no) <
max(F,41). O

Now comes the central definition of the construction. We will briefly try to explain the
intuition behind each of the clauses below. Clauses (1), (2), and (4) are self explanatory
and were commented on earlier. Clause (5a) guarantees that g , is an RK map from U3
to U, whenever a < (. This is because if U/, )V are ultrafilters on w and f € w* is such
that f”’b € U for every b € V, then [ witnesses that i/ <gx V. Clause (5b) says that if
a < B < v, thenmy o = T34 © Ty,g modulo a set in U,. This type of commuting of RK

maps is unavoidable in a chain. Clause (5¢) makes the map g , increasing on a set in Ug;
B

this makes Uy, <}, 5 Us. The fact that 7 , is constant on ¢}
for killing unwanted Tukey maps.

Clauses (3) and (6) deal with the prediction of requirements imposed by future ultra-
filters. To understand (3), suppose for simplicity that (i, : n < w) has already been
built and that U, is being built. At a certain stage you have decided to put set(d) € U,,,
for some d € P, and you have also decided the sequence of RK maps (m,; : i < n),
for some n € w. In particular 7] ,, set(d) € U,. Now you wish to decide 7, ,+1 and
you are permitted to extend d to some d* < d in the process. But you must ensure
that 7ri’,_yn+1 set(d*) € Up41 and that 7, , commutes through 7, ,+1. Clause (3) says
that U, anticipated this requirement and that there is a b € U, (in fact cofinally

many b) that allows this requirement to be fulfilled. Next to understand (6), suppose that

(n) for almost all n is helpful
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(U, : a < wi) has been built and that you are building U,,,. At some stage you have
determined that (set(d,) : n < w) C U,,, for some decreasing sequence of conditions
(dy, : m < w) C P. You have also determined the sequence (7, » : 7 < w). In particular
Vn,m < w[w)} , set(dn) € Uy,], and each 7, ,, has the right form on some d,,,. Now
you would like to find a d* € P that is below all of the d,,. You would also like to determine
T, w- But you must ensure that 77 set(d*) € U,, that , ., has the appropriate form
on d*, and that all of the 7, ,, commute through 7, .,. Clause (6) says that I/, anticipated
this requirement and that there is a b € U, (in fact cofinally many b) enabling you to find

such a d* and 7, ..

Definition 2.10. Let 6 < wo . We call ({c
generic if and only if:

i< cAha<i),(mgaa< B <)) o-

K2

(1) forevery a < 0, (¢ : i < ¢) is a decreasing sequence in IP;

(2) forevery o < §, U, = {a € P(w) : Fi < ¢ [set(cy) C* a]} is an ultrafilter on w
and it is a rapid P-point (we say that U, is generated by (c% : i < ¢));

(3) for every @« < (8 < 4, every normal triple (71,11,b1) and every d < by if
7i set(d) € U,, then for every a € Ug there is b € Ug such that b C* a
and that there are 7,9 € w* and d* < d so that (m,,d*) is a normal triple,
7" set(d*) = b and Vk € set(d*) [m1(k) = 7a,o(7(k))].

@) ifa< B <6, thenls L1 Uy.

(5) forevery a < §, mqo,o = id and:

(A Va<fB<doVi<c [ﬂ'g’a set(cf) € Uy,);

(b) Va < B <~ <d3i<cVokeset(c]) [1y,a(k) = mg,a(my,5(k))];

(c) fora« < B < d there are i < ¢, bgo € P and g, € w* such that
(78,0003, b o) is @ normal triple and ¢ < bg_4;

(6) if < ¢ is a limit ordinal such that cof(x) = w, X C p is such that sup(X) =
K, (d; : j <w) is a decreasing sequence of conditions in P, (7, : v € X) is a
sequence of maps in w* such that:

(@) Vo € X Vj < w [ set(d;) € Ual;

(b) Va,B e X [a < = 3j <wV®keset(d)) [ma(k)=m5a(m5(k))]];

(c) forall @ € X there are j < w, by € P and 1, € w* such that (7., ¥4, by ) is

anormal triple and d; < bg;

then the set of all #* < ¢ such that there are d* € P and 7 € w* satisfying:

(d) Vj < w [d* < dj] and set(cl.) = 7"’ set(d*);

(e) Voo € X V°Fk € set(d*) [ma (k) = mpa(m(k))];

(f) there is 1 for which (7,1, d*) is a normal triple;
is cofinal in ¢;

When CH is replaced with MA, the notion of a §-generic sequence would be defined
for every § < ¢. Clause (6) would need to be strengthened by allowing p to be any limit
ordinal such that cof (1) < ¢ and by allowing the decreasing sequence of conditions in PP
to be of length cof (11).

Remark 2.11. Suppose S = ((¢f:i <cAa<0),(mpq:a < <0)) is a d-generic
sequence for some limit ordinal § < wy. For every ordinal £ < § let S | £ denote
({(cFri<cha<&),(mga:a<p<E)). Wepoint out that if S [ £ is &-generic for
every £ < ¢, then S is §-generic. To see this we check conditions (1-6) of Definition 2.10.
Conditions (1) and (2) are true because for a fixed o < § we can pick £ so that @ < £ < 6.
Then S | & witnesses that U, and (¢ : i < ¢) are as needed. For (3), (4) and (5c) take
a < <. Thereis £ such that 8 < £ < § and S | £ witnesses (3), (4) and (5¢). For (5a)
and (5b) take « < 8 < v < §. Again there is £ sothat 7 < £ < § and S | £ witnesses
both (5a) and (5b). We still have to prove condition (6), so assume that all the objects are
given as in (6). In this case we also pick £ such that 4 < & < §. Then S [ £ already has all
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the information about the assumed objects. So .S | £ knows that the set of i* < ¢ such that
cl. has the required properties is cofinal in ¢ which implies that (6) is also satisfied in .S.

3. MAIN LEMMAS

In this section we prove several crucial lemmas that will be used in Section 4 for proving
things about the partial order Q° to be defined there.

Definition 3.1. Let (L, <) be a finite linear order. For each ¢ < |L| let L(i,~<) denote
the ith element of (L, <). More formally, if (L, <) is a finite linear order, then there is a
unique order isomorphism o : |L| — L and L(i, <) = o(i) (¢ < |L|).

Lemma 3.2 will be used to prove Lemmas 3.4 and 3.8. It essentially says that the sets
D,,, can be broken into intervals of the form D,,[Ky ny Kmont1), form < n < w, in
such a way that whenever m < m’ < n, the image of Dy, [Kyy/ ny Kip# 1) under mp,
comes after everything in the interval D, [K,, y,—1, K ). The use of the elementary sub-
model M is only for convenience. We just need a way of saying that each D,, diagonalizes
a “large enough” collection of sets from Uf,,. M N U, is a convenient way to specify this
collection. The use of Lemma 3.2 simplifies the presentation of the proofs of Lemmas 3.4
and 3.8. There is no direct analogue of Lemma 3.2 when CH is replaced by MA. So the
proofs of the analogues of Lemmas 3.4 and 3.8 under MA will be less elementary.

Lemma 3.2. Let (U, : n < w) be a sequence of distinct rapid P-points. Assume that
T = (Tmn 1 < m < w) is a sequence of maps in w* such that m, , = id (n < w) and:

(1) Vn <m < wVa € Uy, 1, ,a € Uy];

2)Vn<m<k<w3acUVl€almpn(l)=mmn(mem())];
(3)Vn<m<wIaeUpnVr,y€alr <y= Tmn(@) < mma(y)
Let (E, : n < w) be a sequence such that E, € U, (n < w). Suppose also that f €
w® is increasing and that M is a countable elementary submodel of Hyc\+ containing
Up, :n <w), (B, :n <w), @ and the map f. If D = (D,, : n < w) is a sequence such
that D,, € U, (n < w) and D,, C* A, for every A € U, N M, then there are sequences
(Cphin<w) € M, (F,:n<w) € M, K = (Kjpp:m<n<w) Cwandg € w
such that for every n < w we have Ym < n [K,, > 0], Cy,,F, € U,, C, C E,,
F, = C,nN 7r${+17,,LC'n+1, Vm < m' < nVv € Cp [Mnm(v) = T m(Tn,m (v))],
Vm < nVo,v’" € Cp [ <V = Tpm(v) < 7w (V)] and letting p = (D, K, T) (see
Remark 2.1):

(4) Vm < n 3z € F,NF,(¢'(n)) [Tn,m(2) = Dy(Kpmn — 1)] and if n > 0 then

Vm < n [Kmn > Kmnn-1];

(5) Ym < n [Din[Km n] C 7 (Fn \ Fu(g'(n)))];

(6) Vm < nVv € Cp \ Fr(¢g'(n)) [Tnm(©) > Dy (K — 1)];

(7) Ym < n [Dy[Kp ] N Dy, = 0] and if n > 0, then for every x € AP _,, there is a

unique m < n such that © € D, [Ky n—1, K n);

(8) if n > 0, then define <,,_1 to be the collection of all (x,y) such that z,y € Al _,
and max{z € Fy,_1 : Tp_1m(2) =2} < max{z € Fj,_1 : Tp_1,;m(2) =y} —
where m, m’ < n are unique with the property that © € D, [Kp, n—1, Kp, ) and
Y € Dy [ Ky n—1, Ky n); then <,,_1 is a linear order on Afkp'

(9) 2¢'(n) > L;
(10) if n > 0, then define the following notation: let R,,_, = ’AZ—1‘ and for each
J < Rp_y, let :c;-kl be AP (4, <n-1), let m(n — 1, j) be the unique m < n
such that ac;-“l € Dy [Kpn—1, Kim,n), and let

z}l*l = max {z € Pt Tt mm-1,j)(2) = x?il} ;

then there exists | > f (L. _, + j) such that z}b_l =E,_1(1).
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Proof. First pick a sequence A = (A, :n <m <k <w) € M such that A,, ,, 1 €
U foreachn < m < k < w and 7y, (v) = T n(7km(v)) for every v € A, -
Similarly, pick a sequence B = (B, : n < m < w) € M so that By, ,,, € Uy, for every
n<m<wandVz,y € By [t <y = Tmn(r) < Tmn(y)]. Let us now define

sequence (C}, : k < w) so that for every k < w we have C}, = ExN (ﬂngmgk Anmk) N

(ﬂm<k Bmyk). Note that C}, € Uy, and that C}, C Ej, for every k < w. Moreover,

(C} + k <w) € M. Next, choose C = (C}, : k < w) € M so that for k < w: Cy, € Uy,
Cy C Cy, and Cx(n) > Ex(f(2n)) for every n < w. Let F;, be the set C,, Ny 4y ,,Crpn
(n < w). Note that (F, : n < w) belongs to M. Note also that foreachm < m’ <n < w,
Ch C Apmin. S0V € Cp [Tn,m (V) = Tuns m (Tn, me (v))] as required in the statement
of the lemma. Moreover if m < n, then C,, C B, ,, implying that Yo, o' € Cp [v <
V' = Tpm(v) < Tpm(v')] as needed. Then by the definition of sets D,, (n < w) we
have D, C* ﬂ%)nFm for m > n. Also, for n < w, let Y,, be minimal so that Vm <
n [Dp[Yn] N Dy, = 0].

Now that we have chosen sets C,, and F;, (n < w) we construct, by induction on
n, numbers K, ,, and ¢’'(n) (m < n < w). First let I’ be the least number such that
Do[l'] € Fp and let Koo = I’ + 1. Then define ¢’(0) to be the least [ so that Fy(l) >
Dy (Ko,). Note that properties (4-10) hold for n = 0. Now assume that for every m <
m’ < n we have defined numbers K,, .., and ¢'(m’). We will define K,, ,+1 (m <
n+ 1) and ¢'(n + 1). So for every m < n let X,, 41 be the least number such that
Xmnt1 = Kpn and D [Xon 1] C 7 4q g Frsr, while X4 541 is defined to be
minimal such that Dy, 1[Xp41n41] C Fuy1 = 71 py1 Fogr and X1 ngn > Yig.
Pata* = L + 5 (Xmnt1 — Kmn). Now define K ,, 11 to be the minimal [ such
that | > Xo 41 + 2* and that Do(l — 1) € <01 Tim.0 (Dm[Xmn+1]). Next define
g'(n + 1) to be the minimal | € w with 7,1 0(F,11(1)) > Do(Ko.nt1). Observe that if
RS Fn+1 ﬂFn+1(g’(n+1)), then 7Tn+170(’0) < Do(K07n+1). Alsoifv € Fn+1[g'(n+1)],
then 7Tn+170('0) 2 7rn+170(Fn+1(g’(n + 1))) Z Do(K07n+1). Put G = Fn+1 [g’(n + 1)}
for convenience. Now for 0 < m < n + 1 define K,, 41 as the minimal [ € w so that
Dp[l] C 71, G. We remark that Ko 1 is also minimal such that Do[Ko 1] C
410G To see this, take any w € Dg[Ko ny1]. Since Ko 41 > Xony1, there exists
v € Fny1 with my41,0(v) = w. By the first observation above, v ¢ F,11(g'(n + 1)).
Hence v € G showing that Do[Ko n+1] C 7,,10G. By the second observation above,
there is no v € G with m, 11 0(v) = Do(Ko,n+1 — 1). Hence there is no | < Ko 41
satisfying Do[l] C 7,14 G-

Now we prove that (4-10) are fulfilled for n + 1. We begin with the second part of
(4). Fix m < n + 1. By the definition of Ky ,41, there exists u € Dy, [ X, nt1] such
that 7, o(u) = Do(Kon+1 — 1). We claim v < Dy, (K, n+1). Suppose not. Then
u € Dp[Kpnt1), and s0 u = 741, (v), for some v € G. However m,41,0(v) =
Tom,0(Tn41,m (V) = Tmo(uw) = Do(Kont1 — 1), contradicting an observation of the
previous paragraph. Thus v < Dy, (K n+t1), showing that X, 11 < Ky pg1, for all
m<n-+1.

Before proving the rest of (4), (5), and (6) we make some useful observations. Put
Ym = D (K nt1 — 1), foreachm < n+1. Let m < n-+1 be fixed. First since K, n+1
is minimal so that Dy, [K 4 1] C 744 ,, G, there is no v € G with T, 11, (V) = Y.
Next let w € D, [Ky, n+1]. Then there exists v € G with u = 7,41, (v), and 7, o(u) =
7T77L,O(7Tn+1,m(v)) = 7Tn+1,0(v) > DO(KO,'IL-’,-l)‘ Thus 77m,0(u) > DO(KO,n+1)a for every
U € Dy [Km nt1]- For the final observation, consider some v € F, 1 N Fy,41(¢'(n+1)).
As pointed out before, m,110(v) < Do(Kont1). Now let u = w41 m(v). Then
Tm,0(t) = Tnt1,0(v) < Do(Kon+1). Applying the previous observation to u, we con-
clude that 7,41, (V) & D [Km nt1], forevery v € Fop1 N Fop1(¢' (n+1)).
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Now the rest of (4), (5), and (6) easily follow from the three observations in the previous
paragraph. For the first part of (4), y,, € Dy, [ X, n+1], and so there is v, € F,4q with
Ym = Tn+1,m(Um). By the first observation, v,,, ¢ G. Hence v, € F,11 N Fpp1(g'(n +
1)), as needed. For (5), let u € D,,,[Kp, nt1]. Then u € Dy, [ Xy, 1] and so there is v €
Fp41 with w41 1 (v) = u. By the third observation, v ¢ Fy,11(¢'(n + 1)), as required.
For (6), first note that since v, Fr,41(¢'(n+1)) € Bpynt1, Tnt1,m(Fnr1(g’'(n+1))) >
Ym, and by the first observation, 7,41 1m (Fnt+1(9'(n + 1)) > ypm. Now let v € Cpq.
Then v € By, pt1 and if v > F, 11 (¢’ (n + 1)), then 7,41 1, (v) > Y, implying (6).

For (7) we have Yn+1 S Xn+1,n+1 < Kn+1,n+1v and so Dn+1[Kn+1,n+1] N Dm = O,
for all m < n + 1. The second part of (7) easily follows from the definition of A? and
from the induction hypotheses.

For (8), first consider any x € A?. By (7) applied to n + 1, let m < n + 1 be unique
so that © € D, [Ky ny Kmont1)- By (5) applied to n, there is z € F), with m,, ,,,(2) = .
Also F,, C C,, and s0 7, ,, is finite-to-one on F,,. Therefore max {z € F, : m, (2) = x}
is well-defined. Next it is clear that <, is transitive and irreflexive. We check that it is to-
tal. Let z,y € A? and let m,m’ < n + 1 be unique so that © € Dy, [ Ky n, Kimnt1)
and y € Dy [Kps ny K nt1). We may assume m < m/. If z and y are incomparable
under <, then there exists z € F,, so that m,, ,,,(2) = x and 7,, ' (2) = y. As F,, C Cy,
Tt ;m (Y) = T/ (T, m/ (2)) = Tpm(2) = x. If m < m/, then this contradicts the fact
thatw € HJ, ,,. Therefore m = m’, and since 7/, = id, x = y, implying comparability.

Now we check (9). For each m <n + 1 define H:;ano =Hp, . N D[ Ko ns Xonnt1)

and HY, .\ = H?, 0 D[ X1, Kinni1). Define zg = ’U H” | and 2 =

m,n,l — m<n **m,n,0

Um<n Hppon1|- Itis clear that Hf, , = H}  (UH/,  andthat L) | < L? +xo+1.
Also L? + xy < z*. So to prove (9) it is enough to show both z* < ¢'(n + 1) and
z1 < ¢’(n + 1). For the first inequality, note that | Do[Xo n+1, Ko nt1)| > «*. For each
u € Do[Xo,n+1, Kont1), there exists v € F,41 with m,41 9(v) = u. By (6) applied to
n+1,v € Fhy1(¢'(n+ 1)). It follows that ¢'(n + 1) > x*. For the second inequality,
note first that for each m < nandu € H), , , wegetav € Fopy N Fupa(g'(n+ 1))
with 7,41, (v) = u by applying the same argument. Now suppose u # v/, m,m’ < n,
we Hp v € H oy vv' € Fupr 0 Fypa(g'(n + 1)), Tngim(v) = u, and
Tnt1,m (V') = u/. We would like to see that v # v’. Suppose not. We may assume
m < m/. Since v € Cpi1, ¥ = Tpt1,m (V) = T/ (Tng1,m (V) = Tpr (W), If
m < m/, then this contradicts the fact that u € H, . Hence m = m’, whence u = v’
This is a contradiction which shows that v # v'. It follows that ¢’(n + 1) > 1 as needed.

Finally we come to (10). Fix j < R,. By (5) applied to n, 2" = F,(t}) for some
t% > g'(n). Since <y, is alinear order t7 > g'(n)+j. By (9) applied to n, 2t7 > 2g’(n) +
2j > Lt + j. Now F,, C C, C Cl C E, and F,(17) > C(t7) > En(f(2t7)) >
En(f(Lf + j)) because f is an increasing function. It follows that 27 = E),(I7') for some
5> f(LP + 4), as needed. O

Remark 3.3. Note that for eachn < w, Hf ,, = D,, [Knn, Kpont1); 50 AP 2 0, and so
L} .y > Lf,. Note also that 2 > F,(g'(n)), foreachn <wand j < R,,.

Lemma 3.4 will play an important role throughout the next section. It is essential to the
proof that Q‘S, which will be defined in Definition 4.1, is countably closed. It is also used
in ensuring that U/s is a rapid ultrafilter and that {/s satisfies (3) and (6) of Definition 2.10.

Lemma 3.4. Assume that 6 < ws, cof(§) = w, f € w* is increasing, X C 0 is such that
sup(X) = ¢ and:
(1) the sequence S={{c} :i < cAa <0),(Tgqa:a < B <0)) is §-generic;
(2) there are e € P and mappings (s, : o € X)) such that:
(a) Va € X [§ , set(e) € Ual;
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(b) Va, B € X [a < B = VK € set(e) [15,0(k) = 7p,a(m55(k))]];
(c) forall o € X there are bs o, and 15 o such that (75 o, V5,0, bs,a) is a normal
triple and e < bs o5
(3) there is a decreasing sequence (d; : j < w) of elements of P and a sequence of
mappings (m, : « € X) such that:
(a) Yoo € X Vj < w [rlset(d;) € Ua);
(b) Va,B € X [a < = Tj <wV?keset(d;) [ma(k)=mpa(ms(k))]];
(c) forall o € X there are j < w, Yo and b,, such that (74, Vq, be) is a normal
triple and d; < b,
Then there are d*,e* € P and 7 : w — w such that:
(4) Yn <w3Im > f(n) [e*(n) C e(m)];
(5) Vj < w[d* <d;] and set(e*) = n" set(d*);
(6) Yo € X VK € set(d*) [mo (k) = 75,0(m(E))];
(7) Va € X [r§ , set(e”) € Un];
(8) there is v € w® for which (w, 1, d*) is a normal triple.

Proof. Let (0, :n <w) C X be an increasing and cofinal sequence in 6. For m <
n < w choose jy, ., and L4 (m,n) so that Vk € set(d;, ) [L4(m,n)] [ms, (k) =
75, .5, (s, (k))]. For every n < w pick j(n), bs, and 5, such that (s, ,vs, ,bs,)
is a normal triple and d;,,y < bs, holds by using (3c). Let K 4(n) be minimal such
that d;j(,) <ga@n) bs,. Define a strictly increasing sequence (jy : N < w) by setting
v = max({F(N)}U{jx +1: k< N} U {Jm,n : m<N}). Let Q¥(N) be minimal such
that djN SQd(N) dj(N)7 Vk < N [djN SQd(N) djk] and Vm < N [djN SQd(N) djm,N]'
Define M =max ({K*(N),Q*(N)} U{L¥m,N):m < N} U{MI:k<N}).

For each n < w let K°(n) be minimal such that e <y, bss,. Form < n < w let
L°(m, n) be minimal such that Vk € set(e) [L°(m,n)] [7ss,, (k) = 75, 6., (75,5, (K))]-
For N <w let M§, =max({K°(N)} U{L°(m,N) :m < N}U{M; : k < N}).

The proof of the following claim is simple so we leave it to the reader.

Claim 3.5. Let N < w. The following hold:
(1) Ym <n < NVk € set(e) [MS] [rs.5, (k) = 7s, .5, (75,5, (k)]
(2) Vm <n< NVk e Set(djN) [[Mﬁ,]] [ng(k) = 7T5m5m(71'5n(k))};
(3) Vn < N Vk,l € set(e) [[MJEVH [k <l=msgs, (k) < 5,6, (Z)];
(4) Vn < NVk,l € set(d;y) [{Mﬁ,]] [k <l=ms, (k) <ms, (1)

For every n < wlet B, = mj s set(e) [Mg] Ny set(d;,) [MZ] € Us,. Let M be a
countable elementary submodel of H (26)+ containing S, §, f, and sequences (F,, : n < w)
and (9, : n < w). For n < w choose sets D,, € Us, as follows: D,, C* A for every
A € Us, N M. Note that these sets exist because Us, is a P-point and M is count-
able. Define ¢ € w” by g(n) = max{f(n),t(n),s(n+ 1)}, for each n € w. Note
g € M and that g is increasing. Now Lemma 3.2 applies to the sequences (s, : n < w),
7= (ms5,6, m<n<w), (E,:n<w), D= (D,:n<w)and the function g. Let
(Cpin<w), (Fp:n<w), K=(Kpu,:m<n<w)and (¢’(n) : n < w) be as in the
conclusion of Lemma 3.2. We denote p = <D, K, 7‘r>, numbers m(n, j), numbers R,, and
numbers 27" as in the conclusion of Lemma 3.2.

At this point, for every n < w, we define set I,, = {m <w:L, <m <L/ }.
Clearly, {I,, : n < w} is a partition of w. We also have I, = {L. +j:j < R,}. So
every k < w is of the form L? + j for some n < w and j < R,,. For each n < w and
J < Ry, (10) of Lemma 3.2 implies that 27 = E,, (I}) for some I > g(Lf, + j). Now for
a fixed n < w, (755, ,%s.,,bs,5,) and (75, , s, ,bs,) are normal triples, e <pse bss,,
dj, <pa bs,, En C 755 set(e) [My], and E,, C 7 set(d;,) [M2]. So Lemma 2.9

applies and implies that for each | < w, {; = max{m<w:7rg’5ne(m):{En(l)}} and
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si=max{m<w:my d; (m)={E,(l)}} are well-defined, that (; < {;11, 3 < 3141, and
that §; > M:, 31 > Mff. Now for each j < R,, define CJ’»L = Q; and 5? = 5. It
follows that (7,57 > g(Lf + j). Alsoif j < j+ 1 < Ry, then 2} < 27,4, and so
(¢ < ¢}y and 37 < 3%, Hence for j < Ry, fe(C;‘)| > g(Lh +34) > Ly +j5+1
and ’d(g?)‘ > g(L? + j) > t(Lf + j). Now unfix n. For k < w write k = L + j
and pick arbitrary e*(k) € [e((}i)]k“. Note that this choice of e*(k) (k < w) ensures
that e*(k) C e(m) for m > f(k) as required in the statement of the lemma. Similarly
for I < w find the unique m such that s(m) < [ < s(m + 1) and write m = Lf + j.
Pick d*(I) € [d;, (37)]""" in such a way that for s(m) < <[+ 1< s(m + 1) we have
max(d* (1)) <min(d*(I + 1)). This is possible by already proved |d;,, (3;‘)’ >t(m).

Claim 3.6. For every k < w we have
max(e*(k)) < min(e*(k + 1)) and max(d*(k)) < min(d*(k + 1)).

Proof. For a fixed n < w, if j < j+ 1 < Ry, then ¢} < (' and 37 < 37, and
so max(e(¢}')) < min(e(¢}4)) and max(d;, (37)) < min(d;, (3}41)). Moreover, for a
fixedn <wand j < Ry, if s(Lf +j) <l <l+1<s(LP +j+ 1), then max(d*(l)) <
min(d* (I + 1)) by definition. Therefore it suffices to show that for n < w, j < R,,, and
j' < Rpt1, max(e(¢})) < min(e(¢j ")) and max(d;, (57)) < min(d]n+1(57+1))-

To see the first inequality, we argue by contradiction. Suppose y € e((}'), y" € e((] ntly,
and y < y. As noted above, (/"' > Mg ;. Thus y,y € set(e) HM5+1], and so by (1)
and (3) of Claim 3.5,

T8rt1,0m(n5) (Z '+1) = 7T57’L+1157n(n,j)(ﬂ-5 5n+1(y/)) = 7T5,5m(n,j)(y/) < 7r5,5m(n,j>(y) =

7r5m5m(n,j)(7r5,5n (y)) = T80,6m(n.5) (Z ) = xn <D m(n,5) (Km(n,j),nJrl - 1)'

However z?,*l € Cpt1 \ Ft1(¢'(n 4+ 1)). But then by (6) of Lemma 3.2 applied to
n+ 1 and m = m(n,j), s, ,, 5m(m)(z",+1) > Diynj)(Kmn,j)nt1 — 1). Thisis a
contradiction which proves the first inequality.

The second inequality is also proved by contradiction. So suppose y € d;_ (3?) y €
djn+1(3?+1), and y' < y As noted above, 37 > M and 5“+1 > M, ,. Moreover
dj iy <Qi(nt1) djpr M, > Qd(n+ 1), and MZ,, > M So there exists [ > M
with d;, ., (557) © d (1). Thus o/ € set(d;,..,) [M,,] and g,y € set(d;, ) [M2].
Therefore by (2) and (4) of Claim 3.5,

T8rt1,0m(n.5) (Z;L/+1) = Top41,0m(n.j) (7T6n+1 (y/)) = Tomn.5) (y/) < TS (n.5) (y) =

7T6'7Ly5m(n,j)(7r5n (y)> = T ,6m(n, 7)(2 ) = ZL‘ < Dm(n j)(Km(n,j),n+1 - 1)'

However 75, 1.6,,... Ny Y > Dyin ) (Kn(n,j)nt1 — 1) as pointed out in the previous
paragraph. This is a contradlctlon which completes the proof. (]

So for now we have settled that e* < e and that for every n < w there is m > f(n)
such that e*(n) C e(m). Define 7 : w — w as follows: for every k € w \ set(d*) let
(k) = 0, while for every k € set(d*) let m be unique such that & € d*(m) and define
(k) = set(e*)(m).

Claim 3.7. The sequences (e*(n) : n < w) and (d*(n) : n < w) belong to P and satisfy
the following conditions:
(1) Vj <w[d* < dj] and set(e*) =
(2) Va € X V°Fk € set(d*) [ma(k)
(3) Va € X [, set(e”) € Ua];
(4) There is ¢ such that (7,1, d*) is a normal triple.

v set(d*);
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Proof. First note that e* and d* belong to P. Next, we prove (1). It suffices to prove
that d* < d; , forall n < w. Fix n < w. Take any I > s(L?). Let m be such that
s(m) <1< s(m+1)and n’ and j' < R, such that m = L”, + j'. Note m > L£ and
n/ > n. Then d*(I) C d;,, (3;-’,/) and 3;?,/ > M¢,. As noted earlier 5?,/ >g(Lh, +4) =
g(m) > s(m + 1) > I. So since d; , <wme, d;, . there is I’ > 3?/' > [ so that d*(I) C
dj, (3;-’,/) C dj, (I'), showing d* < ¢y dj,. To see that set(e*) = 7" set(d*) note that
by the definition of = we have that for every n < w holds 7"’ d*(n) = {set(e*)(n)}. So (1)
is proved.

Now we prove (2). First we prove V°k € set(d*) [ms, (k) = ms,s, (m(k))], for every
n < w. Fix n < w and consider any n’ > n and j° < R,. It suffices to show that
for any s(L?, + j') <1 < s(L?, +j' 4+ 1) and k € d*(l), s, (k) = w55, (m(k)). By
definition d*(1) C d;,(3%) and m(k) € e*(L:, + j') C e(ClY). Therefore 75 , (k) =
z?,l = s, (m(k)). Also k € set(d; ,) [M2] and 7(k) € set(e) [Mf,] because C]’.L,/ >
Mc¢, and 3}",’ > M¢,. Thus by (1) and (2) of Claim 3.5, 75, (k) = 75,6, (75 ,(k)) =
75,60 (75,6, (m(k))) = 75,5, (m(k)), as needed. For the more general claim fix o € X
and find n < w so that « < §,. By (3b) of Lemma 3.4, there exist ¢ < w and Lg so
that Vk € set(d;) [Lo] [ma(k) = s, .a(7s, (k))]. Let L1 be minimal with d* <;, d;.
By (2b) of Lemma 3.4 and by the fact that set(e*) C set(e), there is Lo so that Vk €
set(e*)[La][ms5.a (k) = 7s,,.a (75,5, (k))]. Let Ls be so that Vk € set(d*) [Ls] [rs, (k) =
7.5, (m(k))]. Let L = max{Lo, L1, Lo, Lg}. If k € set(d*) [L], then k € set(d;) [Lo]
and w(k) € set(e*)[La]. Soma (k) = 75, o(7s, (k) = 75, o(7s.5, (7(k))) = 75.0(7(k)).
Thus Vk € set(d*) [L] [ra(k) = 750 (7(k))], proving (2).

Now we come to (3). We first show that for each m < w, D,, C* W:;cém set(e*).
Fix m < w. As (K, :m <n <w) is strictly increasing with n, it suffices to show
that for each n > m, Dy [Kmn, Kmont1) C ng,ém set(e*). Letn > m and u €
D [Knn, K ony1) be given. Put m/ =

max{m” <n:m <m" and " € Dy [Kpr p, Ky ng1) (75,06, (W) = ul},

and choose ' € Dy Ky s Kr pg1) With w5, 5 (u') = u. We claim that v’ €
Hﬁl,’n. Suppose not. Then there exist m' < m” < nand v’ € Dy [Kpyr ny Kyt nt1)
with TS, 00,60 (u”) = u'. Now u” € Dy, [Km”,m”] because K,/ < Ky . SO
by (5) of Lemma 3.2 applied to m”, u” € F,,» C Cy,~. By one of the properties of
Cpr listed in Lemma 3.2, w5, 5, (v") = 75, 5., (75, .5, (W) = 75, , .5, (W) = u.
However this contradicts the choice of m/. Thus v’ € H),,, C Af. Soletj < R, be
so that u’ = 7. Note that m(n, j) = m’. Also 2z} € F, C Cy, and so 75, 5,,(2]) =
75,060 (M6, (27)) = 75, 5,,(u) = u. Now if k € e*(L, + j) C e(C}'), then k €
set(e) [My;] because ¢} > My. So by (1) of Claim 3.5, 75 5,, (k) = 75, 5,, (75,5, (k) =
5,6, (2]) = u, showing that u € 7y 5 set(e*). This concludes the proof that D,, C*
w55, set(e). As D, € Us,,, this shows that 75 5 set(e*) € Us,,,, for all m € w. Now
for the more general statement, fix & € X. Find m € w with 6,, > a. By (2b) of Lemma
3.4, there is L so that Vk € set(e*)[L] [ms5,a(k) = 7s,, .o (75,5, (k))]. Put A = set(e*)[L].
Since w55 A€ Us,,, 75 755 A€ U, Henceny  m5s AC g ACTy, set(e’),
implying 7§ , set(e*) € Uy, which proves (3).

For the proof of (4), consider function ¢ : w — w defined in the following way: for
k < wlety(k) = set(e*)(k). Itis clear that (m, ), d*) is a normal triple. O

m?

The last claim proves the lemma. (]

When CH is replaced by MA, the statement of Lemma 3.4 needs to be generalized
as follows. ¢ is allowed to be any ordinal with cof(d) < ¢, and the decreasing sequence
(d;j : j < w) is replaced by the decreasing sequence (d; : j < cof(d)). This version
can be proved under MA by taking a suitably generic filter over a poset consisting of
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finite approximations to d*, e*, and 7 together with some finite side conditions. The exact

definition of this poset can be formulated by examining the proofs of Lemmas 3.2 and 3.4.
Lemma 3.8 will be used in the proof that the poset Q° is countably closed. The require-

ment in Lemma 3.2 that F,, = C,, N 7!/ +17nC’n+1 will be used crucially in this proof.

Lemma 3.8. Let (U, : n < w) be a sequence of distinct rapid P-points. Assume that
(Tpm :m < n <w) CwY is a sequence so that Ty, , = id (n < w) and:

(1) Ym <n < wVa € Uy [, 0 € Up);

(2) Vm<n<k<wdacUVl€ampm(l)=mnm(men())];

(3) Ym<n<wdacl,Vr,y €alx <y = Tpm(®) < Tnmy)
Then for every e € P there is a sequence of maps in w®, (7, : n < w), satisfying:

(4) ¥Yn < w 7! set(e) € Uy);

(5) ¥Ym <n < wV®k € set(e) [mm (k) = Tnm(mn(k))];

(6) for every n < w there are ¥, € w* and b, € P such that e < b, and that

(s ¥, by) is a normal triple.

Proof. Define E;, = w, for every k < w. Let M be a countable elementary submodel
of Hzey+ containing @ = (T, : m <n <w), Uy :n <w). Form < w, let D,,, €
U,, be such that D,,, C* A for every A € U,, N M. Now Lemma 3.2 applies to M,
function f = id, sequences 7, D = (D,,, : m < w), (U, : n < w) and (E,, : n < w). Let
sequences (F, :n < w), (Cp, :n <w), (¢'(n) :n<w)and K = (K, :m <n <w)
be as in Lemma 3.2. Denote p = <D, K, 7‘r>, Ry, 23, 7 and m(n, j) (j < Ry) as in the
conclusion of Lemma 3.2.

For each n < w, define I,, = {L? + j : j < R,}. Recall from the proof of Lemma
3.4 that (I, : n € w) is an interval partition of w. Fix m < w. Forn < mand j <
R, define ¢,,,(Lf + j) = 0, while for m < n and j < R, define 9,,,(L2 + j) =
7rn7m(z;-l). Thus 1, € w* and we claim that it is increasing. It suffices to consider the
following two cases. Case 1 is when n < w, j < j' < R,, and we wish to compare
Ym (L2 + 3) and 1, (L + j'). If n < m, then both these values are 0. If m < n, then
Vm(Ly +7) = Tnm(2]) < Tnm(2]) = ¥m (L) + j') because 27 < 2% and because
27, 25 € Cp. Now we come to case 2, which is when we wish to compare ), (Lf, + j) and
Y (Lh 1 +7"), forsome n < w, j < Ry, and j' < Ry1. First, if n. < m, then t,,, (L, +
j)=0< wm(LfLJrl + j'). So assume that m < n. Since 2] € Fy, there exists z €
Chry1 With mp 41 0 (2) = 27, By a property of Cy, 41 from Lemma 3.2, Tpt1,m(n,j)(2) =

Wn,m(n,j)(ﬂ-n-‘rl,n(z)) = Wn,m(n,j)(zgl) = x? < Dm(n,j) (Km(n,j),n+1 — 1). It follows
from (6) of Lemma 3.2 applied to n + 1 that z < Fy,41(g'(n + 1)) < 27" Since 2" €
Cn+1’ ’/Tn,m,(zg‘l) = '/Tn,m(’frn—i-l,n(z)) = 7Tn+1,m(z) S 7Tn+1,m(Z;L/+l)- So Q;Z)m(Lz +
J) = Tnm(2}) < 7rn+17m(z;1,+1) = m(Lh 1 + j'). Thus we have proved that 1y, is
increasing.

Now for each m < w, define m,, € w* as follows. Let k € w. If k ¢ set(e), then
set T, (k) = 0; else let | € w be unique such that & € e(l), and set 7, (k) = ¥, ().
We check that (4)—(6) are satisfied. We begin with (5). Fix m < | < w. Consider
any k € set(e) [L7]. Then k € e(Lf, + j), forsome | < n < wand j < R,. So
T (k) = Ym(Lh + J) = mnm(2}) and m(k) = (L) + j) = mu(2]). Since 27 €
C,, wnﬁm(z;b) = m,m(ﬂn,l(zf)). Therefore, 7, (k) = ﬂn,m(z?) = 7rl7m(7rn7l(zjn)) =
71,m (m(k)), as needed for (5).

Next we prove (4). Fix m < w. We will show D,,, C* 7}/ set(e). As the sequence
(Km,n : m < n <w) is strictly increasing with n, it suffices to show that for each n > m,
DK, Kimont1) C 7 set(e). Let n > m and w € Dy [Kpy pn, Kpnont1) be given.
Apply the same argument as in the proof of (3) of Claim 3.7 to find m’ and «’ so that
m < m' < n, v’ € Dy [Ks s Kyt ny1)s T (W) = u, and w’ € H, - C AP Let

J < Ry be such that 277 = u'. Note that m(n, j) = m'. Also 2} € F, C C,. So by
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a property of C,, from Lemma 3.2, ﬂnym(zj’-b) = ﬂm/,m(wn,m/(z?)) = T/ m(u) = u.

Now if k € e(L}, + j), then since m < n, by definition, 7y, (k) = 7, (2}) = u. Thus

u € ), set(e). This proves D,, C* 7}/, set(e), which proves (4) because D,,, € Up,.

We still have to prove (6). Fix m < w. We have already defined v,,, and proved that it
is increasing. Let b,,, = e. By definition of 7, 7,,,by (1) = {¥ (1)}, for each I < w, and
Tm(k) = 0, for all k € w \ set(b,,). Also ran(t,,) is infinite because 77/, set(e) € Uy,
and 7}/ set(e) C ran(t,,). Therefore (7., ¥m, by) is a normal triple and e < b, as

needed. O

In the context of MA, the statement of Lemma 3.8 will be modified as follows. The
sequence (U, : n < w) will be replaced with the sequence (U, : o < A), where \ is a
cardinal < ¢. Moreover each U, will be assumed to be a rapid P,-point. And, of course,
there will be a map 73 o, for each o« < § < A. The sequence (m, : n < w) in the
conclusion of Lemma 3.8 will be replaced by the sequence (m, : « < A). This version
can be proved under MA by taking a suitably generic filter over a poset consisting of finite
approximations to the sequence (7, : a < \) together with some finite side conditions.
Its exact definition can be gotten by looking at the proofs of Lemmas 3.2 and 3.8.

The next lemma will also be used in the proof that the poset Q° is countably closed. It
is like a simple special case of Lemma 3.4 in spirit, but does not directly follow from the
statement of Lemma 3.4.

Lemma 3.9. Let U be a rapid P-point, ™ a mapping in w* and (d,,, : m < w) a decreasing
sequence of conditions in P such that 7" set(d,,) € U for every n < w. Suppose that there
are b € P and iy € w” so that (w,,b) is a normal triple and dy < b. Then there is d € P
such that " set(d) € U and d < d,, for every n < w.

Proof. First we define sequence of numbers ny (kK < w) as follows: ng is minimal such
that dy <., b, while ny; = max {l, ny} for I minimal such that dj 11 <; di. By Remark
2.6(2) we have dj, <, b, di, <., d; for | < k and consequently set(dyi1) [ng+1] C
set(dy) [ni] for k < w. Let Cy, = 7" set(dy,) [ni] for k < w and notice that Cy 1 C Cy
and C € U for k < w. So since U is a rapid ultrafilter, by Lemma 2.3, for every k£ < w
there is Dy, € U such that for every n < w there is m > 2(n + 1) such that Dy(n) =
Cj(m). Because U is a P-point there is D € U such that D C* Dy, for every k < w
and D C Dy. For every k,l < w define set F* = {m < w : 7”dy(m) = {D(I)}}. By
Lemma 2.9, if D(1) € C, then a} = max(F}) and 6 = min(F}* \ ny,) are well defined.
For a fixed k and I; < I3 such that D(l1), D(l2) € Cj, again by Lemma 2.9, we have
np < 6f < af . Also, if [y <l <w, k1 <ky <w, D(I1) € Dy, and D(l3) € Dy, then it is
easy to see that max(d, (/:[fll )) < min(dg, (,H;Zz)) Now, by induction on k, we construct
numbers g(k) and sets d(m) for m < g(k) so that for k < w:

ey Ils(k) > g(k);

@ Dlg(k)] € Dy;

(3) if k > 0then VI € [g(k — 1), g(k)) [d(1) € [dr—1(xy 1))

(4) if k>0 then g(k)>g(k — 1) and Vi < g(k) — 1 [max(d(l)) <min(d(l + 1))].
Let g(0) = 0 and note that (1-4) are satisfied. So fix k € w and assume that for every
m < k numbers g(m) are defined, and that for every | < g(k) sets d(I) are defined.
Let X}, be the minimal number such that X > g(k) and D[X)] C Dg41 and define
g(k + 1) = 2X. First note that since X, > g(k) we have that g(k + 1) = 2X}, > g(k).
Since by inductive hypothesis D[g(k)] C Dy and n’;( k) 2 g(k), Lemma 2.9 implies that
for g(k) <1 <1’ < g(k+ 1) we have nf < nf. So we can pick d(l) € [dy(af)]"*?
for g(k) <1 < g(k + 1). Now we prove that (1-4) hold. To prove (1) note that by the
choice of X}, we know that D[ X}, g(k + 1)) C Dg41. So D(g(k + 1)) = Dgy1(m) for
some m > g(k+ 1) — X = Xj. This implies that D(g(k + 1)) = Cx1(m’) for some
m’ > 2m > 2X;, > g(k+1). Now by Lemma 2.9 applied to Cy.1, di1 and (7,1, b) we
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have ﬂ’;?ﬁrl) > g(k + 1). Condition (2) follows from the fact that g(k + 1) = 2X};, > X},
and D.[Xk] C Dyyi1. Condition (3) holds by construction. To see that (4) is true we
distinguish three cases: either [ > g(k) —1lorl < g(k)—1lorl = g(k)—1.Ifl < g(k)—1
then it follows from the inductive hypothesis and the fact that g(0) = 0. If [ = g(k) — 1
then because g(k — 1) < g(k) we have g(k) — 1 > g(k — 1) so k > 0. By (2) applied to
k — 1 and k we know D(g(k) — 1) € Dy_; and D(g(k)) € Dy, so the statement follows
from the observation in the first paragraph that max(dk,l(ﬂl;(_kﬁfl)) < min(dy, (,Z[];( K))-

If I > g(k) — 1 then it follows from the facts that o}’ < af ;. O

4. ADDING AN ULTRAFILTER ON TOP

In this section, for a given § < w2, we introduce the poset for adding a rapid P-point U
together with a sequence of maps (75, : @ < §) on top of an already constructed J-generic
sequence of P-points (U, : @ < §) and Rudin-Keisler maps (73 : @ < 8 < §). So fix a
§ < wo and a d-generic sequence S = ((c : @ < I NP < J),(mg,o : @ < < §)) for the
rest of this section.

We briefly explain the idea behind the definition of Q° given below. We would like a
generic filter for Q° to produce two sequences C' = (c? : i < ¢) and 7@ = (75,4 : a < §)
which, when added to S, will result in a § + 1-generic sequence. Conditions in QY are
essentially countable approximations to such objects. The first coordinate of the condition
q will be an element of C, and the fourth coordinate fixes 7 on a countable subset of ¢.
Clauses (4a), (4b), and (4c) below say that the maps that have already been determined by
q work in accordance with clauses (5a), (5b), and (5¢) of Definition 2.10. Clause 3 below
says that X, which is the countable set on which 7 has been fixed, always has a maximal
element unless X, is cofinal in §. This assumption will simplify some arguments.

Definition 4.1. Let Q° be the set of all ¢ = {c,, Vg, Xg, (Tg.a : @ € X,)) such that:
(1) cq €Ps
(2) 74 <03
(3) X, € [8]=¥ is such that v, = sup(X,) and v, € X, iff v, < &;
4) mg,o (a € X,;) are mappings in w* such that:
(a) 7y ,set(cy) € Uas
(b) Vo, f € Xy [a < B =Yk €set(cq) [1g,0(k) = 78,0 (mq,8(K))]];
(c) there is ¥4, € w* and by o > ¢4 such that (7 o, ¥g.q,bg,«) is @ normal
triple;
Let the ordering on Q° be given by: ¢; < qq if and only if

cq < cqo and Xy, D X and for every o € Xy, g0 = Tg,a-

In the situation where CH is replaced by MA, Q° would consist of approximations of
size < ¢ instead of countable ones. Thus X, would be a set of size less than c.

Remark 4.2. It is easy to check that <(@5, < > defined in this way is a partial order. Note
also that Q% # 0. Namely, if § = 0, then we can take ¢ = (c,0,0,0) for any ¢ € P.
If 6 # 0, then let ¢ = (cq,7q, Xq, (Tq,a : @ € X)) be such that: ¢, is arbitrary in P;
v = 0; Xg = {0}; mg 0 € w* is given by: for k € set(cq) let mq,0(k) = n for k € ¢4(n),
while 74 o (k) = 0 otherwise. First note that conditions (1-3) of Definition 4.1 are satisfied.
Because 7, o set(c,) = w we know that (4a) holds. It is also easy to see that (7,,0,1d, ¢,)
is a normal triple by definition of 7, o so condition (4c) is true. To see that condition (4b)

is also true note that 7 o = id by Definition 2.10(5). So ¢ € Q°.

Remark 4.3. Let ¢ = (¢, 7y, Xg» (Tga s @ € X)) € Q°. Let ¢, € P be such that
¢y < ¢q. Then ¢’ = (cg,vq, Xy, (Tq.0 : @ € X)) satisfies conditions (1), (2), (3), (4b)
and (4c) of Definition 4.1. Moreover, if ¢ also satisfies Definition 4.1(4a), then ¢’ € Q°
and ¢’ <gq.
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Instead of forcing with the poset Q°, we would like to build a sufficiently generic filter
over it in the ground model itself. Q° needs to be countably closed for this to be feasible.
We prove this fact next. The next lemma is the crux of the whole construction. We briefly
sketch the idea of its proof. So suppose that (g, : n € w) is a decreasing sequence of
conditions in Q°. We want to find a lower bound. There are four natural cases to consider.
We start with the simpler ones. The most trivial case is when 4 = 0. Then we just have
a decreasing sequence in P and bounding them is easy. Next, it could be the case that for
all n € w, 7q, = 7, for some fixed v < §. Then we essentially have a fixed ultrafilter
U, a descending sequence in IP, and a fixed map taking each element of this sequence into
U,. We wish to find a bound for this sequence in P whose image is still in /. Lemma 3.9
is set up precisely to handle this situation, so we apply it. The third case is when the 7,
form an increasing sequence converging to §. Then we have a decreasing sequence in PP,
some countable cofinal Y C J, and a sequence of maps taking members of the decreasing
sequence in [P to various ultrafilters indexed by Y. We would like to find a lower bound
for this decreasing sequence in P whose images under each of the given maps are in the
corresponding ultrafilters. This is almost like the situation in Lemma 3.4, expect that e and
its associated maps are missing. So we first apply Lemma 3.8 to find these things, and then
apply Lemma 3.4 to them. The final and trickiest case is when the 7,, form an increasing
sequence converging to some ;4 < J. Then the ultrafilter Z{,, must have been constructed
to anticipate this situation. This is where clause (6) of Definition 2.10 enters. We have a
decreasing sequence in [P, a countable cofinal Y C p, and a sequence of maps as before.
We would like to find a lower bound for this decreasing sequence in P as well as a new
map associated with I/, in such a way that the images of this lower bound under all of the
maps, both old and new, are in the corresponding ultrafilters. Clause (6) of Definition 2.10
says precisely that this is possible.

Lemma 4.4. For any decreasing sequence of conditions (g, : n<w) in Q° there is ¢ € Q°

so that ¥n <w(q < qy). Moreover, if Vn < w[X,, ,, =X,,], then X,=X,,.

Proof. Assume that we are given a decreasing sequence of conditions (g, : n < w) in Q°,
ie. gni1 < g forn < w. DefineY = J,_, X, and v = sup(Y). Note that Y € [5]=~.
Also, if Vn < w [Xg, ., = X, ], then Y = X, . So the moreover part of the lemma holds
as long as we find ¢ such that X, = Y. We will consider two cases: either v € Y or

TEY.

Case I: v € Y. Then there is ng < w such that v € X, . So vy = 74, and note that
v < ¢ because X, C 4. Notice that g, ,, > 74, forevery n < w, s0 v, = 7g,, for
every n > ng. Also, by Definition 4.1 we know that v € X, forn > ng. We apply
Lemma 3.9 in such a way that: d,, in Lemma 3.9 is ¢;, ,,,  (n < w); U is Uy; T is Tq, 43
Y i1, and bis by, . Itis easy to see that the hypotheses of Lemma 3.9 are satisfied.
So there is d € PP such that 7”7 set(d) € U, and d < d,, for every n < w. Now we
will prove that the condition ¢ = (d,7,Y, (74« : @ € Y)) is as required, where 7y o is
Tgpsng,o fOrany n < w such that o € Xy, . . To show that ¢ € Q7 note that conditions
(1-3) of Definition 4.1 are clearly satisfied. To prove Definition 4.1(4b), fix «, 5 € Y such
that o < 3. There is n < w such that o, 8 € X, . Since set(d) C* set(cq, ,.)
and mg.q = g, i,.a and Tgs = 7, ., 8, by Definition 4.1(4b) for ¢pn,4, we have
Vok € set(d) [mq,a(k) = 75,0 (7q,5(k))] as required. To see that Definition 4.1(4a) is true
take arbitrary 3 € Y. First notice that - set(d) € U,. So (4a) is true in case 5 = 7.
If B < v consider the set Z = /] 5(7y  set(d)). It belongs to U by already proved (4a)
for v and Definition 2.10(5a). However, by already proved (4b) we have Z C* 7,/ 5 set(d)
which implies that 771’1'7 3 set(d) € Ug. We still have to prove (4c). Take arbitrary o € YV
and letn < wbe such that« € X, . We know that (g, . a»Vgny 0.0 Dgnysnia) 152
normal triple, thatd < ¢, ., < bg, ., o andthat Ty o =7, ., a-S0d <b .« and

<7Tq,ow Vg 4nsas bqno+ma> is as required.

dng+n
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CaseII: v ¢ Y. Therefore Y C +. In this case either ¥ = 0 or y is a limit ordinal such that
cof () = w. So there are three subcases: either v = 0 or vy < § and cof(y) =wory =46
and cof(y) = w.

Subcase Ila: v = 0. Since Y C v we have Y = 0, so X4, = 0 and 74, = 0 and
Yoo & Xgo- S0 0 = 74, = 0. In this case all the conditions ¢, (n < w) are of the form
qn = (cq,,0,0,0). So it is enough to construct condition ¢, < ¢, (n < w) because in
that case ¢ = (c4,0,0,0) will satisfy ¢ < g, for every n < w, and also the moreover
part of the lemma. For n < w let k,, be such that ¢y, ,, <g, c,,. Define mo = 0 and
Mpy1 = max {k,, max(cy, (My)) + 2} forn < w. Let ¢g(n) = ¢q, (Mmy) forn < w. Itis
obvious that ¢, € Pand ¢4 < ¢, for every n < w.

Subcase IIb: cof(y) = w and v < §. We apply Definition 2.10(6) as follows: p is v, X
isY and d, is ¢4, (n < w). For o € Y let n < w be minimal such that o € X, . Then
we consider 7, to be mg, o, Pq to be 9, o and b, to be by, - note that if m < n then
set(cq,) C* set(cq,,), 80 T, o set(cy, ) € Ua, while if m > n, then 7y, o = 7y,, o
and Definition 4.1(4a) implies 7 , set(cy, ) € U, and so Definition 2.10(6a) holds;
Definition 2.10(6¢) is true because (mq, ¥, be) is a normal triple and d,, = ¢4, < by, o =
by ; to show that Definition 2.10(6b) is satisfied, pick o, 3 € Y such that o < S, letn < w
be minimal such that o € X, , let m < w minimal such that 8 € X, and assume n < m
(case m < n is symmetric). Then o, 8 € X, so according to Definition 4.1(4b) for ¢,
we have V°k € set(dy,) [7q,,.a(k) = 75.a(7q,, s (K))].

Hypothesis of Definition 2.10(6) is satisfied as explained above. So there are i* < ¢,
d* € P and 7,v € w* which satisfy the conclusion of Definition 2.10(6). Now define
condition ¢ = (d*,v,Y U{y},(mg.a : @« € Y U{v})), where for a € Y, 7y o is 7y, o
for the minimal n < w such that a € X, while 7, ., is 7. When we prove ¢ € Q° it will
follow easily that ¢ < g, for n < w. So we check conditions (1-4) of Definition 4.1. The
only non-trivial condition is (4). First we show (4b). Take any «, 8 € Y such that o < f5.
There are two cases, either 8 = «y or § # ~. If 8 = =, then by Definition 2.10(6¢) we have
V> e set(d*) [mg,a(k) = my,a(mq(k))] as required. If 8 < +, then pick n < w such that
a, B € X,,. Then since set(d*) C set(cy, ), by Definition 4.1(4b) applied to ¢, we have
Vok € set(d*) [mq,a(k) = m8,a(mq,5(k))] as required. Next we prove (4a). Let o € Y.
If a =+, then by Definition 2.10(6d) we have 7 set(d*) = set(c).) € U,. If a < 7,
then by already proved (4b) we have «// , (7, set(d*)) C* =/, set(d*). This together
with Definition 2.10(5a) gives 7, , set(d*) € U, as required. We still have to prove (4c).
Take arbitrary o € Y. If a = , then (7 -, 1), d*) is itself a normal triple. If v < 7 let
n < w be minimal such that & € X, . Then (74 o, Vg, a;bg,.o) is @ normal triple and
d* < cq, < by, .« as required.

The situation from the moreover part of the lemma does not occur in this subcase. To
see this, suppose otherwise. Then Y = X, and v = ~,,. Since v < 4, by Definition
4.1(3) v = 74, € Xy, C Y, acontradiction to Case II.

Subcase Ilc: cof(y) = w and v = 4. Choose (v, : n < w) such that sup {v, : n < w} =
0, and v, < “Yp41 and v, € Y, for every n < w. Now we apply Lemma 3.8 as follows:
Uy is U, (n < w) - note that the U, ’s are distinct rapid P-points; m,, y, is 7, ~, (0 <
m < w) - note that by Definition 2.10(5) conditions (1-3) of Lemma 3.8 are satisfied.

As we have explained above, hypothesis of Lemma 3.8 is satisfied, so there are e € P
and maps 75 4, (n < w) such that

(1) Vn <w[rg., set(e) € Uy, ];

(2) Vn <m < wV>®k € set(e) [(75,, (k) = T, 7 (75,4, (K))]s

(3) forevery n < w there are vs -, and bs ~,, such that (s ~,,, Vs ~,. , s, ) is a normal
triple and e < bs -, .

We will apply Lemma 3.4 as follows: d,, is ¢q, forn < w, eise, dis d and f = id -
note that cof(§) = w; X is {7, : n < w} - note that 6 = sup(X) as required in Lemma
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3.4; the 75 o are 75, for & € X - note that Lemma 3.4(2) is true by (1-3); for n < w,
Ty 18 Ty vns Oy 18 bgo s Wy, 18 Vg, 1y, for the minimal m < w such that v, € X, ..
We have to show that Lemma 3.4(3a-3c) are satisfied. First we prove (3a). Fix n < w and
let m < w be minimal such that v,, € X, . We will show that Vj < wln] set(c,;) =
! set(cq,) € U,,]. There are two cases: either j < m or j > m. If j < m, then

sg&c?) C* set(cy; ) and by Definition 4.1(4a) applied to g, 7, ., set(cy;) € Uy, . If
j > m, then~, € X, and 7y, 5, = T, ~,: 0 We have that @) _ set (cq,) € U, .
Next, we prove (3b). Fix n < m < w. Let k¥ < w be minimal such that v, € X,
and [ < w minimal such that ,,, € X,,. Define j = max {k,l}. Then v,, v, € X,
and 7y, ~, = Tq; ., and my, 4. = Ty, 4, By Definition 4.1(4b) applied to q; we have
that V°k € set(cy;) [Tq; 7, (k) = Ty yn (Tg; 4 (K))]. Hence j witnesses (3b). Finally
for (3¢), fix n < w and let m < w be minimal such that v, € X, . Since gy, satisfies
Definition 4.1(4c) we know that ¢,,, < bq,, ~, and (g, v.s Vg vn> Ogm,ve ) 1S @ NOrmal
triple. So (3c¢) is witnessed by j = m.

As explained above, the assumptions of Lemma 3.4 are satisfied, so there are e*, d* € P
and 7,1 € w® which satisfy conditions (4-8) in the conclusion of Lemma 3.4. Consider
g =(d*,0,Y,(mga: v €Y)), where for « € Y, my o = 7g,, o for the minimal m < w
such that a € X, . Note that for eachn < w, 7, = 7.+, . If we prove that ¢ € Q? it will
follow easily that ¢ < g, for n < w and that g satisfies the moreover part of the lemma. So
we check the properties (1-4) of Definition 4.1. Conditions (1-3) are clearly satisfied. We
prove (4a-4c). First we show that (4b) is true. Let a, B € Y be suchthata < . Letm < w
and k£ < w be minimal with o« € X, and 8 € X, respectively. Put | = max{m, k},
and note that 7y , = 74, o and Ty 3 = 74 3. So by definition 4.1(4b) applied to ¢; and
by the fact that set(d*) C* set(cy,), Vk* € set(d*) [mg,o(k*) = mg,a(mq,8(k*))], as
required. Now we prove (4a). Fix o € Y, and let n < w be such that ,, > «. Note that
w5, set(e*) € U, and that 7y set(e*) C* 7 set(d). Thus m; , set(d*) € U,,,,

and so . set(d*) € U,. By (4b), 7l my . set(d*) C* m ,set(d"), whence

7 . set(d*) € U, as needed. Finally for (4c), fix @ € Y and let m < w be minimal such

q,o

that « € X, . Then setting by o = by, .« and Vg o = Vg, .« fulfills (4c). O

Q?° is required to be < ¢ closed when carrying out the constructing under MA. This can
be proved in the same way as Theorem 4.4 by using the appropriate generalizations of the
lemmas from Section 3 and the regularity of ¢, which follows from MA.

We next turn towards showing that various sets are dense in Q°. These are the dense
sets we will want to meet when building our “sufficiently generic” filter for Q°. Meeting
these dense sets will ensure that the sequences (¢! : i < ¢) and (75, : a < &), which
we intend to read off from the generic filter, will satisfy the conditions of Definition 2.10
when they are added to S. The first density condition states that for each ¢ € Q°, there is a
¢’ < g such that ¢, is a “fast” subsequence of ¢,. This is needed to ensure that U5 is rapid,
and it will also play a role in ensuring that it is an ultrafilter.

Lemma 4.5. For ¢ € Q° and strictly increasing f € w® there is ¢ < q such that X, =
Xy and that for every n < w there is m > f(n) so that ¢y (n) = cq(m). Moreover, there
is ¢ < q' such that for every n < w we have cy:(n) € [y (n)]" 1.

Proof. We first show how to get ¢’. We will distinguish two cases: when 7, = ¢ and when
Vg < 0.

Case I: 7, = §. We know that X, C §, sup(X,) = v, = 6 and | X,;| < w, so either § = 0
or ¢ is a limit ordinal with cof(0) = w.

Subcase Ia: v, = § and § = 0. In this case ¢ is of the form (c,, 0,0, 0). For every n < w,
let ¢y (n) = ¢4(f(n)). Then ¢y € P because f is strictly increasing. Also it is clear that
¢q < ¢q4. Consequently ¢’ = (cy/,0,0,0) < ¢ is as required.
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Subcase 1b: 7y, = ¢ and cof (§) = w. We apply Lemma 3.4 in such a way that: e is ¢, and
0is 0; dy, 18 ¢q for n < w; fis f; X is X4; maps m, are maps mq o (¢ € Xg); maps ms o
are maps 7, , (o« € X,). The conditions of Lemma 3.4 are clearly satisfied. Hence, there
is e* <q ¢4 such that for every n < w there is m > f(n) so that e*(n) C cq(m). We will
construct numbers k,, by induction on n so that for every n < w there is m > n so that
e*(m) C cq(ky) and that set(e*) C U, ., cq(kn). Let ko be such that e*(0) C ¢ (ko).
Now assume that numbers k,,, have been chosen for every m < n, and define k,,;1 as
follows: let I be maximal such that e*(I) C ¢4(k,) and define k,, 41 as the unique number
such that e*(I + 1) C cq(kn+1). Now for every n < w define ¢y (n) = cq(ky,). We will
prove that the condition ¢’ = (¢g/, 0, Xg, (g0 : @ € X)) is as required. Since for every
n, e*(n) C ¢q(m) form > f(n) we have that k,, > f(n),soVn <w 31 > f(n) ¢y (n) =
cq(1), as required in the statement of the lemma. By Remark 4.3, in order to prove ¢’ € Q°
and ¢’ < ¢ it is enough to prove that ¢ satisfies Definition 4.1(4a). So pick o € X,. Since
set(e*) C U<y Cq(kn) = set(cq) we know that ] , set(e*) C*  , set(cq ), but since

o o Set(e”) € Uy we have mj,  set(cy) € Uy, as required.

Case II: vy, < 4. Note that by Definition 4.1(3) v, € X,. Let ng be such that c¢; <, by +,-
Then a = w;’ﬁq set(cq) [no] € U,,. Now by Lemma 2.9, for each n < w, m, =
max{m < w : m, cg(m) = {a(n)}} is well-defined and m,, < Mpy1. As Uy, is
rapid, there is Y € Z/{,Yq such that Y C a and for each n € w, there is {,, > f(n) such
that Y'(n) = a(l,). Now it is clear that for each n € w, my, > I, > f(n). Define
cg'(n) = cq(mu,). Itis clear that ¢i € P and that mj, set(cy) =Y. So by Remark 4.3,
we will finish the proof by showing that ¢’ = (cy/, 74, Xq, (Tg.a : @ € X)) satisfies Defi-
nition 4.1(4a). So let « € X,. We know that 7 . set(cy) =Y € U, son] Y € Us.
Now we have that 7y , set(cq) =" 77y (7, set(cq)) =75 Y € Uy as required.

To get ¢, define ¢, as follows: for every n < w pick an arbitrary ¢, (n) € [cy (n)]" .
This is possible because |cy/ ()] > n+1. Let ¢” = (cq7, Vg, Xq, (Tq,a : @ € Xg)). To see
that ¢’ € Q‘5 note that conditions (1-3), (4b), and (4c) of Definition 4.1 are clearly satisfied.
Condition (4a) holds because for every a € X, 7, set(cqr) =* my , set(cyr). O

The next lemma ensures that for any given X € P(w), every condition in Q° has an
extension that “decides” X. This will make {/5 into an ultrafilter.

Lemma 4.6. For every q € Q° and for every X € P(w) there is ¢ < q such that
Xy = X, and that set(cy) C X orset(cy) Cw\ X.

Proof. In the same way as in the proof of Lemma 4.5 we distinguish the following cases:
either v, = 6 = 0 or 7, = ¢ and cof(§) = wory, < 4.

Case I: 74 = 6. As already mentioned this case has two subcases.

Subcase Ia: v, = ¢ = 0. In this case ¢ is of the form ¢ = (c¢,;,0,0,0). Fori = 0,1
consider the sets X; = {n <w:|cg(n) N X' > (n+1)/2}. Note Xo U X; = w so
either Xy or X, infinite. Assume without loss of generality that X is infinite. Then
leg(Xo(2n 4+ 1)) N X| > n + 1 for every n < w. Define ¢,y € P as follows: for n < w
let ¢y (n) = [cg(Xo(2n + 1)) N X]"*L. Tt easy to see that ¢,; € P and ¢y < ¢,. So for
¢ = (cg,0,0,0) we have ¢ < g and set(c,/) C X. If we assumed X is infinite, then we
would obtain set(cy) C w '\ X.

Subcase Ib: v, = ¢ and cof(d) = w. First according to Lemma 4.5 there is ¢’ < ¢ such
that X,, = X, and that for every n < w there is m > 2""! such that ¢,/ (n) = c,(m).
Note that this implies that for every n < w we have |c, (n)| > 2", Let us consider two
sets A; = {n <w: |cg(n) N X' >2"} (i = 0,1). Fix a € Xy. Because ¢ € Q° we
have 77(’1’,)& set(cq) € Uy So since Ag U A; = w we have that

W;I/,a (Uner Cq' (TL)) U 71—(/1/’,04 (UneAl Cq' (n)) € Z/fa
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Since U,, is an ultrafilter, there is i, € 2 such that 7}, (Une A, Cq (n)) € U,. Now
that we have defined i, for every a € X, pick ordinals 8,, € X, so that the se-
quence (3, :n < w) is strictly increasing and cofinal in 6. There is K € [w]“ and
i € {0,1} so that ig, = i for every n € K. Now pick any 8 € X,. Because K
is infinite and (3, : n < w) is cofinal in ¢, there is n € K so that 3, > B. We know
that 77, 5 (U,ea, ¢ (n)) € Ug, . But according to Definition 2.10(5a) and Definition

4.1(4b)we have
5 (Unea, car () 27 74 5 (Wclz/’,ﬂn (Unea, e ("))> €Us

which shows that for every 8 € X, we have that 7/, 5 (U,,c 4, ¢o'(n)) € Up. Now de-
fine d € P as follows: for every n < w pick arbitrary d(n) € [cy(Ai(n)) N X"TL
The sequence d = (d(n) : n < w) belongs to P because A; was chosen in such a way
that for n < w we have |cy(4;(n)) N X*| > 2" > n + 1. Finally, we will show
that ¢/ = (d, V¢, Xq, (Tg.a 1 @« € X)) i8 as required (note Xy» = Xo = X). Itis
enough to prove that ¢ € Q°, because then ¢” < g and set(c,+) = set(d) C X° eas-
ily follows. By Remark 4.3 it is enough to show that Definition 4.1(4a) is satisfied. We
show that 7)), 5 set(d) D* 7}l 5 (Unea, ¢q(n)) € Up holds for € X, Consider the
set O = 7l 5 (Unea, ¢ (n)) \ 7y gset(d). Let m < w be such that ¢y <p, by p.
Note that for any n > m we have 7, zd(n) = 7 scq(Ai(n)). This implies that

Ccnlg (Un<A1(m) cq/(n)) which shows that |C| < w as required.

Case II: 7, < 6. Let ¢’ < ¢ be such that X,; = X, and that for each n € w, ¢y (n) =
¢q(m) for some m > 2n+1. Note that v, = 7,» € X, and that for each n € w, |¢y (n)] >
2n + 2. Fori € 2,let X; = {n Cw: |Xi ﬂcq/(n)‘ >n+ 1}. Note that w = X U X7.

Therefore (7;/',quneXOCQ’ (n)) u (W;/’,wqunexlcq’(")) = Ty, Set(cq) € Uy,. Fix
i € 2such that ) | U, cx,¢q(n) € Uy,. Then X is infinite and |eg (Xi(k)) N X°|

X;(k)+1 > k+1, foreach k € w. Choose ¢z (k) € [cq (Xi(k)) N X7] 1 Then cgr =
1

(cqr(k) + k € w) € Pand cgr < cgr. Moreover, mj) . |, cx,cq(n) C* my) . set(cqr).

Thus 77, set(cq») € Us,. Furthermore, 7/ 7l set(cyr) C* @), , set(cqr), for each

v

9" Yaq Va2 q" g
o € Xy. So we also have that 77,  set(cy7) € Ua, for each a € Xy. Therefore by
Remark 4.3 ¢" = (¢q, V¢, X¢/, (g0 : @0 € X)) i as required. O

We would like it to be the case that for each 3 < ¢, there is a ¢ in our “sufficiently
generic” filter over Q° with 8 € X, because we would like to read the map 75 g from
the filter. So we next prove that for each 3 < 8, every ¢ € Q° has an extension ¢’ with
B € X . Butlet us first interject two technical lemmas that are easy to prove.

Lemma 4.7. For ¢ € Q°, o € X, and a € Uy, there is ¢ < q such that X = X4 and

T o Set(cy) C a.

Proof. Consider the set b = 7, set(c,). By Definition 4.1(4a) b € U,, which implies
that a N'b € U,. Denote V = 7, L (a Nb). By Lemma 4.6 there is ¢’ < ¢ such that
set(cq) C Voorset(cy) C w\ V. Assume that set(c,/) C w \ V. By Definition 4.1(4a)
we have 7, , set(cq) € Uy and o = g0 So (77, , set(cy)) N (aNb) = 0 which is
impossible. Hence set(c,/) C V implying 77, , set(cq) C a M b as required. O

Lemmad.8. Letq € Q°, B €6, andY = X,U{B}. Thereis ¢ < q such that X, = X,
and that for every ¢, &, p satisfying p € Xor, ¢, £ €Y, and ( < & < p, thereis N < w such
that for every k,l € set(cq ) if N < k < I, then my, ¢(mg (k) = mec(mpe(my u(k)))
and 7, ¢(mg (k) < mpe(mg u(l)).
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Proof. Let V. = {(C,&,u) : p € Xy AN(E € Y AL <& < p}. Vis countable, so
let {(Cn,&ny pin) : n < w} enumerate it, possibly with repetitions. Build by induction
on n a decreasing sequence (g, : n € w) C Q° such that Vn € w [X%H = an}. Let
go = ¢. Fix n € w, and suppose that ¢,, < ¢ is given. By the definition of a §-generic
sequence, there exists a,, € U,,, such that Vk* € a,, (7, ¢, (k") = 7¢, ¢, (Tu, 6. (E*))]
and VE*,I* € a, [k* <I" = m,, ¢, (K*) <76, (1%)]. Apply Lemma 4.7 to g, €
Q°, un € X,,, and a,, € U, , to find ¢, +1 < gy such that T 1 ,mn 5€6(Cqny) C an
and X,,,, = X,,. This concludes the construction of (g, : n € w). Find ¢ € Q°
such that Vn € w(¢’ < ¢,] and Xy = X, = X,. We check that ¢’ is as needed. Fix
n < w. As p, € Xy and ¢ < g1, there is N such that for all k,1 € set(cy), if
N <k < I, then k,l € set(cy,,,) and 7q ,, (k) < mg (1), Fixing any such & and
l,let & = ng . (k) and I* = 7y 4 (1). Then k*,I* € a, and k* < [*. Therefore,
Tpn.cn (K*) =7e, ¢ (T, e, (B*)) and 7w, ¢ (K*) < m,, ¢, (I*), as needed. O

Lemma 4.9. For q € Q° and B < § there is ¢ € Q° such that ¢ < qand B € X,.

Proof. Assume 3 ¢ X,. According to Lemma 4.8 applied to ¢ and § there is ¢* < ¢
such that X, = X, and that for every (,&, p satisfying p € Xg+, (,§ € Xg= U {5}
and ¢ < ¢ < pthere is N < w such that for every k,! € set(cy+) if N < k < [, then
Ty (Tge w(k)) = e o (T e(mge u(K))) and 7y ¢ (mg= 1 (K)) < 7y e(mge,,(1)). In the same
way as in the proof of Lemma 4.5 we have the following cases: either v~ = § = 0 or
vg+ = 0 and cof (6) = w or y4« < 6.

Case I: 74~ = . As we mentioned above there are two subcases.

Subcase Ia: 74« = 6 = 0. Note that in this case the statement is vacuous because there is
no 3 < 6.

Subcase Ib: v, = ¢ and cof (0) = w. Since sup(Xy+) = v, = dand § < §, lety* € X~
be minimal such that 5 < v*. Let m < w be minimal such that c,« <,,, bg~ - and for all
k.l € set(cg-) [m], if k£ < 1, then my« g(mge 4+ (k)) < Ty g(mg= 4+ (1)). Define

q' = (cq=, 0, Xg» U{B}, (mg= 0t v € Xy- U{B})),

where 7.+ g is as follows: for k € set(cq-) [m] let mg« g(k) = oy g(mge 4+ (K)), while
74« 5(k) = 0 otherwise. It suffices to prove that ¢ € Q° because it is then easy to see
that ¢’ < ¢* and 8 € X, hold. Properties (1-3) are clearly satisfied. So we check (4).
First it is clear that (4a) holds by the definition of 7.+ g and by the fact that ¢,/ = cg«.
Next, we check (4b). Pick arbitrary o,y € X such that o« < . We will distinguish
four cases: either (&« # fand v # ), or (o« = 5 = ), or (y = B and a # ), or
(o = B and vy # B). First, if o« # B and v # 3, then (4b) holds because ¢* € Q° and
o,y € Xg«. Next, if « = § =+, then (4b) trivially holds. Now assume that v = § and
a # . Then o € X -. There exists k; such that for each k € set(cy+) [k1] the fol-
lowing hold: mg« (k) = s o (Tge 5= (K)), Ty (Mg 5= (K)) = Ty ,a (e 5 (g 4+ (K)))s
and 7y« (k) = Ty o (Mg ~+ (k)). Thus for every k € set(cq-) [k1]] we have mg- o (k) =
T a(Tgr 4+ (B)) = Ty, 0 (T o (Tge 4+ (k))) = Ty a(mg= 4(k)) as required. Finally as-
sume that « = f and v # 3. Then v € X« and § < 7. By minimality of ~*,
~v* < 7. As before, there exists kg € w such that for each k& € set(cy+) [ko] the fol-
lowing hold: g« o (k) = Ty o(Tgs 4+ (K)), Ty ,a(Tg= v () = Tys a(my 4= (Tg= 5 (K))),
and 7y« o+ (k) = 7y 4+ (mg+ 4(k)). Thus for every k € set(cq+) [ko] we have mg« o (k) =
T a(Tgr 4 (k) = Tyr o (Ty 4+ (Tg= 4 (K))) = Ty a(mg+ ~(k)) as required. So (4b) holds.
Finally, we check (4c). If a € X~ then (4c) is true because ¢* & Q?. Let us now define
bg+ g and ¢g- 5. Put by« 3 = cg+. Foreach m* > m, my- 4+ is constant on ¢4+« (m*) because
Cqr < bg+ 4+. So for each m* > m, mg- 3 is constant on cg- (mM*). AlSO = g 0 Tgx 4+ is
increasing on set(cq- ) [mn]. So for each m* > m define g« g(m*) = my= g(mg= 4+ (k)) =
7q+,3(k), for an arbitrary k € ¢y« (m*). When m* < m, w4+ g is constantly equal to 0 on
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cq(m*). So set g« g(m*) = 0, for m* < m. It is clear that (g~ g, g~ 3,bg= ) is a
normal triple with ¢+ < bg- 3.

Case II: 7, < 6. Note that 4~ € X, There are two subcases: when 3 < 74+ and
when v, < B. If B < ~4, then define 74+ g as follows. Let m; be such that the
following two things hold: cg- <, by - .; and for any k,l € set(cge) [mall, if & < 1,
then ., . 5(7g - (k) < 7y u 5(Tge 4, (1)). For k € set(cg~) [m1], define mg- (k) =
T (g« (K)), while for k ¢ set(cy) [ma], define g« (k) = 0. We will prove
that ¢ = (cg, Vg, Xg» U{B}, (Mgr.a : @« € Xp» U{B})) is as required. It is enough to
show that ¢/ € Q7, because then we will have that ¢/ < ¢* and 8 € Xy . Clearly,
conditions (1-3) are satisfied. To see that (4) is true, note that (4a) is clear from the
definition of 7, g and from that fact that ¢, = c4«. Next, we check (4b) for ¢’. Fix
a,y € Xy such that & < ~. There are again four cases: either (5 # « and 3 # ),
or (a = =7),or(y =LFand a # B),or (y # fand a = [). If § # a and
B # ~, then the statement follows directly from Definition 4.1(4b) applied to ¢*. The
case when a = [ = « is trivial. Next, consider the case when v = [ and o # f.
Then o € Xg+. There exists ko such that for each k& € set(cy+) [k2] the following
hold: g« (k) = qu*,v(ﬁq*,'yq* (), qu*,a(ﬂq*wq* (k) = Wv,a(ﬂ’vq*,’v(ﬂq*xyq* (%)),
and myx o (k) = quha(wq*ﬁq* (k)). Thus for any k € set(cg~) [k2], Ty, (mgx (k) =
wvya(w%*,ﬂ,(wq*%* (k) = mq*’a(wq*%* (k)) = mg-.a(k), as needed. Finally suppose
that v # B and a = . Then v € X,-. As before, there exists k3 such that for each k£ €
set(cg+) [k3] the following hold: 7y« (k) = T . a(Tgr e (K))s Ty (e 4,0 (K)) =
Ty, (T (Mg e (K)))s and g (k) = 70, 5 (7ge 1, (). Thus for k € set(cg-) [Ks].
T al(k) = qu*,a(ﬂq*wq* (k) = ”w,a(ﬁ’yq*y'y(ﬂq*ﬁq* (k) = my,a(mg- 4(K)), as re-
quired. So (4b) is checked, and we now check (4c¢) for ¢'. If a € X4+, then (4¢) is satisfied
for ¢’ because it was satisfied for ¢*. It remains to define by- g and 14+ g. Put by» g = cg-.
Note that for each m* > my, g% e is constant on ¢y« (m*) because cg+ <, bq*ﬁq* . So
for each m* > my, my- g is constant on ¢y« (m*). Also 7, . g o T4~ 4, . is increasing on
set(cg+) [ma]. So for m* > my, define ¢y« g(m*) = 7 . s(7g 4. (k) = 7gx p(k), for
an arbitrary k € ¢z« (m*). When m* < my, mg- g is constantly equal to 0 on ¢4+ (m*). So
define 94+ g(m*) = 0, for m* < my;. Itis clear that (mg« g, ¢~ g, bg~ g) is a normal triple
and that ¢4« < by« 3. Hence ¢ is as required.

Now consider the case when 3 > ~v4-. For each a € X+, since o < 4= < 3,
by Definition 2.10(5b) pick an € Up so that Vk € aq [1p.a(k) = 7y . a(7p.4,. (K))].
Since X, is countable and U3 is a P-point there is a € Ug such that a C* a, for ev-
ery « € Xg-. Then we apply Definition 2.10(3) with 8, o being 74+, ¢4~ being d, m
being g« .., b1 being by« - . and ¢y being ¢y~ - . and a. Note that hypothesis of Def-
inition 2.10(3) are satisfied. By Definition 2.10(3) there are b € Ug, 7,9 € w* and
d* <o cg+ so that b C* a, (m,1,d*) is a normal triple, 7"’ set(d*) = b and Vk €
set(d*) [Tg v, (k) = g4, (7(k))]. Denote 7y« 5 = 7 and ¢4« 5 = 1b. Now define
¢ = (d*, B, Xy U{B}, (mgr,a : @ € X¢y» U{B})). It is easy to see that if we prove
that ¢ € Q°, then ¢’ < ¢* and B € X, follow. So we check conditions of Defini-
tion 4.1. Note that conditions (1-3) are clearly true. We still have to check Definition
4.1(4). First note that (4c) is satisfied for a € X« because d* < ¢4+, while it is true
for B because (m,1),d*) is a normal triple. To see that (4b) is true let ar, vy € X+ U {5}
be such that & < ~. There are three cases: either « # (S and v # S or o = [ or
~v = p. First note that if o = [, then it must also be v = (3 and the statement holds.
If « # B and v # (3 then by Definition 4.1 and because set(d*) C* set(c,«) we have
Vok € set(d*) [mg (k) = Ty a(mg ~(K))]. If v = [ then because b C* a C* a, and
7" set(d*) = b we have that there is ko < w such that for every k € set(d*) [ko] we have
Toralk) = e 0 (T e (B)) = T 0 (5. (1(R))) = Tp0 (T (k) = T5.0(7qr 5(k))

as required. To see that (4a) is true note that 7. gset(d*) = b € Up and consequently

q
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T4 (w;’*, P set(d*)) € Ug for any o € X,-. Together with already proved (4b), this
implies 74 , (%@7 4 set(d*)) C* . set(d*) € Uy for a € X, O

The next lemma ensures that we can “kill” unwanted Tukey maps. That is, if 3 < § and
¢ : P(w) — P(w) is a monotone map that is a potential witness for the unwanted Tukey
reduction Us <7 Ug, then we would like every condition in Q7 to have an extension
forcing that ¢ is not such a witness.

Lemma 4.10. For any q € Q°, any 3 < & and any monotone ¢ : P(w) — P(w), if for
every A € Ua, ¢(A) # 0 then there is ¢ < q such that 5 € X and that for every A € Ug
we have ¢p(A) ¢ set(cq ).

Proof. By Lemma 4.9 there is ¢’ < ¢ such that 5 € X, and by Lemma 4.5 there is
q" < ¢ < g such that for every n < w there is m > 2n + 1 such that ¢y (n) = ¢y (m).
For every n < w choose sets dq (n) and da(n) which are elements of [c,~(n)]" ! and are
such that di(n) N d2(n) = 0. This can be done because |c,~(n)| > 2n + 2. Note that
both ¢; = <d1,’}/q//,XqN, <7Tq//7a YOS Xq//>> and ¢ = <d2,’}/q//,Xq//, <7Tq//,a YOS Xq//>>
belong to Q° and that ¢1,¢2 < ¢” < g. Now we consider two cases: either for every
A € Ugp, p(A) ¢ set(dq), or there is some A € Us such that ¢(A) C set(dy). If for every
A € Ug, ¢p(A) ¢ set(dq), then ¢ is as required. Otherwise, ¢, is as required because
set(dy) Nset(dz) = 0 and ¢ is monotone. O

Note that ¢’ forces what we want because it forces set(c,) € Us. Hence it forces that
the image of Ug under ¢ is not cofinal in ;. It is also worth noting that the descriptive
complexity of ¢ plays no role in the proof of Lemma 4.10. So Theorem 1.4 is only needed
for bounding the number of relevant maps.

The next lemma is needed for ensuring clause (6) of Definition 2.10, and hence it is
only relevant when cof (§) = w. It follows by a direct application of Lemma 3.4.

Lemma 4.11. Suppose that cof(§) = w, ¢ € Q° is such that v, = 6, (d; : j <w) is a
decreasing sequence in P, X C X, is such that sup(X) = § and that (1, : o € X) isa
sequence of maps in w* satisfying:
(1) Va € X Vj < w [nlset(d;) € Uy,
(2) Va,B € X [a < = 3j <wV®k € set(d;) [ma(k) = mp,a(ma(k))]];
(3) forall « € X there are j < w and 1, € w* and b,, € P such that {7y, Vq,ba) is
a normal triple and d; < b,

Then there are ¢ < ¢, d* € Pand 7 : w — w such that:
(4) Vj <w[d* < dj] and set(cy) = 7'’ set(d*);
(5) Va € X VFk € set(d*) [mo(k) = 7y o (m(k))];
(6) there is 1) for which (w1, d*) is a normal triple.

Proof. We will use Lemma 3.4 where: §, X, <dj :j <w) and 7, (o € X) are as in the
statement of this lemma, f = id; e is ¢g; for @ € X map 75,4 1S Tg,0 (v € X). So
there are e*, d* and 7 satisfying properties (4-8) of the conclusion of Lemma 3.4. We will
show that ¢’ = (e*,d, Xy, (mq.o : @ € X)), d* and 7 are as required. The conditions (4-
6) will be witnessed by conditions (5-8) in the conclusion of the Lemma 3.4. By Remark
4.3, in order to finish the proof we only have to show that Definition 4.1(4a) holds for
q'. First assume that « € X. Then by Lemma 3.4(7), 7, , set(e*) € U,. Now assume
that @ € X, \ X. Let @’ € X be such that o/ > a. Then 7/, , (7// s set(e*)) € Ua.
Also we have )}, ., (7l/ ./ set(e*)) C* @, set(e*). These observations together give us
Ty o Set(e*) € Uy, as required. O

Next we show how to make sure that U5 is rapid. This lemma follows from a direct
application of Lemma 4.5.
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Lemma 4.12. Suppose that § < wo, that ¢ € Q° and that f € w¥ is a strictly increasing
function. There is ¢’ < q such that for every n < w we have set(cq)(n) > f(n).

Proof. According to Lemma 4.5 there is ¢’ < ¢ so that for every n < w there is m >
f(s(n + 1)) such that ¢y (n) € [cy(m)]" . We will prove that ¢’ is as required. So fix
n < w, and let k < w be such that set(cy ) (n) € ¢q (k). Equivalently s(k) < n < s(k+1)
which implies set(cy )(n) > set(cq)(s(k)). Since for some m > f(s(k + 1)) we have
cq' (k) C cq(m) and set(cy)(n) € ¢y (k), then by Remark 2.6(1), set(cy)(n) > m >
f(s(k+1)) > f(n), the last inequality being true because f is an increasing function. So
we showed that set(cq)(n) > f(n) as required. O

We now come to the final density lemma. This lemma ensures that clause (3) of Defini-
tion 2.10 can be satisfied during the construction of U5. One of the cases in its proof makes
use of Lemma 3.4.

Lemma 4.13. Let ¢ € Q°, 1,91 € w*, by,d € P, and o < § be such that (71,1, b;)
is a normal triple, d < by, and 7 set(d) € Uy. Then there are ¢* < g, d* < d, m,¢) €
w* such that (w,,d*) is a normal triple, o € X4+, 7" set(d*) = set(cy+) and Vk €
set(d”) [m1(k) = g o (7 (K))].

Proof. By Lemma 4.9 there is go < ¢ such that o € X . In the same way as in the proof
of Lemma 4.5 we have the following cases: either y,, = 6 = 0 or 74, = ¢ and cof(d) = w
Or Vg, < 0.

Case I: 74, = 0. As we mentioned above there are two subcases.
Subcase Ia: 74, = 0 = 0. Then the statement is vacuous because there is no o < 9.

Subcase Ib: 7, = ¢ and cof(d) = w. In particular ¢ is limit ordinal. There is ¢; <
such that qu = X, and that ¢; satisfies conclusion of Lemma 4.8. Note sup(Xg, )
So pick an increasing sequence (o, : n < w) such that ag = a, sup {ay, : 1 < w} =
and o, € X, for n < w. Build by induction sequences (d,, : n < w) and (7,
satisfying the following for each n < w:

(1) do =d, Moy = m1, and Vm < n [d,, < dp,];

(2) my, set(dy) € Uy, and Vm < nV>®k € set(dy) [Ta,, (k) = Ta,,am (Ta, (K))];

(3) if n > 0, then there is 1, € w* such that (74, , g, , dn) is a normal triple.

Put dy = d and m,, = m;. Fix n € w and assume that d,, and 7,, are given sat-
isfying (1)-(3). To get d, 1 we apply Definition 2.10(3) with @ = ay, 8 = an41,
T = Tq,, d = dp, and if n = 0, then 11 = 1 and by = by, while if n > 0, then
Y1 = Yq, and by = d,,. Note that in all cases the hypothesis of Definition 2.10(3) is sat-
isfied. Let @ in Definition 2.10(3) be 7/, o set(cql) Then there are b € Ua,, 1> Y yis
Tany, € w* and dpy1 < dy, such that b C* 7 set(cq, ), ™o set(dny1) = D,

q1,0n41 Qp41
Vk € set(dpi1) [Ta, (k) = Tan i1 0n (Tan,, (k)] and that (T4, Ya, dni1) is a nor-
mal triple We will prove that d,, 1 and 7, , satisfy (1)=(3). (1) is clear. Second, we
have 7, . set(dn11) = b € Ua,, - Next, we check that for every m < n + 1, ¥k €
set(dnt1) [Ta,, (B) = Tan i1 am (Ta,y . (K))]. We distinguish two cases: either m = n + 1
orm < n. If m = n + 1, then since 74, | a,,, = id, for every k € set(d,,+1) we have
Tanis(B) = Tap1,ani1 (Tan.i (k). If m < n, then it is easy to find a ko € w so that for
every k € set(dpn11) [ko] the following hold: 7o, (k) = o,y an (Tans: (K))s Ta,, (k) =
Tam,am (Ta, (F)), and o, 1, (Tay i (K) = a0 (Tauian (Ta,. (K))). Hence for
eachk € set(dnt1) [kol, ma,, (k) = Ta, 0 (Ta, (k) = Tapam (Tanii,an (Tan (K)) =
Tani1,0m (Tanys (K)), as required. Fourth, (7, ,,,%a,,,dn+1) is a normal triple. So the
sequences (d,, : n < w) and (7, : 7 < w) are as required.

Next we apply Lemma 3.4 in such a way that ¢ is d, fisid, X = {a, : n < w}, eis
Cq1s T8,0n 18 Mgy a, fOrn < w, dy, is dy, forn < w, gy, 18 Ty, forn < w, bs q,, and Vs o,
are by, o, and 14, o, for n < w. Note that cof(d) = w, sup(X) = §, X C ¢ and that
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Lemma 3.4(2) is satisfied because ¢ satisfies Definition 4.1(4). So we still have to prove
that condition (3) of Lemma 3.4 is satisfied. First we prove (3b). Fix m < n < w. By
the construction of 7., we know that Yk € set(d,) [7a,, (k) = Ta, o (Ta, (k)] as
required. To see (3c) take n < w and note that (7, , ¥q, , d,) is a normal triple. Next we
prove (3a). We have to prove that for every m,n < w, 7, set(d,,) € Uy, . We consider
two cases: either m < n or m > n. If m < n note set(d,,) C* set(d,,) so since by con-
struction 7, set(d,,) € Uy, we have 7, set(d,,) € Ua,,. If m > n then by construction
T 8et(dpm) € Uy,,. By already proved (3b) m, (7 set(dm)) =" 7w, set(dm).
By Definition 2.10(5a), 7, . (70 set(dy)) € Uy, so we have 7, set(dm) € Uy, as
required.

So all conditions of Lemma 3.4 are satisfied. Hence, there are ¢/, d’, 7’ and ¢’ sat-
isfying conditions (4-8) of the conclusion of Lemma 3.4. In particular, by (6) we know
that there is k1 such that Vk € set(d’) [k1] [mao (k) = 7gp.a0 (7' (K))]. Let n < w be
such that (7')"d' (k1) C €'(n), and ko such that set(e’) [n+ 1] = (/)" set(d) [k2].
Since (7,4, d’) is a normal triple, k5 is well defined and ks > k;. Now let d* be de-
fined by d*(k) = d'(k2 + k) (k < w), let €* be defined by e*(k) = €'(n + k + 1)
(k < w). Note that e* <y €' <y ¢4, set(e*) =" set(e’) and d* < d'. Define also
7w € w* as follows: for k € set(d*) let (k) = 7'(k) and 7(k) = O otherwise. Let
1 € w® be defined by ¥(k) = 9'(k2 + k) for k < w. Note that (m,1,d*) is a nor-
mal triple and that 7 set(d*) = set(e*). Define ¢* = (e*,d, Xy, (Tg,.a 1 @ € X¢,)).
Since e* < c¢,,, by Remark 4.3, in order to show ¢* < ¢; we only have to prove that
q* satisfies Definition 4.1(4a). First we show that it holds for all o, (n < w). Take
n < w. By (7) of the conclusion of Lemma 3.4 and because set(e*) =* set(e’) we have
Ty o, Set(e*) € Uy, . Now we prove (4a). Let a € X,,. Pick o, > a. By Remark
4.3, ¢* satisfies (4b) so m, (7], . set(e*)) =" 7y, oset(e*). By Definition 2.10(5a)
we know 7, (7 . set(e*)) € U,. Hence 7 ,set(e*) € U, as required. We will
show that ¢*, d*, m and ¢ satisfy conclusion of this lemma. First, (m,, d*) is a normal
triple. Second, o € X,, = X, = X+. Third, 7" set(d*) = set(e*). Fourth, for every
k € set(d*) we know that k € set(d’) [k2], so m1 (k) = ma(k) = g, o(7m(k)). Note that
T = T, by definition of 7,,,. So ¢* is as required.

Case II: 74, < 0. Let ng be such that ¢y, <, by, ~,, and that for every k € set(cy, ) [no]
we have 7y, o (k) = 7T’Yq070‘(7r(I077q0 (k)

Claim 4.14. There are d' < d, b C 7y, set(cq,) [no] and 72,12 € w* such that

my set(d’) = b, Vk € set(d’) [m1(k) = 7, .a(m2(k))] and that (7,102, d") is a normal
triple.

Proof. We will consider two cases: either o = 74, or a < 7,,. If a < 74, then we
apply Definition 2.10(3) with & = «, 8 = g, ™1 = T, Y1 = Y1, 01 = b, d =d

and a = 7(‘/1/0’7110 set(cq,) [n0]. Note that hypothesis of Definition 2.10(3) are satisfied.

Hence there are b € U,, , 7,9 € w* and d' <o d so that (r,4,d’) is a normal triple,
7" set(d') = band Vk € set(d') [m1(k) = 7, o(7(k))] as required.

If o = 74, first let  be such that d <; by. Putb = 7y set(d) [[] N 7y, set(cq,) [no]

andnote b € U,, andb C w;’(wqo set(eq) [no]- Put B, = {m < w : 7{d(m) = {b(n)}}.
By Lemma 2.9, L,, = max(F,) is well defined and L,, < L, is true for n < w.
Define d’ as follows: for n < w let d'(n) = d(Ly,). Since L, < Lp41 (n < w) we
know that d € P. Define 7y as follows: for k ¢ set(d’) let mo(k) = m1(k) while
m2(k) = 0 otherwise. Since L,, > [ for every n < w, we can define L/, such that
d(Ly) C b1(L}). Then w{b1(L},) = {¢1(L},)}. Define ¢5(n) = 11(L},). Then it is easy
to see that (o, 19, d’) is a normal triple. We know that 7 set(d’) = b because for every
n < w, 7hd' (n) = 7{d(L,) = 7{b1(L)) = {b(n)}. To see that Vk € set(d’) [m1(k) =



26 B. KUZELJEVIC AND D. RAGHAVAN

Tge.a(m2(K))] note that 74, = a and 7, = id so for every k € set(d’) we have that
71 (k) = o o(m2(k)) is true. O

Now that we have b with the required properties, since U, is rapid, there is ¢ € U,
so that for every n < w there is m > ¢(n + 1) so that ¢(n) = b(m). We will build
e*, d*, v, and 7 so that the following hold: e* < ¢4, d* <o d', 7"’ set(d*) = e*,
Too . Set(e) = ¢, Vk € set(d”) [ma(k) = gy 4, (7(k))], and (7,9, d*) is a normal

90:Yaq
triple. For each n < w define M,, = max {m <w: 7rq0 Yeo Cqo(Mm) = {c(n)}} and
K, = max{m < w:w4d (m) = {c(n)}}. By Lemma 2.9, M,, > ng, M, 1 > M,
and K,,11 > K, (n < w). We show that K,, > t(n + 1) for every n < w. Define
l, = max{m < w: w§d'(m) = b(n)} (n < w), and note that by Lemma 2.9 numbers /,,
are well defined and that [, > [,, (n < w). Hence l,,11 > n+1(n < w). Fixn < w.
Then there is v, > t(n + 1) such that ¢(n) = b(vy,). So Ky, = 1y, > lytng1) > t(n +1).
Define e* as follows: for n < w let e*(n) € [c4y (M,,)]" T . Define d* as follows. For
each n’ < w choose a sequence (d*(n) : s(n’) < n < s(n’ + 1)) in such a way
that for all s(n’) < n < s(n’ + 1), d*(n) € [d'(K,)]""" and for all s( < n<
n+1 < s(n' + 1), max(d*(n)) < min(d*(n + 1)). Next, define 7 € w® as follows:
for k ¢ set(d*) let m(k) = 0, while for & € set(d*) let ( ) = set(e*)(n) where n is
such that £ € d*(n). Let ¢ € w* be defined as ¥(n) = set(e*)(n) for every n < w.
Note that (1, d*) is a normal triple because 7"/d*(n) = {1/)( )} = {set(e*)(n)} for
n < w. To show that e*, d*, m and v are as required, we still have to show that for every
k € set(d”) [m2(k) = mgq,q,, (m(K))]. Fix k € set(d”). Letn be such that k € d*(n)
and let m be such that s(m) < n < s(m + 1). Then k € d'(K,,) so m2(k) = c(m).
Also m(k) = set(e”)(n) € e*(m) C cqo(My) 80 gy, (7(K)) = c(m) = ma(k) as
required. Define ¢* = (e*, 74, Xqo, (Tgo,a : @ € Xgy)). Since e* <y c¢g,, by Remark
4.3, in order to prove ¢* € Q7 and ¢* < qq it is enough to show that ¢* satisfies prop-
erty (4a) of Definition 4.1. So let 5 € X,,. There are two cases: either § = ~,, or
B < Vg If B = g, then 7 e set(e*) = ¢ € Ug. If B < 74, then by Remark 4.3
property (4b) of Definition 4.1 holds for q* so wfy’q (T, Yao set( *)) =" my, gset(e”).
Also, by Definition 2.10(5a), lelqoﬁ(wgoﬁqo set(e*)) € Ug so m zset(e*) € Us. Hence
q* € Q% and ¢* < q. Finally, we prove that ¢* satisfies concluswn of this lemma. By
the choice of gy we have a € X,,. By the choice of d* and e* we have 7" set(d*) =
set(e*). We already explained why (7,1, d*) is a normal triple. So we still have to
prove that Vk € set(d*) [mi(k) = mg o(m(k))]. By Claim 4.14 and since d* <, d’
we have Vk € set(d*) [m1(k) = 7y, o(m2(k))]. We also proved Vk € set(d*) [ma(k) =
Tgo,7q, (T(K))]. Since M,, > ng for every n < w and 7"’ set(d*) = set(e*), we also have
that Vk € set(d*) [mgo,a(7(k)) = Ty, ,a(Tgo,vq, (m(k)))]. From these three equations we
get (k) = 7y, a(m2(k)) = Ty a(Tge,ng, (T(K))) = Tgo,a(7(k)) as required. Hence
q* satisfies conclusion of this lemma. O

The proofs of Lemmas 4.5-4.13 go through with no essential modifications under MA.
Of course the proofs would depend on the fact that Q% would be < ¢ closed and the
generalized form of Lemma 3.4 would hold in this context. The inductive construction
occurring in Subcase Ib of the proof of Lemma 4.13 would need to be of length &, for some
& < c. The limit stages of this inductive construction can be passed by appealing to the
generalized forms of Lemma 3.4 and Clause (6) of Definition 2.10.

5. A LONG CHAIN

We now have all the tools necessary for constructing the desired chain of P-points. As
our construction requires CH, we assume 2%° = X; in this section. The chain of length w;
will be obtained from an ws-generic sequence.
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Theorem 5.1 (CH). There is an wo-generic sequence.

Proof. We build by induction sequence (S5 : 6’ < ws) such that for each ¢’ < wo:

(1) Ss: is ¢'-generic;

2) Vy < &' [Sy=Ss 7]
For &' = 0, let Sy = (0, 0). Next assume that ¢’ is a limit ordinal and that for every v < §’,
we are given S, as required. Define

55':<U (fra<yNi<cy, U <7r5’a:a<5<’y>>.

y<o’ y<o’

Remark 2.11 ensures that S satisfies (1) and (2)2. Finally assume that ¢’ = § 4+ 1 and that
S satisfies (1) and (2). Note § < wo. In the next paragraph we build S;1.

First partition w; = TpUTy UT>, UT3UTy into five disjoint sets so that |T;| = w; (i € 5).
Next we enumerate certain sets. Let P(w) = {X; : i € To}. Let V = {f; : ¢ € T1}, where
V is the set of all increasing functions in w®. Let T = w* X w* xPxPx¢§ = {t; : i € To}
be enumeration of T in such a way that every element occurs w; many times on the list.
Let ® x 6 = {(¢;, ) : i € T3}, where ® is the set of all continuous monotone maps
¢ : P(w) — P(w), and note that this enumeration is possible because |®| = c¢. Let
I = {s; :i € Ty} be enumeration of I" such that every element of I" appears w; many
times, where I is the set of all (X, d,7,b,1) such that X € [§]S¥, d € P, 7t € (w*)¥,
b € PX, 4 € (w”)X. Now we build a decreasing sequence (g; : i < wi) in Q°. Since
Q° # 0 pick arbitrary go € Q°. Assume that for i < w; we already built (g; : j < 7).
If 7 is limit then by Lemma 4.4 we choose ¢; such that g; < q; (j < 9). If i = ig + 1
then we distinguish five cases. Suppose that i9 € Tp. Then X;, € P(w). By Lemma
4.6 we pick ¢; < ¢;, such that set(c,,) C X, or set(cy,) C w \ Xj,. Suppose that
19 € T1. Then f;, € w* is a strictly increasing so by Lemma 4.12 there is ¢; < g¢;, such
that Vn < w [set(cq,)(n) > fi,(n)]. Suppose that ig € To. If (m;,, ¥, bs,) is a normal
triple, d;, < b;, and 7}/ set(d;,) € Ua,, then by Lemma 4.13 pick ¢; < qiy, df < d;,,
7, F € w¥ so that (wF, 7, df) is a normal triple, o, € X, (7F)" set(df) =" set(cy,)
and Vk € set(d;)[mi, (k) = Tq; a;, (77 (K))]. Otherwise let ¢; = g;,. Suppose that ig € T3.
Then ¢;, : P(w) — P(w) is monotone and continuous. If ¢;, (A) # 0 for every A € Uy,
then by Lemma 4.10 pick ¢; < g;, such that o;;; € X, and ¢(A) € set(cy,) for every
A € Uy,,,. Otherwise let ¢; = g;,. Suppose that ig € Ty. Then X;, € [6]=%, d;, and
bi, are decreasing sequences in P and 7, ¢, € (w”)¥io. If cof(8) = w, 74, = 0,
Xi, C Xg,» sup(X) = 6 and dy,, Ty, P, and by, satisfy Lemma 4.11(1-3), then by
Lemma 4.11 pick ¢; < g;,, d} and 7} satisfying Lemma 4.11(4-6). Otherwise let ¢; = g;,.
Now define S;: as follows: mss = id, fora < 8 < d and i < wy, ¢ and g o are as in
Ss, while for o < ¢ and i < wq, cf is ¢4, and 75 o is 7y, o Where j is minimal such that
a€ Xy,

Claim 5.2. For every a < 6 there is i < wy such that o € Xg,.

Proof. Take o« < §. Consider the function ¢ : P(w) — P(w) given by ¢(A) = w for
A C w. Clearly, (A) # 0 for A € U,. So there is ig € T3 so that (¢, &) = (s, @sy)-
Then for ¢ = iy + 1, by choice of ¢; we have o;, € X,. [l

Note that by Claim 5.2 75, is defined for every a < §. Namely, if ¢ < w; is such that
a € Xy, then 75, = 7y, o. We still have to prove that S5 is § 4 1-generic sequence.
Only conditions (3) and (6) of Definition 2.10 need checking.

To see that (3) holds, take any o« < 8 < §. If 5 < 4 the statement follows because S is
d-generic and Ss = S5q1 [ 6. If 5 = d let w1, 41, dq1, by, a be as in the statement of (3) and

2We consider the sequence <cf‘ ra< YN < c> as the function from v X ¢ into P while the sequence
(7,0 + @ < B < ) is considered as the function from {(c, 8) : @ < 3 < 7} into w*.
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let a € Us. Since a € Uy there is j < ¢ such that cg- = ¢q; C* a. Then (71,11, d1, by, ) =
t; for some ¢ € T such that ¢+ > j. Note that this is true because every element of
T appears w; many times in its enumeration. So by the choice of ¢;;+; we know that
Cgisy CF Cq; C* aandthatdl,,, 7 1, ¥}, | and b}, are such that (7}, |, 97, 1,bf, ;) isa
normal triple, o € X, (77, 1)" set(d}, ) =" set(cq,,,) and V& € set(d, ) [m1(k) =
Tgisr,a(mi1(K))]. Denote b = (m}, )" set(d;,,) and note that b C* a. Now b, dj, ,,
i1, ¥y, and b}, ; witness that Definition 2.10(3) is true in this case also.

Next we show that Ss/ satisfies condition (6) of Definition 2.10. Let u, X, d, and 7 be
as in Definition 2.10(6). Since we require ¢* satisfying Definition 2.10(6) to be cofinal in ¢
let ig < ¢ be fixed. If ;1 < 9§, the condition is satisfied because Sy = S5 | § and Sy is o-
generic. If © = § then, by Claim 5.2 and because every element of I" appears ¢ many times
in its enumeration, there is ¢ € Ty such thati > i and (X, d, 7, b,) = s; and X C X,,.
By the choice of ¢;1 we know that d; ;, 7}, ; and e 1 = Cq;,, satisfy conditions (4-6)
of Lemma 4.11 which implies that they also satisfy condition (6) of Definition 2.10. Since
Ts,a = Tg;41,0 10T a € X this shows that ¢ + 1 > i witnesses that Definition 2.10(6) is
satisfied. (|

For each o < wa, letU, = {a € P(w) : i < c[set(c) C* a]}. As we have noted
in Section 2, (U, : a < wsq) is a sequence of P-points that is strictly increasing with
respect to both <gg and <;. Thus the ordinal w, embeds into the P-points under both
orderings. In fact, the proof of Theorem 5.1 shows something slightly more general. We
could have started the construction with a fixed J-generic sequence for some § < ws, and
then extended it to an ws-generic sequence in the same way. So we have the following
corollary to the proof.

Corollary 5.3 (CH). Suppose that § < wo and that Ss is a 6-generic sequence. Then there
is an wo-generic sequence S such that S | 6 = S;.

When CH is replaced with MA and the lemmas from Section 4 have been appropriately
generalized, the proof of the natural generalization of Theorem 5.1 presents little difficulty.
In the crucial successor step of the construction, w; can be replaced everywhere with c; all
of the sets that need to be enumerated have size ¢ because ¢<¢ = ¢ under MA. The gener-
alizations of the lemmas from Section 4 imply that each condition in Q° has an extension
that meets some given requirement, and the fact that Q° is < ¢ closed allows us to find
lower bounds at the limit steps. Therefore a ¢T-generic sequence exists under MA.
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